1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article On the Identities of Symmetry for the ζ-Euler Polynomials of Higher Order" pptx

9 328 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Research article on the identities of symmetry for the ζ-euler polynomials of higher order
Tác giả Taekyun Kim, Kyoung Ho Park, Kyung-won Hwang
Người hướng dẫn Agacik Zafer
Trường học Kwangwoon University
Chuyên ngành Mathematics
Thể loại bài báo
Năm xuất bản 2009
Thành phố Seoul
Định dạng
Số trang 9
Dung lượng 500,31 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2009, Article ID 273545, 9 pagesdoi:10.1155/2009/273545 Research Article Polynomials of Higher Order 1 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-7

Trang 1

Volume 2009, Article ID 273545, 9 pages

doi:10.1155/2009/273545

Research Article

Polynomials of Higher Order

1 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, South Korea

2 Department of Mathematics, Sogang University, Seoul 121-742, South Korea

3 Department of General Education, Kookmin University, Seoul 139-702, South Korea

Correspondence should be addressed to Taekyun Kim,tkkim@kw.ac.kr

Received 19 February 2009; Revised 31 May 2009; Accepted 18 June 2009

Recommended by Agacik Zafer

The main purpose of this paper is to investigate several further interesting properties of symmetry

for the multivariate p-adic fermionic integral onZp From these symmetries, we can derive some

recurrence identities for the ζ-Euler polynomials of higher order, which are closely related to the Frobenius-Euler polynomials of higher order By using our identities of symmetry for the

ζ-Euler polynomials of higher order, we can obtain many identities related to the Frobenius-ζ-Euler polynomials of higher order

Copyrightq 2009 Taekyun Kim et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

1 Introduction/Definition

Let p be a fixed odd prime number Throughout this paper, Zp , Q p , C, and C pwill, respectively,

denote the ring of p-adic rational integer, the field of p-adic rational numbers, the complex

number field, and the completion of algebraic closure of Qp Let vp be the normalized exponential valuation ofCpwith|p| p  p −v p p  p−1 Let UDZp be the space of uniformly

differentiable functions on Zp For f ∈ UDZp, q ∈ Cpwith|1 − q| p < 1, the fermionic p-adic q-integral on Z pis defined as

I −q

f





Zp

f xdμ −q x  lim

N → ∞

1 q

1 q p N

pN−1

x0

f x−qx 1.1

see 1 Let us define the fermionic p-adic invariant integral on Zpas follows:

I−1

f

 lim

q → 1 I −q

f





Zp

Trang 2

see 1 8 From 1.2, we have

I−1

f1



 I−1

f

see 9,10, where f1x  fx  1 For ζ ∈ Cpwith|1 − ζ| p < 1, let fx  e xt ζ x Then, we

define the ζ-Euler numbers as follows:



Zp

ζ x e xt dμ−1x  2

ζe t 1 



n0

E n,ζ t n

where En,ζ are called the ζ-Euler numbers We can show that

2

ζe t 1 

1 ζ−1

e t  ζ−1 · 2

1 ζ 

2

1 ζ



n0

H n



−ζ−1 t n

where Hn−ζ−1 are the Frobenius-Euler numbers By comparing the coefficients on both sides

of1.4 and 1.5, we see that

E n,ζ 2

1 ζ H n



−ζ−1

Now, we also define the ζ-Euler polynomials as follows:

2

ζe t 1e xt



n0

E n,ζx t n

In the viewpoint of1.5, we can show that

2

ζe t 1e xt  e xt

1 ζ−1

e t  ζ−1· 2

1 ζ 

2

1 ζ



n0

H n



−ζ−1, x  t n

where Hn−ζ−1, x are the nth Frobenius-Euler polynomials From 1.7 and 1.8, we note that

E n,ζx  2

1 ζ H n



−ζ−1, x

1.9

cf 1 8,11–18 For each positive integer k, let Tk,ζn n

0−1

ζ   k Then we have



k0

T k,ζn t k

k! ∞

k0

n



0

−1  k ζ  t k

k! n

0

−1 ζ  e t 1 −1n1 e n1t

ζe t 1 . 1.10

Trang 3

The ζ-Euler polynomials of order k, denoted E k n,ζ x, are defined as

e xt

2

ζe t 1

k



2

ζe t 1

× · · · ×

2

ζe t 1

e xt∞

n0

E k n,ζ x t n

Then the values of E k n,ζ x at x  0 are called the ζ-Euler numbers of order k When k  1, the polynomials or numbers are called the ζ-Euler polynomials or numbers The purpose of this paper is to investigate some properties of symmetry for the multivariate p-adic fermionic

integral onZp From the properties of symmetry for the multivariate p-adic fermionic integral

onZp, we derive some identities of symmetry for the ζ-Euler polynomials of higher order By

using our identities of symmetry for the ζ-Euler polynomials of higher order, we can obtain

many identities related to the Frobenius-Euler polynomials of higher order

Let w1, w2∈ N with w1≡ 1mod 2 and w2 ≡ 1mod 2 Then we set

R mw1, w2  Zm p e w1x1x2···x m w2xt ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm

Zp ζ w1w2x e w1w2xt dμ−1x

×



Zm p

e w2x1x2···x m w1yt ζ w2x1···w2x m dμ−1x1 · · · dμ−1xm,

2.1

where



Zm

p

f x1, , x mdμ−1x1 · · · dμ−1xm 



Zp

· · ·



Zp

f x1, , x mdμ−1x1 · · · dμ−1xm 2.2

Thus, we note that this expression for R m w1, w2 is symmetry in w1and w2 From2.1, we have

R m w1, w2 



Zm p

e w1x1···x m t ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm e w1w2xt

×

⎝ Zp e w2x m t ζ w2x m dμ−1xm

Zp e w1w2xt ζ w1w2x dμ−1x

×



Zm−1 e w2x1···x m−1 t ζ w2x1···w2x m−1 dμ−1x1 · · · dμ−1xm−1 e w1w2yt

2.3

Trang 4

We can show that

Zp e xt ζ x dμ−1x

Zp e w1xt ζ w1x dμ−1x 

w1 −1

0

−1 ζ  e t∞

k0



T k,ζw1− 1 t k

By1.4 and 1.11, we see that



Zm p

e w1x1···x m t ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm e w1w2xt



2

ζ w1e w1t 1

m

e w1w2xt

∞

n0

E m n,ζ w1 w2x w n

1

t n

n! .

2.5

Thus, we have

E m n,ζ w1 w2x n

0

n

 E

m

,ζ w1 w n−

From2.3, 2.4, and 2.5, we can derive

R m w1, w2 



0

E m ,ζ w1 w2x w 

1

t 

!



k0

T k,ζ w2 w1− 1w k2

k! t

k ∞

i0

E m−1 i,ζ w2



w1y w i

2

i! t

i





0

E m ,ζ w1 w2x w 

1

t 

! ⎝∞

j0

⎝j

k0

T k,ζ w2 w1− 1w k

2w j−k2 E

m−1

j−k



w1y

k!

j − k

! j!

⎠t j

j!





0

E m ,ζ w1 w2x w 

1

t 

! ⎝∞

j0

j



k0

T k,ζ w2 w1− 1

j

k E

m−1

j−k,ζ w2



w1y

w2j

⎠t j

j!

∞

n0

⎝n

j0

j



k0

T k,ζ w2 w1− 1

j

k E

m−1

j−k,ζ w2



w1y w2j w n−j1



n − j

!j! E

m

n−j,ζ w1 w2x n!

⎠ t n

n!

∞

n0

⎝n

j0

n

j w

j

2w n−j1 E m n−j,ζ w1 w2x

j



k0

T k,ζ w2 w1− 1

j

k E

m−1

j−k,ζ w2



w1y⎞⎠ t n

n! .

2.7

Trang 5

By the same method, we also see that

R m w1, w2 



Zm p

e w2x1···x m t ζ w2x1···w2x m dμ−1x1 · · · dμ−1xm e w1w2xt

×

⎝ Zp e w1x m t ζ w1x m dμ−1xm

Zp e w1w2xt ζ w1w2x dμ−1x

×



Zm−1

p

e w1x1···x m−1 t ζ w1x1···w1x m−1 dμ−1x1 · · · dμ−1xm−1 e w1w2yt





0

E m ,ζ w2 w1x w 

2

t 

!



k0

T k,ζ w1 w2− 1w k

1

t k

k!



i0

E m−1 i,ζ w1



w2y

w1i t

i

i!





0

E m ,ζ w2 w1x w 

2

t 

! ⎝∞

j0

⎝j

k0

T k,ζ w1 w2− 1

k!

E m−1 j−k 

w2y



j − k

!

⎠w j

1t j





0

E m ,ζ w2 w1x w 

2

t 

! ⎝∞

j0

⎝j

k0

T k,ζ w1 w2− 1E m−1 j−k w2y

k!

j − k

⎠w j1t j

j!



∞

0

E m ,ζ w2 w1x w 

2

t 

! ⎝∞

j0

j

k0

j

k T k,ζ w1 w2− 1E m−1 j−k,ζ w1



w2y

w1j t

j

j!

∞

n0

⎝n

j0

j

k0

j

k T k,ζ w1 w2− 1E m−1 j−k,ζ w1



w2y w1j w n−j2 j!

n − j

!E m n−j,ζ w2 w1x n!

⎠ t n

n!

∞

n0

⎝n

j0

n

j w

j

1w n−j2 E m n−j,ζ w2 w1x

j



k0

j

k T k,ζ w1 w2− 1E m−1 j−k,ζ w1



w2y⎞⎠ t n

n! .

2.8

By comparing the coefficients on both sides of 2.7 and 2.8, we obtain the following

Theorem 2.1 For w1, w2∈ N with w1≡ 1mod 2, w2≡ 1mod 2, and n ≥ 0, m ≥ 1, one has

n



j0

n

j w

j

2w1n−j E m n−j,ζ w1 w2x

j



k0

T k,ζ w2 w1− 1

j

k E

m−1

j−k,ζ w2



w1y

n

j0

n

j w

j

1w n−j2 E n−j,ζ m w2 w1x

j



k0

j

k T k,ζ w1 w2− 1E m−1 j−k,ζ w1



w2y

.

2.9

Trang 6

Let y  0 and m  1 in 2.9 Then we have

n



j0

n

j w

n−j

1 w j2E n−j,ζ w1 w2x Tk,ζ w2 w1− 1

n

j0

n

j w

j

1w n−j2 E n−j,ζ w2 w1x Tk,ζ w1 w2− 1.

2.10

From2.10, we note that

n



i0

n

i w

i

1w2n−i E i,ζ w1 w2x Tn−i,ζ w2 w1− 1

n

i0

n

i w

n−i

1 w2i E i,ζ w2 w1x Tn−i,ζw1w2− 1.

2.11

If we take w2 1 in 2.11, then we have

E n,ζ w1x n

i0

n

i w

i

1E i,ζ w1 xTn−i,ζw1− 1. 2.12

From2.3, we note that

R m w1, w2 



Zm p

e w1x1···x m t ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm e w1w2xt

×

⎝ Zp e w2x m t ζ w2x m dμ−1xm

Zp e w1w2xt ζ w1w2x dμ−1x

×



Zm−1 p

e w2x1···x m−1 t ζ w2x1···w2x m−1 dμ−1x1 · · · dμ−1xm−1 e w1w2yt





Zm p

e w1x1···x m t ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm e w1w2xt

×

w

1 −1



i0

−1i e w2it ζ w2i

× 

Zm−1 e w2x1···x m−1 t ζ w2x1···w2x m−1 dμ−1x1 · · · dμ−1xm−1 e w1w2yt

Trang 7

w

1 −1



i0

−1i

ζ w2i



Zm p

e w1x1···x m w2/w1iw2xt ζ w1x1···w1x m dμ−1x1 · · · dμ−1xm

×



Zm−1 p

e w2x1···x m−1 w1yt ζ w2x1···w2x m−1 dμ−1x1 · · · dμ−1xm−1



w

1 −1



i0

−1i ζ w2i∞

k0

E m k,ζ w1

w2

w1i  w2x

w1k t

k

k!



0

E ,ζ m−1 w2



w1y

w 2t



!

∞

n0

n

k0

w

1 −1



i0

−1i ζ w2i E k,ζ m w1

w2x  w2

w1i w

k

1

k! E

m−1

n−k,ζ w2



w1y  w n−k

2

n − k! n!

t n

n!

∞

n0

n

k0

n

k w

k

1w n−k2 E n−k,ζ m−1 w2



w1yw1 −1

i0

−1i

ζ w2i E m k,ζ w1

w2x  w2

w1i t

n

n! .

2.13

By the symmetric property of R m w1, w2 in w1, w2, we also see that

R m w1, w2 



Zm p

e w2x1···x m t ζ w2x1···x m−1x1 · · · dμ−1xm e w1w2xt

×

⎝ Zp e w1x m t ζ w1x m dμ−1xm

Zp e w1w2xt ζ w1w2x dμ−1x

×



Zm−1 p

e w1x1···x m−1 t ζ w1x1···x m−1−1x1 · · · dμ−1xm−1 e w1w2yt





Zm p

e w2x1···x m t ζ w2x1···x m−1x1 · · · dμ−1xm e w1w2xt

×

w

2 −1



i0

−1i

e w1it ζ w1i

×



Zm−1 p

e w1x1···x m−1 w2yt ζ w1x1···x m−1−1x1 · · · dμ−1xm−1

w2−1

i0

−1i ζ w1i



Zm p

e w2x1···x m w1/w2iw1xt ζ w2x1···x m−1x1 · · · dμ−1xm

×



Zm−1 p

e w1x1···x m−1 w2yt ζ w1x1···w1x m−1 dμ−1x1 · · · dμ−1xm−1



w

2 −1



i0

−1i ζ w1i∞

k0

E m k,ζ w2

w1

w2i  w1x

w k

2

t k

k!



0

E m−1 ,ζ w1 

w2y

w 

1

t 

!

Trang 8

n0

n



k0

w

2 −1



i0

−1i

ζ w1i E m k,ζ w2

w1x  w1

w2i w

k

2

k! E

m−1

n−k



w2y  w n−k

1

n − k! n!

t n

n!

∞

n0

n

k0

n

k w

k

2w1n−k E m−1 n−k,ζ w1



w2yw2 −1

i0

−1i ζ w1i E m k,ζ w2

w1x  w1

w2i t

n

n! .

2.14

By comparing the coefficients on both sides of 2.13 and 2.14, we obtain the following theorem

Theorem 2.2 For w1, w2∈ N with w1≡ 1mod 2 and w2≡ 1mod 2 , one has

n



k0

n

k w

k

1w2n−k E m−1 n−k,ζ w2



w1yw1 −1

i0

−1i ζ w2i E m k,ζ w1

w2x  w2

w1i

n

k0

n

k w

k

2w n−k1 E m−1 n−k,ζ w1

w2yw2 −1

i0

−1i ζ w1i E k,ζ m w2

w1x  w1

w2i

.

2.15

Let y  0 and m  1, we have

w1n

w1 −1

i0

−1i ζ w2i E n,ζ w1

w2x  w2

w1i

 w n

2

w2 −1

i0

−1i ζ w1i E n,ζ w2

w1x  w1

w2i

From2.16, we can derive

w1 −1

i0

−1i ζ i E n,ζ w1

x  1

w1i

 1

w n

1

E n,ζw1x . 2.17

Acknowledgment

The present research has been conducted by the research grant of the Kwangwoon University

in 2009

References

1 T Kim, “Symmetry p-adic invariant integral onZp for Bernoulli and Euler polynomials,” Journal of

Di fference Equations and Applications, vol 14, no 12, pp 1267–1277, 2008.

2 T Kim, “Note on the Euler numbers and polynomials,” Advanced Studies in Contemporary Mathematics,

vol 17, no 2, pp 131–136, 2008

3 T Kim, “Note on q-Genocchi numbers and polynomials,” Advanced Studies in Contemporary

Mathematics, vol 17, no 1, pp 9–15, 2008.

4 T Kim, “The modified q-Euler numbers and polynomials,” Advanced Studies in Contemporary

Mathematics, vol 16, no 2, pp 161–170, 2008.

5 T Kim, “On a q-analogue of the p-adic log gamma functions and related integrals,” Journal of Number

Theory, vol 76, no 2, pp 320–329, 1999.

Trang 9

6 T Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol 9, no 3, pp 288–299,

2002

7 T Kim, “q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,”

Russian Journal of Mathematical Physics, vol 15, no 1, pp 51–57, 2008.

8 T Kim, J Y Choi, and J Y Sug, “Extended q-Euler numbers and polynomials associated with fermionic p-adic q-integral onZp ,” Russian Journal of Mathematical Physics, vol 14, no 2, pp 160–163,

2007

9 T Kim, “Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral

onZp ,” Russian Journal of Mathematical Physics, vol 16, no 1, pp 93–96, 2009.

10 T Kim, “On p-adic interpolating function for q-Euler numbers and its derivatives,” Journal of

Mathematical Analysis and Applications, vol 339, no 1, pp 598–608, 2008.

11 R P Agarwal and C S Ryoo, “Numerical computations of the roots of the generalized twisted q-Bernoulli polynomials,” Neural, Parallel & Scientific Computations, vol 15, no 2, pp 193–206, 2007.

12 M Cenkci, M Can, and V Kurt, “p-adic interpolation functions and Kummer-type congruences for

q-twisted and q-generalized twisted Euler numbers,” Advanced Studies in Contemporary Mathematics,

vol 9, no 2, pp 203–216, 2004

13 F T Howard, “Applications of a recurrence for the Bernoulli numbers,” Journal of Number Theory, vol.

52, no 1, pp 157–172, 1995

14 B A Kupershmidt, “Reflection symmetries of q-Bernoulli polynomials,” Journal of Nonlinear

Mathematical Physics, vol 12, pp 412–422, 2005.

15 H Ozden and Y Simsek, “Interpolation function of the h, q-extension of twisted Euler numbers,”

Computers & Mathematics with Applications, vol 56, no 4, pp 898–908, 2008.

16 L.-C Jang, “A study on the distribution of twisted q-Genocchi polynomials,” Advanced Studies in

Contemporary Mathematics, vol 18, no 2, pp 181–189, 2009.

17 M Schork, “Ward’s “calculus of sequences”, q-calculus and the limit q → −1,” Advanced Studies in

Contemporary Mathematics, vol 13, no 2, pp 131–141, 2006.

18 H J H Tuenter, “A symmetry of power sum polynomials and Bernoulli numbers,” The American

Mathematical Monthly, vol 108, no 3, pp 258–261, 2001.

... integral

onZp, we derive some identities of symmetry for the ζ-Euler polynomials of higher order By

using our identities of symmetry for the ζ-Euler polynomials of higher order,... purpose of this paper is to investigate some properties of symmetry for the multivariate p-adic fermionic

integral onZp From the properties of symmetry for the multivariate p-adic fermionic...

Then the values of E k n,ζ x at x  are called the ζ-Euler numbers of order k When k  1, the polynomials or numbers are called the ζ-Euler polynomials or numbers The

Ngày đăng: 21/06/2014, 20:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm