1. Trang chủ
  2. » Luận Văn - Báo Cáo

Đánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chất

21 5 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chất
Tác giả Đinh Kha Lil, Imee Saladaga Padillo
Trường học Can Tho University
Chuyên ngành Natural Sciences
Thể loại review
Năm xuất bản 2022
Thành phố Cần Thơ
Định dạng
Số trang 21
Dung lượng 782,48 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Đánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chấtĐánh giá tổng quan tế bào nhiên liệu vi sinh: Những tiến bộ gần đây về cơ chất

Trang 1

KWWSV GRL R J TQMVTạp chí Khoa học Trường Đại học Quy Nhơn, , 16(5),

Đánh giá tổng quan tế bào nhiên liệu vi sinh:

Những tiến bộ gần đây về cơ chất

Đinh Kha Lil *, Imee Saladaga Padillo

1Khoa Khoa học Tự nhiên, Trường Đại học Cần Thơ, Việt NamKhoa Công nghệ, Đại học bang Eastern Visayas, Phi-líp-pinNgày nhận bài: 25/06/2022; Ngày sửa bài: 0 /10/ 0 ;Ngày nhận đăng: 18/10/2022; Ngày xuất bản: 28/10/2022

TÓM TẮT

Trong hai thập kỷ qua, pin nhiên liệu vi sinh vật (Microbial fuel cells - MFCs) đã được chú ý vì chúng cóthể chuyển đổi trực tiếp năng lượng hóa học từ các hợp chất hữu cơ để tạo ra điện sinh học Với việc sử dụng MFC,năng lượng sinh khối có thể được thu trực tiếp dưới dạng điện năng, đây là năng lượng sạch, phổ biến và tiện lợinhất Do đó, MFC được xem là một phương pháp đầy hứa hẹn khác để khai thác năng lượng bền vững trong sinhkhối Có nhiều cơ chất đã được nghiên cứu để sử dụng làm nguồn cấp nguyên liệu sử dụng trong MFC Chúng baogồm nhiều loại nước thải nhân tạo, nước thải thực và sinh khối lignocellulosic Trong số các yếu tố ảnh hưởng đếnhiệu suất của MFCs: thiết kế, vật liệu điện cực, cơ chất, màng trao đổi, vi sinh vật hoạt động điện, pH, nhiệt độ vậnhành,… Cơ chất là thách thức quan trọng nhất trong công nghệ MFCs, đòi hỏi sự ổn định lâu dài Việc sử dụng cơchất không ổn định ảnh hưởng trực tiếp đến hiệu suất của MFC Tương tự, ảnh hưởng của các chất lên cộng đồng

vi sinh vật cũng được thảo luận Bài tổng quan này cập nhật những tiến bộ gần đây trong việc cải tiến công nghệMFC để tăng cường hiệu suất phát điện, đặc biệt là các cơ chất khác nhau được dùng trong MFC cho đến nay cũngnhư các cơ chất tiềm năng trong tương lai

Từ khóa: Cơ chất, mật độ năng lượng, pin nhiên liệu vi sinh, xử lý nước thải

Trang 2

A review of the general microbial fuel cell:

Recent advances in substrates

Dinh Kha Lil *, Imee Saladaga Padillo

1College of Natural Sciences, Can Tho University, VietnamCollege of Engineering, Eastern Visayas State University, Philippines

Received: 25/06/2022; Revised: 0 /10/ 0 ;Accepted: 18/10/2022; Published: 28/10/2022

WH P VWDELOLW LQ 0)&V WKH VXEVW DWH LV WKH PRVW FKDOOHQJLQJ 6WXGLHV KDYH VKRZQ WKDW DQ XQVWDEOH VXEVW DWH GL HFWO

KD PV WKH SH IR PDQFH RI 0)&V 7KLV HYLHZ GLVFXVVHV WKH HIIHFW RI VXEVW DWHV RQ WKH PLF RELDO FRPPXQLW)X WKH PR H LW S RYLGHV XSGDWHV RQ HFHQW DGYDQFHV LQ LPS RYLQJ 0)& WHFKQRORJ SD WLFXOD O WKH GLIIH HQWsubstrates discovered in MFCs to date, power generation ef ciency, and potential substrates in the future.Keywords: Microbial fuel cell, substrate, wastewater treatment, power density

RI WKH F LWLFDO JOREDO LVVXHV FFR GLQJ WR FOLPDWH

FKDQJH IR HFDVWV WKLV S REOHP ZLOO EH HYHQ

ZR OGZLGH D H ORRNLQJ IR DOWH QDWLYH HVRX FHV

VXFK DV ELRPDVV DV D PR H HOLDEOH VXVWDLQDEOHDQG HQYironmentally bene cial resource toHGXFH WKH QHHG IR IRVVLO IXHOV 7R GDWH ELRPDVVFDQ EH FRQYH WHG LQWR GLIIH HQW W SHV RI HQH J

S RGXFWV VXFK DV KHDW JDV IXHO DQG HOHFW LFLW0)&V D H D W SH RI SRZH JHQH DWLRQ GHYLFHWKDW XVHV EDFWH LD DV ELRORJLFDO FDWDO VWV WRJHQH DWH HOHFW LFLW E R[LGL]LQJ R JDQLF PDWWH

I RP WKH ZDVWHZDWH WK RXJK HVSL DWLRQ ,WKDV FRQVLGH DEOH SRWHQWLDO IR DSSOLFDWLRQV LQZDVWHZDWH W HDWPHQW HOHFW LFDO HTXLSPHQWDQG ELRVHQVR V 5HFHQWO HDFWR V ZLWK D VFDOH

RI VHYH DO KXQG HG OLWH V KDYH EHHQ GHVLJQHG7KH PRYH WR E LQJ WKLV WHFKQRORJ I RP WKHODER DWR VFDOH WR WKH FX HQW SLORW VFDOH E RXJKW

LW FORVH WR S DFWLFDO DSSOLFDWLRQ

Trang 3

KWWSV GRL R J TQMVQuy Nhon University Journal of Science, , 16(5),

0)&V IXQFWLRQ WK RXJK EDFWH LDO

DFWLYLWLHV HVXOWLQJ LQ HOHFW RQ S RGXFWLRQ

LWV VXEVW DWH PXVW EH HSOHQLVKHG FRQWLQXRXVO R

intermittently; otherwise, it is considered a

bio-EDWWH OHFW RQ PHGLDWR V R VKXWWOHV W DQVIH

HOHFW RQV WR WKH DQRGH WK RXJK HOHFW RQ W DQVIH V

GL HFWO DVVRFLDWHG ZLWK WKH PHPE DQH R WK RXJKQDQRZL HV IR PHG E EDFWH LD R SRVVLEO

WK RXJK VRPH RWKH XQH[SOR HG ZD V &KHPLFDOPHGLDWR V VXFK DV QHXW DO HG R DQWK DTXLQRQHGLVXOIRQDWH FDQ EH XVHG LQ 0)&V WR IDFLOLWDWHHOHFW LFLW JHQH DWLRQ E EDFWH LD WKDW FDQQRW XVHWKH HOHFW RGH ZLWKRXW DLG 6XSSRVH WKH V VWHPKDV QR DGGHG H[RJHQRXV PHGLDWR V ,Q WKDWFDVH WKH 0)& LV FRQVLGH HG PHGLDWR OHVVHYHQ LI WKH HOHFW RQ W DQVIH PHFKDQLVP PD EHXQNQRZQ

Figure 1 6W XFWX H GLDJ DP RI D PLF RELDO IXHO FHOO

HSR W SRWHQWLDOV XVLQJ GLIIH HQW HIH HQFH VWDWHV

DQG RFFDVLRQDOO RQO XVLQJ D VLQJOH HVLVWR

(load) These and sometimes the lack of essential

HOHFW LFLW JHQH DWLRQ EXW DOVR EHFDXVH LW LV DQ

HQYL RQPHQWDOO I LHQGO ZDVWHZDWH W HDWPHQW

WHFKQRORJ 0DQ W SHV RI ZDVWHZDWH WRGD

FRQWDLQ YD LRXV WR[LF ZDVWHV PDNLQJ WKHPH[SHQVLYH WR W HDW EHIR H EHLQJ GLVFKD JHGLQWR WKH HQYL RQPHQW 3 HYLRXV VWXGLHV KDYHGHPRQVW DWHG WKH DELOLW RI 0)&V WR W HDWFRQWDPLQDWHG ZDVWHZDWH FRQWDLQLQJ PHWDOVIRRG DQG X LQH HYHQ S RGXFLQJ G LQNLQJ ZDWHSRVW W HDWPHQW 0)&V KDYH FRH[LVWHG ZLWKbiological lter tanks in wastewater treatment

WR HQKDQFH SROOXWLRQ FRQW RO DQG LPS RYH

W HDWPHQW FDSDFLW 0RVW W HDWPHQW PHWKRGVDLP WR HPRYH R JDQLF FRPSRXQGV WKDW HGXFHchemical oxygen demand (COD), azo dyes,DQG KHDY PHWDO ZDVWH 7KH DH DWLRQ V VWHP

LQ ZDVWHZDWH W HDWPHQW LV HSR WHG WR FRQVXPH

PR H WKDQ RI WKH HOHFW LFLW HTXL HG LQ WKH

W HDWPHQW S RFHVV ZKLOH WKH 0)&V XVH DQDH RELFEDFWH LD IR WKH ZDVWHZDWH W HDWPHQW S RFHVVZKLFK LQGLFDWHV D SRWHQWLDO IR HQH J VDYLQJ RI

Trang 4

0)&V ,Q DGGLWLRQ 0)&V XVHG DV ELRVHQVR V

D H H[SHFWHG WR EH RQH RI WKH S RPLVLQJ

DSSOLFDWLRQV RI 0)& GH LYHG WHFKQRORJ 6XFK

ELRVHQVR V KDYH EHHQ VWXGLHG WR PHDVX H YD LRXV

SD DPHWH V LQFOXGLQJ &2' YRODWLOH IDWW DFLGV

dissolved oxygen (DO), biochemical oxygen

demand (BOD), toxic substances and microbial

HOHFW RGH PDWH LDO DQG VX IDFH HOHFW RFKHPLFDOO

active bacteria (EAB), substrate, and load

HVLVWDQFH

2 DESIGN OF MFCs REACTOR

0DQ W SHV RI 0)& GHVLJQV KDYH EHHQ

HVHD FKHG DQG GHYHORSHG DFK GHVLJQ KDV LWV

DGYDQWDJHV DQG GLVDGYDQWDJHV DQG LV VXLWDEOH

for speci c uses Various factors are considered

LQ GHVLJQLQJ 0)&V 7KH VL]H VKDSH DQG

con guration of reactors widely differ and are

ZKROO GHFLGHG XSRQ E WKH GHVLJQH 7KH H LV

QR H[LVWLQJ HFRPPHQGHG VWDQGD G GHVLJQ HW

The MFC’s overall performance is signi cantly

affected by reactor con gurations, including the

YROXPH R[ JHQ VXSSO D HD RI WKH PHPE DQH

DQG VSDFLQJ EHWZHHQ HOHFW RGHV PRQJ WKH

VWXGLHG VW XFWX HV GRXEOH FKDPEH + W SH 0)&

LV W SLFDOO XVHG EHFDXVH RI LWV LRQ H[FKDQJH

PHPE DQH IDFLOLWDWLQJ S RWRQ GLIIXVLRQ DQG

OLPLWLQJ WKH F RVVRYH RI VXEVW DWH DQG R[ JHQ

RI XS WR D VTXD H PHWH DQJLQJ I RP PLF ROLWH V

WR WKRXVDQGV RI OLWH V 7KH IXHO FHOO GHVLJQ LV

DQ LPSR WDQW HOHPHQW LQ WKH 0)& PLF RELDOelectrolysis cell (MEC) Single-chamber cellsKDYH EHHQ F HDWHG I RP D WZR FKDPEH GHVLJQ WRHOLPLQDWH WKH PHPE DQH )X WKH PR H VLQJOHchamber MFCs have shown promising results;KRZHYH GXDO FKDPEH LV VWLOO ZLGHO VWXGLHG'XDO FKDPEH FHOOV D H HDVLH WR FRQVW XFW WKDQVLQJOH FKDPEH HDFWR V VLPSOH 0)& GHYLFHFDQ HLWKH EH GXDO R VLQJOH FKDPEH HG EDVHG

RQ WKH DQRGH DQG FDWKRGH FKDPEH DVVHPEO6HYH DO 0)& GHVLJQ DQG VW XFWX H DGDSWDWLRQVKDYH EHHQ PDGH I RP WKHVH WZR W SLFDO GHVLJQV+ VKDSHG IXHO FHOOV FRPPRQO FRQVLVW

RI WZR ERWWOHV FRQQHFWHG E D WXEH FRQWDLQLQJ DVHSD DWR XVXDOO D FDWLRQ H[FKDQJH PHPE DQH(CEM) such as Na on, or Ultrex, R D SODLQsalt bridge (Figure 2) 7KH YLWDO FRQVLGH DWLRQ

IR WKLV GHVLJQ LV VHOHFWLQJ D PHPE DQH WKDWDOORZV S RWRQ W DQVIH EHWZHHQ WKH FKDPEH VEXW KLQGH V WKH FDWKRGH FKDPEH V VXEVW DWH

or electron acceptor (usually oxygen) fromcrossing Using a glass tube heated and bent to

a U-shape is a cost-effective method to connectWKH ERWWOHV JD DQG VDOW D H XVHG DV D & 0 LQthe U-shaped glass tube and are inserted throughthe bottles’ lids (Figure 2) However, it wasREVH YHG WKDW 0)&V XVLQJ VDOW E LGJH JHQH DWHVORZ SRZH EHFDXVH RI KLJK LQWH QDO HVLVWDQFH+ VKDSHG 0)& GHYLFHV D H JHQH DOODFFHSWHG IR EDVLF SD DPHWH HVHD FK QH[DPSOH LV WHVWLQJ WKH SRZH S RGXFHG XVLQJ QHZPDWH LDOV R QHZ PLF REHV GHYHORSLQJ I RP VRPHFRPSRXQG GHFRPSRVLWLRQ +RZHYH WKLV 0)&

W SH W SLFDOO JHQH DWHV ORZ SRZH GHQVLWLHV7KH HODWLYH VX IDFH D HD RI WKH FDWKRGH WR WKDW

RI DQRGH DQG WKH PHPE DQH VX IDFH DIIHFW WKHSRZH JHQH DWLRQ

Trang 5

KWWSV GRL R J TQMVQuy Nhon University Journal of Science, , 16(5),

Figure 2 MFC types device with a salt bridge (pointed by arrow) which is easily assembled

acceptors In an H-shaped reactor using Na on

DV & 0 FRPSD HG WR D 3W FDWDO VW DQG GLVVROYHG

a tube, sealing the anode against a at plate, andH[SRVLQJ WKH FDWKRGH WR DL RQ RQH VLGH DQG ZDWH

on the other (FLJX H

Figure 3 MFC types in studies: (A) single-chamber, simple “tube” arrangement of air-cathode ; (B) stacked0)& ZLWK RQH RXW RI WZR FH DPLF VXSSR WV HPRYHG

%

Trang 6

Figure 4 MFC operated continuously: (A) upward owing, tubular type MFC with inner graphite bed anode andouter cathode; (B) at plate design where a serpentine pattern for uid ow.

Coulombic ef ciency, which is the fraction of

HOHFW RQV HFRYH HG RYH WKH PD[LPXP QXPEH

RI HOHFW RQV WKDW FDQ SRVVLEO EH HFRYH HG

OWKRXJK K G RVWDWLF S HVVX H RQ WKH FDWKRGH

ZLOO FDXVH ZDWH OHDNV WKLV FDQ EH PLQLPL]HG

XVLQJ coatings, such as polytetra uoroethylene(PTFE), outside the cathode These coatingsDOORZ WKH GLIIXVLRQ RI R[ JHQ EXW OLPLW WKH EXONORVV RI ZDWH

7KH V VWHPV PHQWLRQHG VR ID D H EDWFKRSH DWHG GHYLFHV 6HYH DO RWKH EDVLF GHVLJQValso exist that provide continuous ow throughWKH DQRGH FKDPEH 6RPH GHVLJQV LQFOXGH DQRXWH F OLQG LFDO HDFWR DQG D FRQFHQW LF LQQHFDWKRGH WXEH 6RPH D H WKH RWKH ZD D RXQG

Trang 7

Quy Nhon University Journal of Science, , 16(5),

KWWSV GRL R J TQMV

KDYLQJ DQ LQWernal cylindrical anode lled with

granular media and an outer cathode (Figure

QRWKH GHVLJQ YD LDWLRQ LV DQ XSZD G

owing xed-bed bio lm reactor, with uid

owing continuously through permeable anodes

WR D PHPE DQH WKDW VHSD DWHV WKH DQRGH I RP WKH

FDWKRGH FKDPEH 6 VWHP GHVLJQV HVHPEOLQJ

K G RJHQ IXHO FHOOV KDYH EHHQ HPSOR HG ZKH H

D & 0 LV SODFHG EHWZHHQ WKH FDWKRGH DQG DQRGH

(Figure 4B) Stacking systems as a series of at

SODWHV R OLQNLQJ WRJHWKH LQ VH LHV FDQ LQF HDVH

overall system voltage (Figure 3B)

6HGLPHQW 0)&V KDYH EHHQ GHYHORSHG

DQG SODWLQXP PHVK HOHFW RGHV KDYH EHHQ XVHG

DV HOHFW RGHV %RWWOHE XVK FDWKRGHV KDYH D

KLJK VX IDFH D HD DQG D H FR RVLYH HVLVWDQW

Therefore, these nd applications for seawater

EDWWH LHV DQG D H S RPLVLQJ IR ORQJ WH P

RSH DWLRQ + WXEH GXDO FKDPEH V VWHPV KDYH

DOVR EHHQ DSSOLHG WR VHGLPHQW 0)&V WR VWXG

EDFWH LDO FRPPXQLWLHV Modi cations have also

been done to produce hydrogen Using a slight

H[WH QDO SRWHQWLDO LQ WKH 0)& WKH SRWHQWLDO

S RGXFHG DWWKH DQRGH E WKH EDFWH LDZDVDVVLVWHG

PDNLQJ FDWKRGLF K G RJHQ JHQH DWLRQ SRVVLEOH

7KHVH D H FDOOHG ELRHOHFW RFKHPLFDO DVVLVWHG

microbial reactors (BEAMRs) or bio-catalyzed

HOHFW RO VLV V VWHPV DQG D H QRW FRQVLGH HG DV

HDO IXHO FHOOV VLQFH WKH D H RSH DWHG WR JHQH DWH

QRW HOHFW LFLW EXW K G RJHQ +DYLQJ D VHFRQG

FKDPEH IR K G RJHQ JDV FDSWX H ZRXOG PDNH LW

SRVVLEOH WR GHYHORS YD LRXV GHVLJQV IR K G RJHQ

JHQH DWLRQ

3 ELECTROACTIVE BIOFILMS

Electroactive bio lms (EAB) have been

identi ed in many natural ecosystems such as

VRLOV VHGLPHQWV VHDZDWH R I HVKZDWH DQG LQ

VDPSOHV FROOHFWHG I RP D ZLGH DQJH RI GLIIH HQW

microbially-rich environments (sewage sludge,

DFWLYDWHG VOXGJH R LQGXVW LDO DQG GRPHVWLF

ef uents) The microbes transfer the electrons

WR WKH HOHFW RGH WK RXJK YD LRXV HOHFW RQ W DQVIHPHFKDQLVPV +RZHYH WKH HOHFW RQ W DQVIHPHFKDQLVP SOD V D YLWDO ROH LQ PD[LPL]LQJWKH PLF REH WR HOHFW RGH LQWH DFWLRQ DQG KHOSV

S RYLGH DQ XQGH VWDQGLQJ RI KRZ VXFK V VWHPVRSH DWH LQ WKH 0)& 5HVHD FKH V KDYH S RSRVHGthree extracellular electron transfer (EET)PHFKDQLVPV 'HSHQGLQJ RQ WKH PHFKDQLVPVLQYROYHG WKH GLVWDQFHV RI 7 PD YD J HDWO

I RP WKH QDQRPHWH VFDOH LQ WKH FDVH RI HOHFW RQ

W DQVIH DF RVV WKH FHOO HQYHORSH WR OHQJWKVH[FHHGLQJ RQH FHQWLPHWH IR FDEOH EDFWH LD3.1 Direct electron transfer

The rst transfer mechanism uses direct electrontransfer (DET) between electron carriers in theEDFWH LD DQG WKH VROLG HOHFW RQ DFFHSWR V 7KHPHFKDQLVP LV FD LHG RXW E WKH S HVHQFH RI RXWHPHPE DQH F WRFK RPHV WKDW FDQ LQWH DFW GL HFWOZLWK WKH VROLG VX IDFH WR FD RXW HVSL DWLRQ' 7 FDQ RFFX WK RXJK GL HFW SK VLFDO FRQWDFWEHWZHHQ WKH FHOO DQG DQ HOHFW RGH ZLWKRXW WKHLQYROYHPHQW RI DQ GLIIXVLEOH HGR[ FRPSRXQGV7KLV LV DFKLHYHG LI WKH PLF REH FRQWDLQV HGR[DFWLYH S RWHLQV RQ WKH RXWH VX IDFH RI WKH FHOOPHPE DQH R FHOO HQYHORSH H J F WRFK RPHVavoproteins, R PXOWL FRSSH S RWHLQVZKLFK DOORZ W DQVSR W RI HOHFW RQV EHWZHHQ WKHLQVLGH RI WKH FHOO DQG DQ H[WH QDO HQYL RQPHQWFFR GLQJ WR VWXGLHV HSR WHG VR ID WK HHGLIIH HQW PHFKDQLVPV DFFRPSOLVKLQJ WKLV W SH RIHOHFW LFDO FRQQHFWLRQ KDYH EHHQ S RSRVHG : (i)

7 WK RXJK HOHFW LFDOO FRQGXFWLYH SLOL (ii) ETEHWZHHQ HGR[ S RWHLQV ERXQG WR WKH RXWH FHOO

VX IDFHV or (iii) ET through abiotic conductivePDWH LDOV

3.2 Mediated electron transfer7KH VHFRQG W DQVIH PHFKDQLVP HPSOR V DQHOHFW RQ VKXWWOH EHWZHHQ EDFWH LD DQG HOHFW RGHVThe mediated electron transfer (MET) hasHGR[ PHGLDWR V LQYROYHG LQ VKXWWOLQJ HOHFW RQVEHWZHHQ EDFWH LD DQG HOHFW RGHV 0 7 WDNHVSODFH E WKH S HVHQFH RI HGR[ DFWLYH PHGLDWLQJ

Trang 8

FRPSRXQGV ZKLFK VKXWWOH HOHFW RQV EHWZHHQ DQ

H[WH QDO GRQR DFFHSWR DQG D PLF RR JDQLVP

6RPH FRPSRXQGV VKRZQ WR EH HIIHFWLYH HOHFW RQ

VKXWWOHV LQFOXGLQJ ERWK LQR JDQLF DQG R JDQLF

compounds have been identi ed potassium

arti cial mediators are no longer signi cant

3.3 Indirect electron transfer

R IR PLF DFLG GGLWLRQDOO HOHFW RDFWLYH

(metabolic) substances can be secreted

E PLF RR JDQLVPV DQG W DQVIH HOHFW RQV

EHWZHHQ WKH PLF REHV DQG HOHFW RGHV

4 FACTORS AFFECTING THE ACTIVITY

RYH WLPH LQH[SHQVLYH DQG ZLWK D KLJK VX IDFH

D HD The electrode materials greatly in uence

WKH SH IR PDQFH RI WKH 0)& &D ERQ PDWH LDOV

D H XVHG DV HOHFW RGHV LQ 0)& EHFDXVH WKH

D H QRQ FR RVLYH KLJKO ELRFRPSDWLEOH DQG

H[KLELW VRPH GLVWLQFWLYH VX IDFH FKD DFWH LVWLFV RIelectrode materials Modi cation of the electrodePDWH LDO KDV EHHQ VKRZQ WR EH DQ HIIHFWLYH ZD WRLPS RYH WKH SH IR PDQFH RI WKH 0)&

0DQ VWXGLHV KDYH VKRZQ WKDW HOHFW RGHVwith nanoparticle modi cation are more

ef cient than simple electrodes This change

LQ WKH SK VLFDO DQG FKHPLFDO S RSH WLHV RI WKHHOHFW RGH KHOSV WKH PLF RR JDQLVP EHWWH ELQGand transfer electrons The ef ciency of MFCFDQ EH LQF HDVHG WK RXJK WKH LPS RYHPHQW RIEDFWH LDO DGKHVLRQ DQG HOHFW RQ W DQVIH ZLWKthe modi cation of the electrode surface 7KHbio lm attached to the electrode is an essentialHOHPHQW RI HOHFW RFKHPLFDO ELR HDFWLRQ 7KHgrowth and development of bio lms on the MFCHOHFW RGHV HVSHFLDOO RQ WKH DQRGH HOHFW RGHZLOO KHOS R JDQLF PDWWH R[LGDWLRQ DQG W DQVIHHOHFW RQV WR WKH FDWKRGH 7KH DQRGH HOHFW RGH RIWKH 0)& PXVW FRQWDLQ D VWDEOH DQG KRPRJHQHRXVELR HDFWR IR HQKDQFHG HQH J JHQH DWLRQ,Q VXPPD WKH HOHFW RGH S RSH WLHV DQGWKH FR HODWLRQ EHWZHHQ HOHFW RGH VXEVW DWHDQG EDFWH LD D H WKH PDLQ IDFWR V DIIHFWLQJ WKH

SH IR PDQFH RI 0)& ,W FDQ EH VHHQ WKDW WKHGHYHORSPHQW RI 0)& WHFKQRORJ LV D GLYH VHFRPELQDWLRQ RI VSHFLDOWLHV VXFK DV ELRFKHPLVWHOHFW RFKHPLVW PHFKDQLFDO HQJLQHH LQJ DQGPDWH LDOV VFLHQFH

4.2 Proton exchange system,Q D GXDO FKDPEH GHVLJQ WKH DQRGH DQG WKHFDWKRGH FRPSD WPHQWV D H VHSD DWHG E DQ LRQVHOHFWLYH PHPE DQH DOORZLQJ S RWRQ W DQVIH

I RP WKH DQRGH WR WKH FDWKRGH DQG S HYHQWLQJR[ JHQ GLIIXVLRQ LQ WKH DQRGH FKDPEH I RPWKH FDWKRGH FRPSD WPHQW 7KH PHPE DQH LQWKH 0)&V SOD V DQ LPSR WDQW ROH LQ 0)&

SH IR PDQFH 7KH PRVW FRPPRQO XVHGPDWH LDOV IR 3 0 DIIHFW WKH LQWH QDO HVLVWDQFHDQG FRQFHQW DWLRQ RI WKH SROD LVDWLRQ ORVV RI WKHsystem and in uences the power output of theMFCs There are several signi cant types of ionH[FKDQJH PHPE DQHV XVHG LQ 0)& V VWHPVanion exchange membranes (AEM), cation

Trang 9

KWWSV GRL R J TQMVQuy Nhon University Journal of Science, , 16(5),

H[FKDQJH Pembranes (CEM), and polarized

membranes (PBM)

7KH ELR HDFWR D FKLWHFWX H PDWH LDO W SH

DQG HDFWR JHRPHW GHWH PLQH WKH GHYLFH V

performance and cost Studies aim to nd the

RSWLPDO FRPELQDWLRQ RI PDWH LDOV DQG GHVLJQ

WKDW ZLOO HVXOW LQ KLJK SH IR PDQFH ORZ FRVW

DQG PXOWLSOH IXQFWLRQV WR HVWDEOLVK D VWDQGD G IR

FRQYHQLHQW DQG HFRQRPLFDOO IHDVLEOH VFDOLQJ

up One such effort is using CEM such as Na on

GH LYHG I RP WKHH[LVWLQJ WHFKQRORJ RQK G RJHQ

3 0)& R W HDWPHQW V VWHPV RQ ZDWH XVLQJ

PHPE DQHV Since Na on is expensive, most

HVHD FK LV FRQFHQW DWHG RQ SRVVLEOH DOWH QDWLYHV

LQFOXGLQJ LQYHVWLJDWLRQV RQ PDWH LDOV VXFK DV

nylon and glass bers, j-cloth, biodegradable

SODVWLF EDJV DQG FH DPLFV 6HYH DO ZDVWH

PDWH LDOV VXFK DV ODER DWR JORYHV DQG QDWX DO

XEEH KDYH DOVR EHHQ WHVWHG 5HVXOWV VKRZ

that these materials offer bene ts in terms of

PHPE DQH IRXOLQJ

0)& RSH DWLRQ ZDV VWXGLHG XVLQJ VLPLOD

PHWDOV LQ GLIIH HQW VROXWLRQV R GLIIH HQW PHWDOV

LQ VLPLOD VROXWLRQV ZKHQ OLTXLG HOHFW RO WHV D H

either dissimilar (electrochemically separated)

R LGHQWLFDO EXW SODFHG DW D GLVWDQFH DSD W WR

DYRLG VKR W FL FXLW

0HPE DQH OHVV 0)& ZDV WKH HIR H

GHYHORSHG :KLOH WKLV HOLPLQDWHV WKH QHHG IR

KLJK FRVW PHPE DQHV DQG IRXOLQJ S REOHPV

FHOOV HJD GOHVV RI WKH S HVHQFH RI PHPE DQHV

&X HQWO VWXGLHV KDYH HPH JHG XVLQJ '

S LQWLQJ LQ WKH IDE LFDWLRQ RI 0)&V '

S LQWLQJ RI 0)& ELR HDFWR V DOVR KDV WKHDGYDQWDJH RI F HDWLQJ FRPSOHWH HDFWR V V DHVXOW WKHVH S RGXFWV FDQ EH HPSOR HG LQ YD LRXVDSSOLFDWLRQV DQG HQYL RQPHQWV

7KH FKDOOHQJH RI HOHFW RGH VSDFLQJ FDQ EHDGG HVVHG E PDWH LDO W SH 3R RVLW VW HQJWKFKHPLFDO LQH WQHVV DQG ORQJHYLW D H WKH IDFWR VWKDW PD DGG HVV WKLV FKDOOHQJH ZKLOH KLQGH LQJR[ JHQ SHQHW DWLRQ 7KH PDWH LDOV WKDW KDYH EHHQVWXGLHG VR ID D H FDQYDV SKRWRFRS SDSHmicroporous ltration membranes, DQG Q ORQLQIXVHG PHPE DQH

4.3 pHMFCs are very susceptible to the in uence ofH[WH QDO S+ RQ WKHL DELOLW WR JHQH DWH HQHZDEOHHQH J DQG HPRYH FRQWDPLQDQWV :KHQ WKHH[WH QDO S+FKDQJHV PDQ SK VLRORJLFDOFKDQJHVRFFX LQFOXGLQJ FKDQJHV LQ LRQ FRQFHQW DWLRQproton shutdown, microbial cell pH, and bio lm

IR PDWLRQ DW WKH DQRGH HOHFW RGH S+ YDOXH SOD V

D YLWDO ROH LQ WKH J RZWK RI PLF RR JDQLVPV DQG

LW LV QHFHVVD WR FRQVLGH WKH LJKW S+ FRQGLWLRQV

IR WKH PLF RR JDQLVPV WR DFKLHYH PD[LPXP

SH IR PDQFH 7KH EDFWH LD HVSRQVLEOH IRJHQH DWLQJ HOHFW LFLW LQ WKH 0)& ZH H PR HDFWLYH DW S+ WR LQ WKH DQRGH FKDPEH DQG

DW QHXW DO R VOLJKWO KLJKH S+ LQ WKH FDWKRGHFKDPEH 7KH DFWLYLWLHV RI WKH EDFWH LD GHF HDVHGXH WR WKH ORZ S+ LQ WKH DQRO WH ZKLFK KDV Dtremendous effect on the bio lm formationDQG SRZH RXWSXW RI WKH 0)& 7KH PDLQ HIIHFW

of pH on the electrolyte in uences bacterialPHWDEROLVP DQG WKH FDWKRGLF R[ JHQ HGXFWLRQHDFWLRQ DWH

4.4 Temperature7HPSH DWX H DIIHFWV PLF RELDO PHWDEROLVP PDVVGLVSODFHPHQW DQG WKH PRG QDPLFV OHDGLQJ

WR DQ HIIHFW RQ 0)& SH IR PDQFH 2 HOODQD

HW DO HSR WV WKDW 0)&V RSH DWH VWDELOLW DWthe temperature range of 25°C to 30°C MFCsRSH DWLQJ DW KLJKH WHPSH DWX HV KDYH DQDGYDQWDJHRXV SH IR PDQFH DQG EHWWH VXEVW DWH

Trang 10

HPRYDO 7KLV LV EHFDXVH WKH WHPSH DWX H

contributes to the initial bio lm formation,

DXJPHQWDWLRQ RI WKH EDFWH LDO PHWDEROLVP

DQG PHPE DQH SH PHDELOLW 7KH RSWLPXP

WHPSH DWX H IR PHVRSKLOLF PLF REHV DQJHV

from 35°C to 40°C Warmer temperatures

JHQH DOO SRVLWLYHO DIIHFW SRZH JHQH DWLRQ

& DQG &2' HPRYDO 0)&V RSH DWLQJ

DW KLJKH WHPSH DWX HV KDYH D SH IR PDQFH

DGYDQWDJH DQG VXEVW DWH HPRYDO 7KLV LV EHFDXVH

RI WKH WHPSH DWX H FRQW LEXWHV WR WKH LQLWLDO

bio lm formation, augmentation of the bacterial

PHWDEROLVP DQG PHPE DQH SH PHDELOLW

biological factors related to the power ef ciency

LQ 0)&V 2 JDQLF VXEVW DWHV DQJH I RP VLPSOH

WR FRPSOH[ DQG WKHL PL[WX HV FDQ EH XVHG DV

D QXW LHQW VRX FH E HOHFW LFDOO DFWLYH EDFWH LD

IR SRZH JHQH DWLRQ LQ 0)&V 6WXGLHV HSR WHG

that substrates for MFCs range from simple (i.e.,

glucose, acetate, sucrose, etc.) to complex (i.e.,

DPLQR S RWHLQV DFLGV HWF VLGH I RP WKRVH

VRPH ZDVWHZDWH VXFK DV VHDIRRG LQGXVW LDO

ZDVWHZDWH SHW ROHXP HF FOLQJ ZDVWHZDWH

bamboo fermentation ef uent, ZH H XVHG DV D

FRPSOH[ VXEVW DWH LQ 0)& ,Q PRVW FDVHV WKH

LQ FD ERQ ZKLFK HOHFW RDFWLYH PLF RR JDQLVPVFDQ HDVLO PHWDEROL]H ,RQV D H S HVHQW LQ DFHWLFDFLG WKDW WHQGV WR S RPSW HOHFW RDFWLYH PLF REHVNotably, acetate is the nal product of variousPHWDEROLF SDWKZD V IR KLJKH R GH FD ERQVRX FHV V D VLPSOH FRPSRXQG DFHWDWH LV HDVLH

WR GHJ DGH LQ 0)&V /LX HW DO REVH YHG WKDWWKH DFHWDWH IHG VLQJOH FKDPEH 0)& REWDLQHG

D SRZH JHQH DWLRQ RI P: P PJ /ZKLFK ZDV DSS R[LPDWHO KLJKH WKDQ WKHpower produced by an MFC with butyrate (305P: P PJ / /LX HW DO REVH YHG WKDWWKH 0)& IHG E DFHWDWH VXEVW DWH DQG DFHWDWHDFFOLPDWL]HG PLF RELDO FRQVR WLD REWDLQHG PR HWKDQ WZLFH KLJKH SRZH JHQH DWLRQ ZLWK KDOIRSWLPDO H[WH QDO ORDG HVLVWDQFH FRPSD HG WR0)& ZLWK S RWHLQ LFK ZDVWHZDWH DV VXEVW DWH+RZHYH D ZLGH DQJH RI PLF RELDO FRPPXQLWcompositions was observed in the anode bio lm

IR WKH S RWHLQ HQ LFKHG ZDVWHZDWH FRPSD HG WRWKH DFHWDWH VXEVW DWH &KDH HW DO HYDOXDWHG WKHSRZH JHQH DWLRQ RI IRX GLYH VH VXEVW DWHV ZKH HWKH DFHWDWH IHG 0)& REWDLQHG WKH PD[LPXPSRZH JHQH DWLRQ ZLWK & RI ZKLOH WKHRWKH VXEVW DWH RSH DWHG 0)& DFKLHYHG WKHlower power generation with butyrate (43.0%),propionate (36.0%) and glucose (15.0%).'LQK HW DO HSR WHG WKDW D SRZH GHQVLW RIP: P ZDV S RGXFHG I RP DFHWDWH DWWKH FRQFHQW DWLRQ RI P0 Q 0)& XVLQJ

D PL[WX H RI DFHWDWH DQG ODFWDWH VXEVW DWHV DWP0 LHOGHG D SRZH GHQVLW RI P: P5.2 Glucose

QRWKH FRPPRQ VXEVW DWH XVHG LQ 0)& LVJOXFRVH 7KH S HVHQFH RI JOXFRVH LQ ZDVWHZDWHVOXGJH HQKDQFHV WKH FRQGXFWLYLW S RSH W RIWKH 0)&

Ngày đăng: 05/12/2023, 13:26

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w