Volume 2009, Article ID 734090, 16 pagesdoi:10.1155/2009/734090 Research Article Nonlocal Controllability for the Semilinear Fuzzy Fuzzy Vector Space 1 Department of Mathematics, Dong-A
Trang 1Volume 2009, Article ID 734090, 16 pages
doi:10.1155/2009/734090
Research Article
Nonlocal Controllability for the Semilinear Fuzzy
Fuzzy Vector Space
1 Department of Mathematics, Dong-A University, Pusan 604-714, South Korea
2 Division of Mathematics Sciences, Pukyong National University, Pusan 608-737, South Korea
Correspondence should be addressed to Jin Han Park,jihpark@pknu.ac.kr
Received 23 February 2009; Revised 20 June 2009; Accepted 3 August 2009
Recommended by Tocka Diagana
We study the existence and uniqueness of solutions and controllability for the semilinear fuzzy integrodifferential equations in n-dimensional fuzzy vector space ENn by using Banach fixed
point theorem, that is, an extension of the result of J H Park et al to n-dimensional fuzzy vector
space
Copyrightq 2009 Young Chel Kwun et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
1 Introduction
Many authors have studied several concepts of fuzzy systems Diamond and Kloeden1 proved the fuzzy optimal control for the following system:
˙xt atxt ut, x 0 x0, 1.1
where x· and u· are nonempty compact interval-valued functions on E1 Kwun and Park2 proved the existence of fuzzy optimal control for the nonlinear fuzzy differential
system with nonlocal initial condition in E1
N by using Kuhn-Tucker theorems Fuzzy integrodifferential equations are a field of interest, due to their applicability to the analysis of phenomena with memory where imprecision is inherent Balasubramaniam and Muralisankar3 proved the existence and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential equation with nonlocal initial condition They considered the semilinear one-dimensional heat equation on a connected domain 0, 1 for material with
Trang 2memory In one-dimensional fuzzy vector space E1N, Park et al 4 proved the existence and uniqueness of fuzzy solutions and presented the sufficient condition of nonlocal controllability for the following semilinear fuzzy integrodifferential equation with nonlocal initial condition:
x t
t
0
G t − sxsds
ft, x ut, t ∈ J 0, T,
x 0 gt1, t2, , t p , x t m x0∈ E N , m 1, 2, , p,
1.2
where T > 0, A : J → E N is a fuzzy coefficient, EN is the set of all upper semicontinuous
convex normal fuzzy numbers with bounded α-level intervals, f : J×E N → E Nis a nonlinear
continuous function, g : J p × E N → E N is a nonlinear continuous function, Gt is an n × n continuous matrix such that dGtx/dt is continuous for x ∈ E N and t ∈ J with Gt ≤ K,
In 5, Kwun et al proved the existence and uniqueness of fuzzy solutions for the semilinear fuzzy integrodifferential equations by using successive iteration In 6, Kwun et al investigated the continuously initial observability for the semilinear fuzzy integrodifferential equations Bede and Gal 7 studied almost periodic fuzzy-number-valued functions Gal and N’Gu´er´ekata 8 studied almost automorphic fuzzy-number-valued functions
In this paper, we study the the existence and uniqueness of solutions and controllability for the following semilinear fuzzy integrodifferential equations:
x i t
t
0
G t − sx i sds
f i t, x i t u i t on E i
N ,
x i 0 g i x i x0i ∈ E i
N i 1, 2, , n,
1.3
where A i : 0, T → E i
N is fuzzy coefficient, Ei
N is the set of all upper semicontinuously
convex fuzzy numbers on R with E i N / E N j i / j, f i:0, T × E i
N → E i
Nis a nonlinear regular
fuzzy function, g i : E i
N → E i
N is a nonlinear continuous function, Gt is n × n continuous matrix such that dGtx i /dt is continuous for x i ∈ E i
N and t ∈ 0, T with Gt ≤ k, k > 0,
u i:0, T → E i
N is control function and x0i ∈ E i
Nis initial value
2 Preliminaries
A fuzzy set of R n is a function u : R n → 0, 1 For each fuzzy set u, we denote by u α {x ∈
R n : ux ≥ α} for any α ∈ 0, 1, its α-level set.
Let u, v be fuzzy sets of R n It is well known thatu α v α for each α ∈ 0, 1 implies
Let E n denote the collection of all fuzzy sets of R n that satisfies the following conditions:
1 u is normal, that is, there exists an x0∈ R n such that ux o 1;
2 u is fuzzy convex, that is, uλx 1 − λy ≥ min{ux, uy} for any x, y ∈ R n,
0≤ λ ≤ 1;
Trang 33 ux is upper semicontinuous, that is, ux0 ≥ limk→ ∞u x k for any x k ∈ R n k
0, 1, 2, , x k → x0;
4 u0is compact
We call u ∈ E n an n-dimension fuzzy number.
Wang et al 9 defined n-dimensional fuzzy vector space and investigated its properties
For any u i ∈ E, i 1, 2, , n, we call the ordered one-dimension fuzzy number class
n-dimension fuzzy vector, denote it asu1, u2, , u n , and call the collection of all n-dimension
fuzzy vectorsi.e., the Cartesian productE × E × · · · × E n-dimensional fuzzy vector space,
and denote it asE n
byn
i1u α
il , u α
ir , that is, u α
1l , u α 1r ×u α 2l , u α 2r ×· · ·×u α
nl , u α
nr for every α ∈ 0, 1, where u α
il , u α
ir ∈ R with u α il ≤ u α
ir when α ∈ 0, 1, i 1, 2, , n, then we call u a fuzzy n-cell number We denote the collection of all fuzzy n-cell numbers by LE n
i1u α
il , u α
ir α ∈ 0, 1, there exists a
il , u α ir (i 1, 2, , n and α ∈ 0, 1).
il , u α
ir i 1, 2, , n and α ∈
0, 1, there exists a unique u ∈ LE n such that u αn
i1u α
il , u α
ir α ∈ 0, 1.
vectors can represent each other, so LE n and E n may be regarded as identity If
then we denote u u1, u2, , u n
LetE i
Nn E1
N × E2
N × · · · × E n
N , E i
N i 1, 2, ×, n be fuzzy subset of R Then E i
Nn ⊆
E n
Nnis defined by
D L u, v sup
0<α≤1 d L
u α , v α
sup
0<α≤1
max
1≤i≤n
il − v α
il , u α
ir − v α ir
2.1
for any u, v ∈ E i
Nn , which satisfies d L u w, v w d L u, v.
Nn, then
H1u, v sup
Trang 4Definition 2.5see 9 The derivative x t of a fuzzy process x ∈ E i
Nnis defined by
i1
x α il
t,x α ir
provided that the equation defines a fuzzy x t ∈ E i
Nn
b x tdt, a, b ∈ 0, T is defined by
a
b
x tdt
α
n
i1
a
b
x α il tdt,
a
b
x α ir tdt
2.4 provided that the Lebesgue integrals on the right-hand side exist
3 Existence and Uniqueness
In this section we consider the existence and uniqueness of the fuzzy solution for1.3 u ≡ 0
We define
,
,
3.1
Then
Instead of 1.3, we consider the following fuzzy integrodifferential equations in
E i
Nn:
x t
t
0
G t − sxsds
ft, xt ut onE N i n
x 0 gx x0∈E i Nn
3.3
with fuzzy coefficient A : 0, T → Ei
Nn , initial value x0 ∈ E i
Nn , and u : 0, T → E i
Nn
is a control function Given nonlinear regular fuzzy function f : 0, T × E i
Nn → E i
Nn
satisfies a global Lipschitz condition, that is, there exists a finite k > 0 such that
f s, xsα
≤ kd L
xs α ,
3.4
Trang 5for all xs, ys ∈ E i
Nn The nonlinear function g : E i
Nn → E i
Nnis a continuous function and satisfies the Lipschitz condition
g x·α
≤ hd L
x· α ,
3.5
for all x·, y· ∈ E i
Nn , h is a finite positive constant.
Nn with α-level set xt α Πn
i1x iα
Πn
i1x α
il , x α
ir is a fuzzy solution of 3.3 without nonhomogeneous term if and only if
x α il
t min
x α ik t
t
0
G t − sx α
ik sds
: j, k l, r
,
ir
t max
ij t
ik t
t
0
G t − sx α
ik sds
: j, k l, r
,
il 0 g α il
il
x α
0il , x α
ir 0 g α
ir
ir
x α
0ir , i 1, 2, , n.
3.6
For the sequel, we need the following assumptions
H1 St is a fuzzy number satisfying, for y ∈ E i
Nn,d/dt Sty ∈ C1I : E i
Nn
C I : E i
Nn, the equation
d
dt S ty A
S ty
t
0
G t − sSsy ds
StAy
t
0
S t − sAGsy ds, t ∈ I,
3.7
where
St αn
i1
S i t αn
i1
S α il t, S α
ir t, 3.8
and S α ij t j l, r is continuous with |S α
ij t| ≤ c, c > 0, for all t ∈ I 0, T.
H2 c{h1 T cT kT1 cT} < 1.
In view ofDefinition 3.1andH1, 3.3 can be expressed as
x t Stx0− gx
t
0
S t − sf s, xs usds,
x 0 gx x0.
3.9
Theorem 3.2 Let T > 0 If hypotheses (H1)-(H2) are hold, then for every x0 ∈ E i
Nn ,3.9 (u ≡ 0
Nn .
Trang 6Proof For each x t ∈ E i
Nn and t ∈ 0, T, define G0x t ∈ E i
Nnby
G0x t Stx0− gx
t
0
S t − sfs, xsds. 3.10
Thus, G0x : 0, T → E i
Nn is continuous, so G0 is a mapping from C0, T : E i
Nn into itself By Definitions2.3and2.4, some properties of dL, and inequalities3.4 and 3.5, we
have following inequalities For x, y ∈ C0, T : E i
Nn,
G0x t α ,
tα
d L
S tx0− gx
t
0
S t − sfs, xsds
α
,
t
0
S t − sfs, y sds
α
d L
−Stgx
t
0
S t − sfs, xsds
α
,
−Stgy
t
0
S t − sfs, y sds
α
≤ d L
S tgxα
t
0
S t − sfs, xsα
S t − sfs, y sα
ds
max
1≤i≤n S α
il tg α
il x − g α
il
ir tg α
ir x − g α
ir
y
t
0
max
1≤i≤n S α il t − sf il α s, xs − f α
il
s, y s , S α ir t − sf ir α s, xs − f α
ir
≤ c max
1≤i≤n g il α x − g α
il
y , g ir α x − g α
ir
y
c
t
0
max
1≤i≤n f il α s, xs − f α
il
s, y s , f ir α s, xs − f α
ir
cd L
c
t
0
f s, xsα
ds
≤ chd L
x· α ,
ck
t
0
xs α ,
ds.
3.11
Trang 7
G0x t,G0y
t
sup
0<α≤1 d L
G0x t α ,
tα
≤ ch sup
0<α≤1 d L
x· α ,
ck sup
0<α≤1
t
0
xs α ,
ds
≤ chD L
x ·, y· ck
t
0
x s, ysds.
3.12
Hence
sup
0≤t≤TD L
G0x t,G0y
t
≤ chsup
0≤t≤TD L
x ·, y· ck sup
0≤t≤T
t
0
x s, ysds
≤ ch H1
ckT H1
ch kT H1
.
3.13
By hypothesisH2, G0is a contraction mapping
Using the Banach fixed point theorem,3.9 have a unique fixed point x ∈ C0, T :
E i
Nn
4 Controllability
In this section, we show the nonlocal controllability for the control system1.3
fuzzy solution xt for 3.9 as xT x1−gx i.e., xT α x1−gx α where x1∈ E i
Nn
is target set
Define the fuzzy mapping β : P R n → E i
Nnby
β α v
⎧
⎪
⎪
T
0
S α T − svsds, v ⊂ Γ u ,
0, otherwise,
4.1
Trang 8whereΓu is closed support of u Then there exists
β i: P R −→ E i
N i 1, 2, , n 4.2 such that
β α
i v i
⎧
⎪
⎪
T
0
S α i T − sv i sds, v i s ⊂ Γ u i ,
0, otherwise.
4.3
Then β ij α j l, r exists such that
β α
il v il
T
0
S α il T − sv il sds, v il s ∈u α il s, u1
i
,
β α
ir v ir
T
0
S α ir T − sv ir sds, v ir s ∈u1i , u α ir s.
4.4
We assume that β α
il , β α
irare bijective mappings
We can introduce α-level set of us of 3.4-3.5
us αn
i1
u i s α
n
i1
u α il s, u α
ir s
n
i1
β α il
−1
il − g α il
x il α
− S α
il Tx α0
il − g α il
−
T
0
S α il T − sf α
il
,
β α ir
−1
ir − g α ir
− S α
ir Tx0α
ir − g α ir
−
T
0
S α ir T − sf α
ir
.
4.5
Then substituting this expression into3.9 yields α-level of xT
Trang 9For each i 1, 2, , n,
x i T α
S α il Tx α0
il − g α il
T
0
S α il T − sf α
il
T
0
S α il T − sβ α
il
−1
il − g α il
x il α
− S α
il Tx α0
il − g α il
−
T
0
S α il T − sf α
il
ds,
ir − g α ir
T
0
S α ir T − sf α
ir
T
0
S α ir T − sβ α
ir
−1
ir − g α ir
− S α
ir Tx0α ir − g α
ir
−
T
0
S α ir T − sf α
ir
ds
x1− gxα
il ,
x1− gxα
ir
x1− gx
i
α
.
4.6
Therefore
xT αn
i1
x i T αn
i1
x1− gx
i
α
x1− gxα 4.7
We now set
Φxt Stx0− gx
t
0
S t − sfs, xsds
t
0
S t − sβ−1
x1− gx − STx0− gx−
T
0
S T − sfs, xsds
ds,
4.8
where the fuzzy mapping β−1satisfies above statements
Notice thatΦxT x1− gx, which means that the control ut steers 3.9 from the origin to x1− gx in time T provided that we can obtain a fixed point of the operator Φ.
H3 Assume that the linear system of 3.9 f ≡ 0 is controllable
Theorem 4.2 Suppose that hypotheses (H1)–(H3) are satisfied Then 3.9 are nonlocal controllable
Trang 10Proof We can easily check that Φ is continuous function from C0, T : E i
Nn to itself By Definitions2.3and2.4, some properties of dL, and inequalities3.4 and 3.5, we have the
following inequalities For any x, y ∈ C0, T : E i
Nn,
Φxt α ,
Φytα
d L
S tx0− gx
t
o
S t − sfs, xsds
t
0
S t − sβ−1
×
x1− gx − STx0− gx−
T
0
S T − sfs, xsds
ds
α
,
t
0
S t − sfs, y sds
t
0
S t − sβ−1
×
− STx0− gy
−
T
0
S T − sfs, y sds
ds
α
≤ d L
S tgxα
t
0
S t − sfs, xsα
S t − sfs, y sα
ds
t
0
S t − sβ−1g xα ,
S t − sβ−1g
ds
t
0
S t − sβ−1S Tgxα ,
S t − sβ−1S Tgyα
ds
t
0
S t − sβ−1T
0
S T − sfs, xsds
α
,
S t − sβ−1T
0
S T − sfs, y sds
α
ds
max
1≤i≤n S α il tg il α x − g α
il
y , S α ir tg ir α x − g α
ir
y
t
0
max
1≤i≤n S α il t − sf il α s, xs − f α
il
s, y s , S α ir t − sfα ir s, xs − f α
ir
t
0
max
1≤i≤n
α
il t − sβ α
il
−1
g il α x − g α
il
y α ir t − sβ α
ir
−1
g ir α x − g α
ir
y
$
ds
t
0
max
1≤i≤n
α
il t − sβ α
il
−1
S α il Tg il α x − g α
il
y
α
ir t − sβ α
ir
−1
S α ir Tg α ir x − g α
ir
y
$
ds
t
0
max
1≤i≤n S α il t − sβ α
il
−1T
0
S α il T − sf α
il s, xsds −
T
0
S α il T − sf α
il
S α ir t − sβ α
il
−1T
0
S α ir T −sf α
ir s, xsds −
T
0
S α ir T −sf α
ir
ds
Trang 11≤ c max
1≤i≤n g il α x − g α
il
y , g ir α x − g α
ir
y
c
t
0
max
1≤i≤n f α
il s, xs − f α
il
ir s, xs − f α
ir
c
t
0
max
1≤i≤n g il α x − g α
il
y , g ir α x − g α
ir
c2
t
0
max
1≤i≤n g il α x − g α
il
y , g ir α x − g α
ir
c2
t
0
T
0
max
1≤i≤n f il α s, xs − f α
il
s, y s , f ir α s, xs − f α
ir
cd L
c
t
0
f s, xsα
ds
c
t
0
t
0
ds
c2
t
0
T
0
f s, xsα
ds ds
≤ ch
x· α ,
1 c
t
0
x· α ,
ds
ck
t
0
xs α ,
t
0
T
0
xs α ,
ds ds
.
4.9 Therefore
Φxt, Φyt
sup
0<α≤1 d L
Φxt α ,
Φytα
≤ ch
sup
0<α≤1 d L
x· α ,
1 c
t
0
sup
0<α≤1 d L
x· α ,
ds
ck
t
0
sup
0<α≤1 d L
xs α ,
t
0
T
0
sup
0<α≤1 d L
xs α ,
ds ds
ch
x ·, y· 1 c
t
0
x ·, y·ds
ck
t
0
x s, ysds c
t
0
T
0
x s, ysds ds
.
4.10
Trang 12Φx, Φy sup
0≤t≤T
Φxt, Φyt
≤ ch
sup
0≤t≤TD L
x ·, y· 1 csup
0≤t≤T
t
0
x ·, y·ds
ck
sup
0≤t≤T
t
0
x s, ysds c sup
0≤t≤T
t
0
T
0
x s, ysds ds
≤ chH1
1 cT H1
ck%T H1
cT2H1
x, y&
c{h1 T cT kT1 cT}H1
.
4.11
By hypothesisH2, Φ is a contraction mapping Using the Banach fixed point theorem, 4.8
has a unique fixed point x ∈ C0, T : E i
Nn
5 Example
Consider the two semilinear one-dimensional heat equations on a connected domain0, 1 for material with memory on E i
N , i 1, 2, boundary condition x i t, 0 x i t, 1 0,
i 1, 2 and with initial conditions x i 0, z i 'p
k1c ki x i t k , z i x0i z i , where x0i z i ∈
k1c ki x i t k , z i g i x i , i 1, 2 Let x i t, z i , i 1, 2, be the internal energy and let
f i t, x i t, z i 2tx i t, z i2, i 1, 2, be the external heat.
Let
2 ∂2
1
2
2
,
f t, xt f1t, x1t, f2t, x2t2tx1t, z12, 2tx2t, z22
,
g x g1x1, g2x2
(p
k1
c k1x1t k , z1,
p
(
k1
c k2x2t k , z2
,
x 0 gx x10 g1x, x20 g2x, x0 x0 1, x02 0, 0,
G t − s e −t−s , e −t−s
,
5.1
then the balance equations become
x t
t
0
G t − sxsds
ft, xt onE i N2
,
x 0 gx x0∈E i
N
2
.
5.2
....
4.11
By hypothesisH2, Φ is a contraction mapping Using the Banach fixed point theorem, 4.8
has a unique fixed point x ∈ C0, T : E i...
Nn
5 Example
Consider the two semilinear one-dimensional heat equations on a connected domain0, 1 for material with memory on E i
N... e −t−s , e −t−s
,
5.1
then the balance equations become
x t
t
0