Volume 2009, Article ID 273545, 9 pagesdoi:10.1155/2009/273545 Research Article Polynomials of Higher Order 1 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-7
Trang 1Volume 2009, Article ID 273545, 9 pages
doi:10.1155/2009/273545
Research Article
Polynomials of Higher Order
1 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, South Korea
2 Department of Mathematics, Sogang University, Seoul 121-742, South Korea
3 Department of General Education, Kookmin University, Seoul 139-702, South Korea
Correspondence should be addressed to Taekyun Kim,tkkim@kw.ac.kr
Received 19 February 2009; Revised 31 May 2009; Accepted 18 June 2009
Recommended by Agacik Zafer
The main purpose of this paper is to investigate several further interesting properties of symmetry
for the multivariate p-adic fermionic integral onZp From these symmetries, we can derive some
recurrence identities for the ζ-Euler polynomials of higher order, which are closely related to the Frobenius-Euler polynomials of higher order By using our identities of symmetry for the
ζ-Euler polynomials of higher order, we can obtain many identities related to the Frobenius-ζ-Euler polynomials of higher order
Copyrightq 2009 Taekyun Kim et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
1 Introduction/Definition
Let p be a fixed odd prime number Throughout this paper, Zp , Q p , C, and C pwill, respectively,
denote the ring of p-adic rational integer, the field of p-adic rational numbers, the complex
number field, and the completion of algebraic closure of Qp Let vp be the normalized exponential valuation ofCpwith|p| p p −v p p p−1 Let UDZp be the space of uniformly
differentiable functions on Zp For f ∈ UDZp, q ∈ Cpwith|1 − q| p < 1, the fermionic p-adic q-integral on Z pis defined as
I −q
f
Zp
f xdμ −q x lim
N → ∞
1 q
1 q p N
pN−1
x0
f x−qx 1.1
see 1 Let us define the fermionic p-adic invariant integral on Zpas follows:
I−1
f
lim
q → 1 I −q
f
Zp
Trang 2see 1 8 From 1.2, we have
I−1
f1
I−1
f
see 9,10, where f1x fx 1 For ζ ∈ Cpwith|1 − ζ| p < 1, let fx e xt ζ x Then, we
define the ζ-Euler numbers as follows:
Zp
ζ x e xt dμ−1x 2
ζe t 1
∞
n0
E n,ζ t n
where En,ζ are called the ζ-Euler numbers We can show that
2
ζe t 1
1 ζ−1
e t ζ−1 · 2
1 ζ
2
1 ζ
∞
n0
H n
−ζ−1 t n
where Hn−ζ−1 are the Frobenius-Euler numbers By comparing the coefficients on both sides
of1.4 and 1.5, we see that
E n,ζ 2
1 ζ H n
−ζ−1
Now, we also define the ζ-Euler polynomials as follows:
2
ζe t 1e xt
∞
n0
E n,ζx t n
In the viewpoint of1.5, we can show that
2
ζe t 1e xt e xt
1 ζ−1
e t ζ−1· 2
1 ζ
2
1 ζ
∞
n0
H n
−ζ−1, x t n
where Hn−ζ−1, x are the nth Frobenius-Euler polynomials From 1.7 and 1.8, we note that
E n,ζx 2
1 ζ H n
−ζ−1, x
1.9
cf 1 8,11–18 For each positive integer k, let Tk,ζn n
0−1
ζ k Then we have
∞
k0
T k,ζn t k
k! ∞
k0
n
0
−1 k ζ t k
k! n
0
−1 ζ e t 1 −1n1 e n1t
ζe t 1 . 1.10
Trang 3The ζ-Euler polynomials of order k, denoted E k n,ζ x, are defined as
e xt
2
ζe t 1
k
2
ζe t 1
× · · · ×
2
ζe t 1
e xt∞
n0
E k n,ζ x t n
Then the values of E k n,ζ x at x 0 are called the ζ-Euler numbers of order k When k 1, the polynomials or numbers are called the ζ-Euler polynomials or numbers The purpose of this paper is to investigate some properties of symmetry for the multivariate p-adic fermionic
integral onZp From the properties of symmetry for the multivariate p-adic fermionic integral
onZp, we derive some identities of symmetry for the ζ-Euler polynomials of higher order By
using our identities of symmetry for the ζ-Euler polynomials of higher order, we can obtain
many identities related to the Frobenius-Euler polynomials of higher order
Let w1, w2∈ N with w1≡ 1mod 2 and w2 ≡ 1mod 2 Then we set
R mw1, w2 Zm p e w1x1x2···x m w2xt ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm
Zp ζ w1w2x e w1w2xt dμ−1x
×
Zm p
e w2x1x2···x m w1yt ζ w2x1···w2x m dμ−1x1 · · · dμ−1xm,
2.1
where
Zm
p
f x1, , x mdμ−1x1 · · · dμ−1xm
Zp
· · ·
Zp
f x1, , x mdμ−1x1 · · · dμ−1xm 2.2
Thus, we note that this expression for R m w1, w2 is symmetry in w1and w2 From2.1, we have
R m w1, w2
Zm p
e w1x1···x m t ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm e w1w2xt
×
⎛
⎝ Zp e w2x m t ζ w2x m dμ−1xm
Zp e w1w2xt ζ w1w2x dμ−1x
⎞
⎠
×
Zm−1 e w2x1···x m−1 t ζ w2x1···w2x m−1 dμ−1x1 · · · dμ−1xm−1 e w1w2yt
2.3
Trang 4We can show that
Zp e xt ζ x dμ−1x
Zp e w1xt ζ w1x dμ−1x
w1 −1
0
−1 ζ e t∞
k0
T k,ζw1− 1 t k
By1.4 and 1.11, we see that
Zm p
e w1x1···x m t ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm e w1w2xt
2
ζ w1e w1t 1
m
e w1w2xt
∞
n0
E m n,ζ w1 w2x w n
1
t n
n! .
2.5
Thus, we have
E m n,ζ w1 w2x n
0
n
E
m
,ζ w1 w n−
From2.3, 2.4, and 2.5, we can derive
R m w1, w2
∞
0
E m ,ζ w1 w2x w
1
t
!
∞
k0
T k,ζ w2 w1− 1w k2
k! t
k ∞
i0
E m−1 i,ζ w2
w1y w i
2
i! t
i
∞
0
E m ,ζ w1 w2x w
1
t
! ⎝∞
j0
⎛
⎝j
k0
T k,ζ w2 w1− 1w k
2w j−k2 E
m−1
j−k
w1y
k!
j − k
! j!
⎞
⎠t j
j!
⎞
⎠
∞
0
E m ,ζ w1 w2x w
1
t
! ⎝∞
j0
j
k0
T k,ζ w2 w1− 1
j
k E
m−1
j−k,ζ w2
w1y
w2j
⎞
⎠t j
j!
∞
n0
⎛
⎝n
j0
j
k0
T k,ζ w2 w1− 1
j
k E
m−1
j−k,ζ w2
w1y w2j w n−j1
n − j
!j! E
m
n−j,ζ w1 w2x n!
⎞
⎠ t n
n!
∞
n0
⎛
⎝n
j0
n
j w
j
2w n−j1 E m n−j,ζ w1 w2x
j
k0
T k,ζ w2 w1− 1
j
k E
m−1
j−k,ζ w2
w1y⎞⎠ t n
n! .
2.7
Trang 5By the same method, we also see that
R m w1, w2
Zm p
e w2x1···x m t ζ w2x1···w2x m dμ−1x1 · · · dμ−1xm e w1w2xt
×
⎛
⎝ Zp e w1x m t ζ w1x m dμ−1xm
Zp e w1w2xt ζ w1w2x dμ−1x
⎞
⎠
×
Zm−1
p
e w1x1···x m−1 t ζ w1x1···w1x m−1 dμ−1x1 · · · dμ−1xm−1 e w1w2yt
∞
0
E m ,ζ w2 w1x w
2
t
!
∞
k0
T k,ζ w1 w2− 1w k
1
t k
k!
∞
i0
E m−1 i,ζ w1
w2y
w1i t
i
i!
∞
0
E m ,ζ w2 w1x w
2
t
! ⎝∞
j0
⎛
⎝j
k0
T k,ζ w1 w2− 1
k!
E m−1 j−k
w2y
j − k
!
⎞
⎠w j
1t j
⎞
⎠
∞
0
E m ,ζ w2 w1x w
2
t
! ⎝∞
j0
⎛
⎝j
k0
T k,ζ w1 w2− 1E m−1 j−k w2y
k!
j − k
⎞
⎠w j1t j
j!
⎞
⎠
∞
0
E m ,ζ w2 w1x w
2
t
! ⎝∞
j0
j
k0
j
k T k,ζ w1 w2− 1E m−1 j−k,ζ w1
w2y
w1j t
j
j!
⎞
⎠
∞
n0
⎛
⎝n
j0
j
k0
j
k T k,ζ w1 w2− 1E m−1 j−k,ζ w1
w2y w1j w n−j2 j!
n − j
!E m n−j,ζ w2 w1x n!
⎞
⎠ t n
n!
∞
n0
⎛
⎝n
j0
n
j w
j
1w n−j2 E m n−j,ζ w2 w1x
j
k0
j
k T k,ζ w1 w2− 1E m−1 j−k,ζ w1
w2y⎞⎠ t n
n! .
2.8
By comparing the coefficients on both sides of 2.7 and 2.8, we obtain the following
Theorem 2.1 For w1, w2∈ N with w1≡ 1mod 2, w2≡ 1mod 2, and n ≥ 0, m ≥ 1, one has
n
j0
n
j w
j
2w1n−j E m n−j,ζ w1 w2x
j
k0
T k,ζ w2 w1− 1
j
k E
m−1
j−k,ζ w2
w1y
n
j0
n
j w
j
1w n−j2 E n−j,ζ m w2 w1x
j
k0
j
k T k,ζ w1 w2− 1E m−1 j−k,ζ w1
w2y
.
2.9
Trang 6Let y 0 and m 1 in 2.9 Then we have
n
j0
n
j w
n−j
1 w j2E n−j,ζ w1 w2x Tk,ζ w2 w1− 1
n
j0
n
j w
j
1w n−j2 E n−j,ζ w2 w1x Tk,ζ w1 w2− 1.
2.10
From2.10, we note that
n
i0
n
i w
i
1w2n−i E i,ζ w1 w2x Tn−i,ζ w2 w1− 1
n
i0
n
i w
n−i
1 w2i E i,ζ w2 w1x Tn−i,ζw1w2− 1.
2.11
If we take w2 1 in 2.11, then we have
E n,ζ w1x n
i0
n
i w
i
1E i,ζ w1 xTn−i,ζw1− 1. 2.12
From2.3, we note that
R m w1, w2
Zm p
e w1x1···x m t ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm e w1w2xt
×
⎛
⎝ Zp e w2x m t ζ w2x m dμ−1xm
Zp e w1w2xt ζ w1w2x dμ−1x
⎞
⎠
×
Zm−1 p
e w2x1···x m−1 t ζ w2x1···w2x m−1 dμ−1x1 · · · dμ−1xm−1 e w1w2yt
Zm p
e w1x1···x m t ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm e w1w2xt
×
w
1 −1
i0
−1i e w2it ζ w2i
×
Zm−1 e w2x1···x m−1 t ζ w2x1···w2x m−1 dμ−1x1 · · · dμ−1xm−1 e w1w2yt
Trang 7w
1 −1
i0
−1i
ζ w2i
Zm p
e w1x1···x m w2/w1iw2xt ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm
×
Zm−1 p
e w2x1···x m−1 w1yt ζ w2x1···w2x m−1 dμ−1x1 · · · dμ−1xm−1
w
1 −1
i0
−1i ζ w2i∞
k0
E m k,ζ w1
w2
w1i w2x
w1k t
k
k!
∞
0
E ,ζ m−1 w2
w1y
w 2t
!
∞
n0
n
k0
w
1 −1
i0
−1i ζ w2i E k,ζ m w1
w2x w2
w1i w
k
1
k! E
m−1
n−k,ζ w2
w1y w n−k
2
n − k! n!
t n
n!
∞
n0
n
k0
n
k w
k
1w n−k2 E n−k,ζ m−1 w2
w1yw1 −1
i0
−1i
ζ w2i E m k,ζ w1
w2x w2
w1i t
n
n! .
2.13
By the symmetric property of R m w1, w2 in w1, w2, we also see that
R m w1, w2
Zm p
e w2x1···x m t ζ w2x1···x mdμ−1x1 · · · dμ−1xm e w1w2xt
×
⎛
⎝ Zp e w1x m t ζ w1x m dμ−1xm
Zp e w1w2xt ζ w1w2x dμ−1x
⎞
⎠
×
Zm−1 p
e w1x1···x m−1 t ζ w1x1···x m−1dμ−1x1 · · · dμ−1xm−1 e w1w2yt
Zm p
e w2x1···x m t ζ w2x1···x mdμ−1x1 · · · dμ−1xm e w1w2xt
×
w
2 −1
i0
−1i
e w1it ζ w1i
×
Zm−1 p
e w1x1···x m−1 w2yt ζ w1x1···x m−1dμ−1x1 · · · dμ−1xm−1
w2−1
i0
−1i ζ w1i
Zm p
e w2x1···x m w1/w2iw1xt ζ w2x1···x mdμ−1x1 · · · dμ−1xm
×
Zm−1 p
e w1x1···x m−1 w2yt ζ w1x1···w1x m−1 dμ−1x1 · · · dμ−1xm−1
w
2 −1
i0
−1i ζ w1i∞
k0
E m k,ζ w2
w1
w2i w1x
w k
2
t k
k!
∞
0
E m−1 ,ζ w1
w2y
w
1
t
!
Trang 8n0
n
k0
w
2 −1
i0
−1i
ζ w1i E m k,ζ w2
w1x w1
w2i w
k
2
k! E
m−1
n−k
w2y w n−k
1
n − k! n!
t n
n!
∞
n0
n
k0
n
k w
k
2w1n−k E m−1 n−k,ζ w1
w2yw2 −1
i0
−1i ζ w1i E m k,ζ w2
w1x w1
w2i t
n
n! .
2.14
By comparing the coefficients on both sides of 2.13 and 2.14, we obtain the following theorem
Theorem 2.2 For w1, w2∈ N with w1≡ 1mod 2 and w2≡ 1mod 2 , one has
n
k0
n
k w
k
1w2n−k E m−1 n−k,ζ w2
w1yw1 −1
i0
−1i ζ w2i E m k,ζ w1
w2x w2
w1i
n
k0
n
k w
k
2w n−k1 E m−1 n−k,ζ w1
w2yw2 −1
i0
−1i ζ w1i E k,ζ m w2
w1x w1
w2i
.
2.15
Let y 0 and m 1, we have
w1n
w1 −1
i0
−1i ζ w2i E n,ζ w1
w2x w2
w1i
w n
2
w2 −1
i0
−1i ζ w1i E n,ζ w2
w1x w1
w2i
From2.16, we can derive
w1 −1
i0
−1i ζ i E n,ζ w1
x 1
w1i
1
w n
1
E n,ζw1x . 2.17
Acknowledgment
The present research has been conducted by the research grant of the Kwangwoon University
in 2009
References
1 T Kim, “Symmetry p-adic invariant integral onZp for Bernoulli and Euler polynomials,” Journal of
Di fference Equations and Applications, vol 14, no 12, pp 1267–1277, 2008.
2 T Kim, “Note on the Euler numbers and polynomials,” Advanced Studies in Contemporary Mathematics,
vol 17, no 2, pp 131–136, 2008
3 T Kim, “Note on q-Genocchi numbers and polynomials,” Advanced Studies in Contemporary
Mathematics, vol 17, no 1, pp 9–15, 2008.
4 T Kim, “The modified q-Euler numbers and polynomials,” Advanced Studies in Contemporary
Mathematics, vol 16, no 2, pp 161–170, 2008.
5 T Kim, “On a q-analogue of the p-adic log gamma functions and related integrals,” Journal of Number
Theory, vol 76, no 2, pp 320–329, 1999.
Trang 96 T Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol 9, no 3, pp 288–299,
2002
7 T Kim, “q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,”
Russian Journal of Mathematical Physics, vol 15, no 1, pp 51–57, 2008.
8 T Kim, J Y Choi, and J Y Sug, “Extended q-Euler numbers and polynomials associated with fermionic p-adic q-integral onZp ,” Russian Journal of Mathematical Physics, vol 14, no 2, pp 160–163,
2007
9 T Kim, “Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral
onZp ,” Russian Journal of Mathematical Physics, vol 16, no 1, pp 93–96, 2009.
10 T Kim, “On p-adic interpolating function for q-Euler numbers and its derivatives,” Journal of
Mathematical Analysis and Applications, vol 339, no 1, pp 598–608, 2008.
11 R P Agarwal and C S Ryoo, “Numerical computations of the roots of the generalized twisted q-Bernoulli polynomials,” Neural, Parallel & Scientific Computations, vol 15, no 2, pp 193–206, 2007.
12 M Cenkci, M Can, and V Kurt, “p-adic interpolation functions and Kummer-type congruences for
q-twisted and q-generalized twisted Euler numbers,” Advanced Studies in Contemporary Mathematics,
vol 9, no 2, pp 203–216, 2004
13 F T Howard, “Applications of a recurrence for the Bernoulli numbers,” Journal of Number Theory, vol.
52, no 1, pp 157–172, 1995
14 B A Kupershmidt, “Reflection symmetries of q-Bernoulli polynomials,” Journal of Nonlinear
Mathematical Physics, vol 12, pp 412–422, 2005.
15 H Ozden and Y Simsek, “Interpolation function of the h, q-extension of twisted Euler numbers,”
Computers & Mathematics with Applications, vol 56, no 4, pp 898–908, 2008.
16 L.-C Jang, “A study on the distribution of twisted q-Genocchi polynomials,” Advanced Studies in
Contemporary Mathematics, vol 18, no 2, pp 181–189, 2009.
17 M Schork, “Ward’s “calculus of sequences”, q-calculus and the limit q → −1,” Advanced Studies in
Contemporary Mathematics, vol 13, no 2, pp 131–141, 2006.
18 H J H Tuenter, “A symmetry of power sum polynomials and Bernoulli numbers,” The American
Mathematical Monthly, vol 108, no 3, pp 258–261, 2001.
... integralonZp, we derive some identities of symmetry for the ζ-Euler polynomials of higher order By
using our identities of symmetry for the ζ-Euler polynomials of higher order,... purpose of this paper is to investigate some properties of symmetry for the multivariate p-adic fermionic
integral onZp From the properties of symmetry for the multivariate p-adic fermionic...
Then the values of E k n,ζ x at x are called the ζ-Euler numbers of order k When k 1, the polynomials or numbers are called the ζ-Euler polynomials or numbers The