Volume 2010, Article ID 826548, 8 pagesdoi:10.1155/2010/826548 Research Article On the Symmetric Properties of Associated with the Twisted Generalized Euler Polynomials of Higher Order 1
Trang 1Volume 2010, Article ID 826548, 8 pages
doi:10.1155/2010/826548
Research Article
On the Symmetric Properties of
Associated with the Twisted Generalized Euler
Polynomials of Higher Order
1 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
2 Department of Wireless Communications Engineering, Kwangwoon University,
Seoul 139-701, Republic of Korea
Correspondence should be addressed to Young-Hee Kim,yhkim@kw.ac.kr
Received 6 November 2009; Revised 11 March 2010; Accepted 14 March 2010
Academic Editor: Ulrich Abel
Copyrightq 2010 Taekyun Kim et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
We study the symmetric properties for the multivariate p-adic invariant integral onZprelated to the twisted generalized Euler polynomials of higher order
1 Introduction
the ring of rational integers, the ring of p-adic integers, the field of p-adic rational numbers,
invariant integral onZpis defined as
I
f
Zp
N → ∞
pN−1
x0
f xμx p NZp
lim
N → ∞
pN−1
x0
see 1 25 For n ∈ N, we note that
Z f xdμx n−1
l0
−1n−1−l f l see 5. 1.2
Trang 2Let d be a fixed odd positive integer For N ∈ N, we set
X X d lim←−
N
X∗
0<a<dp
a,p1
a dpZ p
,
a dp NZp x ∈ X | x ≡ a
1.3
where a ∈ Z lies in 0 ≤ a < dp Nsee 1 13 It is well known that for f ∈ UDZ p,
X
Zp
For n ∈ N, let C p n be the cyclic group of order p n That is, C p n {ξ | ξ p n
1} The p-adic locally constant space, T p , is defined by T p limn → ∞ C p n n≥1 C p n
t d−1
a0 χ aξ a e at
ξ d e dt− 1 e xt
∞
n0
B n,χ,ξ x t n
In4,7,10–12, the generalized twisted Bernoulli polynomials of order k attached to χ
are also defined as follows:
t d−1
a0 χ aξ a e at
ξ d e dt− 1
× · · · × t
a0 χ aξ a e at
ξ d e dt− 1
k-times
e xt∞
n0
B k n,χ,ξ x t n
Recently, the symmetry identities for the generalized twisted Bernoulli polynomials
In this paper, we study the symmetric properties of the multivariate p-adic invariant
between the power sum polynomials and the generalized higher-order Euler polynomials The main purpose of this paper is to give the symmetry identities for the twisted generalized
Euler polynomials of higher order using the symmetric properties of the multivariate p-adic
invariant integral onZp
Trang 32 Symmetry Identities for the Twisted Generalized
Euler Polynomials of Higher Order
Let χ be Dirichlet’s character with an odd conductor d ∈ N That is, d ∈ N with d ≡ 1 mod 2 For ξ ∈ T p , the twisted generalized Euler polynomials attached to χ, E n,χ,ξ x, are defined as
X
χ
y
ξ y e xyt dμ
y
a0−1a χ aξ a e at
ξ d e dt 1 e xt
∞
n0
E n,χ,ξ x t n
In the special case x 0, E n,χ,ξ E n,χ,ξ 0 are called the nth twisted generalized Euler numbers attached to χ.
From2.1, we note that
X
χ
y
ξ y
x ym
dμ
y
E m,χ,ξ x, m ∈ N ∪ {0}. 2.2
For n ∈ N with n ≡ 1 mod 2, we have
X
χ xξ x e xndt dμ x
X
χ xξ x e xt dμ x 2 nd−1
l0
−1l
Let T k,χ,ξ n n
l0−1l χlξ l l k Then we see that
ξ nd
X
χ xξ x e xndt dμ x
X
χ xξ x e xt dμ x
X e xt χ xξ x dμ x
X e ndxt ξ ndx dμ x 2
∞
k0
T k,χ,ξ nd − 1 t k
k! .
2.4
to χ as follows:
e xt 2
a0−1a
χaξ a e at
ξ d e dt 1
k
∞
n0
E k n,χ,ξ x t n
In the special case x 0, E k n,χ,ξ E k n,χ,ξ 0 are called the nth twisted generalized Euler numbers
of order k.
Trang 4Let w1, w2, d ∈ N with w1≡ 1, w2 ≡ 1, and d ≡ 1 mod 2 Then we set
J χ,ξ m w1, w2| x X m
i1 χ x iξm i1 x i w1em i1 x i w2xw1t dμ x1 · · · dμx m
X ξ dw1w2x e dw1w2xt dμ x
×
X m
m
i1
χ x i
ξm i1 x i w2em i1 x i w1yw2t dμ x1 · · · dμx m
,
2.6
where
X m f x1, , x m dμx1 · · · dμx m
X
· · ·
X
m-times
f x1, , x m dμx1 · · · dμx m . 2.7
From2.6, we note that
J χ,ξ m w1, w2 | x
X m
m
i1
χ x i
ξm i1 x i w1em i1 x i w1t dμ x1 · · · dμx m
e w1w2xt
× X χ x m ξ w2x m e w2x m t dμ x m
X ξ dw1w2x e dw1w2xt dμ x
e w1w2yt
×
X m−1
m−1
i1
χ x i
ξm−1 i1 x i w2em−1 i1 x i w2t dμ x1 · · · dμx m−1
.
2.8
X χ xξ x e xt dμ x
X ξ dw1x e dw1xt dμ x
dw1 −1
l0
−1l χ lξ l e lt∞
k0
T k,χ,ξ dw1− 1t k
It is not difficult to show that
e w1w2xt
X m
m
i1
χ x i
ξm i1 x i w1em i1 x i w1t dμ x1 · · · dμx m
a0−1a
χaξ aw1e aw1t
ξ dw1e dw1t 1
e w1w2xt∞
k0
E k,χ,ξ m w1 w2xw1k t k
k! .
2.10
Trang 5By2.8, 2.9, and 2.10, we see that
J χ,ξ m w1, w2| x ∞
l0
E m l,χ,ξ w1 w2xw l1t l
l!
∞
k0
T k,χ,ξ w2 w1d − 1w k2t k
k!
i0
E i,χ,ξ m−1 w2
w1y w i
2t i
i!
∞
n0
⎛
j0
n j
w2j w n−j1 E n−j,χ,ξ m w1 w2x
×
j
k0
j k
T k,χ,ξ w2 w1d − 1 E m−1 j−k,χ,ξ w2
w1yt n
n! .
2.11
In the viewpoint of the symmetry of J χ,ξ m w1, w2 | x for w1and w2, we have
J χ,ξ m w1, w2| x ∞
n0
⎛
j0
n j
w1j w n−j2 E n−j,χ,ξ m w2 w1x
k0
j k
T k,χ,ξ w1 w2d − 1 E m−1 j−k,χ,ξ w1
w2yt n
n! .
2.12
theorem
Theorem 2.1 Let w1, w2, d ∈ N with w1 ≡ 1, w2 ≡ 1, and d ≡ 1 mod 2 For n ∈ N ∪ {0} and
m ∈ N, one has
n
j0
n
j
w2j w n−j1 E m n−j,χ,ξ w1 w2x
j
k0
j k
T k,χ,ξ w2 w1d − 1 E m−1 j−k,χ,ξ w2w1y
n
j0
n j
w1j w n−j2 E m n−j,χ,ξ w2 w1x
j
k0
j k
T k,χ,ξ w1 w2d − 1 E m−1 j−k,χ,ξ w1
w2y
.
2.13
Corollary 2.2 For w1, w2, d ∈ N with w1 ≡ 1, w2≡ 1, and d ≡ 1 mod 2, one has
n
m0
n m
E m,χ,ξ w1 w2x w m
1w n−m2 T n−m,χ,ξ w2 w1d − 1
n
m0
n m
E m,χ,ξ w2 w1x w n−m
1 w2m T n−m,χ,ξ w1 w2d − 1 see 2.
2.14
Trang 6Let χ be the trivial character and d 1 Then we also have the following corollary.
Corollary 2.3 Let w1, w2 ∈ N with w1 ≡ 1, w2≡ 1 mod 2 Then one has
n
j0
n j
w n−j1 w j2E n−j,ξ w1 w2x T k,ξ w2 w1− 1
n
j0
n j
w j1w n−j2 E n−j,ξ w2 w1x T k,ξ w1 w2− 1,
2.15
where E n,ξ x are the nth twisted Euler polynomials.
Corollary 2.4 Distribution for the twisted Euler polynomials For w1∈ N with w1≡ 1 mod 2, one has
E n,ξ x n
i0
n i
w i1E i,ξ w1 xT n−i,ξ w1− 1. 2.16 From2.6, we can derive that
J χ,ξ m w1, w2| x
w1d−1
l0
χ l−1 l ξ w2l
X m
m
i1
χ x i
×ξm i1 x i w1e w1 m
i1 x i w2/w1lw2xt dμ x1 · · · dμx m
×
X m−1
m−1
i1
χ x i
ξm−1 i1 x i w2em−1 i1 x i w2t dμ x1 · · · dμx m−1
∞
n0
n
k0
n k
w k1w n−k2 E m−1 n−k,χ,ξ w2
w1y
×w1d−1
l0
χ l−1 l ξ w2l E m k,χ,ξ w1
w2x w2
w1l
t n
n! .
2.17
By the symmetry property of J χ,ξ m w1, w2 | x in w1and w2, we also see that
J χ,ξ m w1, w2 | x
∞
n0
n
k0
n k
w2k w n−k1 E n−k,χ,ξ m−1 w1
w2yw2d−1 l0
χ l−1 l ξ w1l E m k,χ,ξ w2
w1x w1
w2l
t n
n! .
2.18
Trang 7Comparing the coefficients on both sides of 2.17 and 2.18, we obtain the following theorem which shows the relationship between the power sums and the twisted generalized Euler polynomials of higher order
Theorem 2.5 Let w1, w2, d ∈ N with w1 ≡ 1, w2 ≡ 1, and d ≡ 1 mod 2 For n ∈ N ∪ {0} and
m ∈ N, one has
n
k0
n
k
w k1w n−k2 E m−1 n−k,χ,ξ w2
w1yw1d−1 l0
χ l−1 l
ξ w2l E m k,χ,ξ w1
w2x w2
w1l
n
k0
n k
w k
2w n−k
1 E m−1 n−k,χ,ξ w1
w2yw2d−1 l0
χ l−1 l ξ w1l E m k,χ,ξ w2
w1x w1
w2l
.
2.19
n
k0
n k
E k,χ,ξ w1 w k1w n−k2 T n−k,χ,ξ w2 w1d − 1
n
k0
n k
E k,χ,ξ w2 w k2w n−k1 T n−k,χ,ξ w1 w2d − 1 .
2.20
Acknowledgment
The present research has been conducted by the research grant of Kwangwoon University in 2010
References
1 T Kim and Y.-H Kim, “On the symmetric properties for the generalized twisted Bernoulli
polynomials,” Journal of Inequalities and Applications, vol 2009, Article ID 164743, 9 pages, 2009.
2 T Kim, “Symmetry identities for the twisted generalized Euler polynomials,” Advanced Studies in
Contemporary Mathematics, vol 19, no 2, pp 151–155, 2009.
3 T Kim, K H Park, and K.-W Hwang, “On the identities of symmetry for the ζ-Euler polynomials of higher order,” Advances in Di fference Equations, vol 2009, Article ID 273545, 9 pages, 2009.
4 S.-H Rim, Y.-H Kim, B Lee, and T Kim, “Some identities of the generalized twisted Bernoulli
numbers and polynomials of higher order,” Journal of Computational Analysis and Applications, vol.
12, no 3, pp 695–702, 2010
5 T Kim, “Symmetry of power sum polynomials and multivariate fermionic p-adic invariant integral
onZp ,” Russian Journal of Mathematical Physics, vol 16, no 1, pp 93–96, 2009.
6 M Cenkci, Y Simsek, and V Kurt, “Multiple two-variable p-adic q-L-function and its behavior at
s 0,” Russian Journal of Mathematical Physics, vol 15, no 4, pp 447–459, 2008.
7 Y Simsek, “On p-adic twisted -L-functions related to generalized twisted Bernoulli numbers,” Russian
Journal of Mathematical Physics, vol 13, no 3, pp 340–348, 2006.
8 T Kim and C Adiga, “Sums of products of generalized Bernoulli numbers,” International Mathematical
Journal, vol 5, no 1, pp 1–7, 2004.
9 I N Cangul, V Kurt, H Ozden, and Y Simsek, “On the higher-order w-q-Genocchi numbers,”
Advanced Studies in Contemporary Mathematics, vol 19, no 1, pp 39–57, 2009.
10 H Ozden, I N Cangul, and Y Simsek, “Remarks on q-Bernoulli numbers associated with Daehee numbers,” Advanced Studies in Contemporary Mathematics, vol 18, no 1, pp 41–48, 2009.
Trang 811 M Cenkci, “The p-adic generalized twisted h, q-ζ-l-function and its applicaitons,” Advanced Studies
in Contemporary Mathematics, vol 15, no 1, pp 37–47, 2007.
12 K H Park, “On interpolation functions of the generalized twisted h, q-Euler polynomials,” Journal
of Inequalities and Applications, vol 2009, Article ID 946569, 17 pages, 2009.
13 S.-H Rim, K H Park, and E J Moon, “On Genocchi numbers and polynomials,” Abstract and Applied
Analysis, vol 2008, Article ID 898471, 7 pages, 2008.
14 T Kim, “Symmetry properties of the generalized higher-order Euler polynomials,” Advanced Studies
in Contemporary Mathematics, vol 20, no 2, pp 1–5, 2010.
15 T Kim, “Note on the Euler q-zeta functions,” Journal of Number Theory, vol 129, no 7, pp 1798–1804,
2009
16 T Kim, “On a q-analogue of the p-adic log gamma functions and related integrals,” Journal of Number
Theory, vol 76, no 2, pp 320–329, 1999.
17 T Kim, “q-generalized Euler numbers and polynomials,” Russian Journal of Mathematical Physics, vol.
13, no 3, pp 293–298, 2006
18 T Kim, “Multiple p-adic L-function,” Russian Journal of Mathematical Physics, vol 13, no 2, pp 151–
157, 2006
19 H M Srivastava, T Kim, and Y Simsek, “q-Bernoulli numbers and polynomials associated with multiple q-zeta functions and basic L-series,” Russian Journal of Mathematical Physics, vol 12, no 2,
pp 241–268, 2005
20 T Kim, “Power series and asymptotic series associated with the q-analog of the two-variable p-adic
L-function,” Russian Journal of Mathematical Physics, vol 12, no 2, pp 186–196, 2005.
21 T Kim, “Analytic continuation of multiple q-zeta functions and their values at negative integers,”
Russian Journal of Mathematical Physics, vol 11, no 1, pp 71–76, 2004.
22 T Kim, “Non-Archimedean q-integrals associated with multiple Changhee q-Bernoulli polynomials,”
Russian Journal of Mathematical Physics, vol 10, no 1, pp 91–98, 2003.
23 T Kim, “On Euler-Barnes multiple zeta functions,” Russian Journal of Mathematical Physics, vol 10, no.
3, pp 261–267, 2003
24 T Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol 9, no 3, pp 288–299,
2002
25 T Kim, “Note on Dedekind type DC sums,” Advanced Studies in Contemporary Mathematics, vol 18,
no 2, pp 249–260, 2009
... class="page_container" data-page="7">Comparing the coefficients on both sides of 2.17 and 2.18, we obtain the following theorem which shows the relationship between the power sums and the twisted generalized. .. are the nth twisted Euler polynomials.
Corollary 2.4 Distribution for the twisted Euler polynomials For w1∈ N with w1≡ mod 2, one...
The present research has been conducted by the research grant of Kwangwoon University in 2010
References
1 T Kim and Y.-H Kim, ? ?On the symmetric properties