Kim, “Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral onZp ,” Russian Journal of Mathematical Physics, vol.. Kim, “Note
Trang 1Volume 2010, Article ID 875098, 11 pages
doi:10.1155/2010/875098
Research Article
Numbers and Polynomials of Higher Order
1 Department of Mathematics and Computer Science, KonKuk University,
Chungju 138-701, Republic of Korea
2 Department of Wireless Communications Engineering, Kwangwoon University,
Seoul 139-701, Republic of Korea
3 Division of General Education-Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
Correspondence should be addressed to Lee Chae Jang,leechae.jang@kku.ac.kr
Received 12 April 2010; Accepted 28 June 2010
Academic Editor: Istvan Gyori
Copyrightq 2010 Lee Chae Jang et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
We consider the twisted q-extensions of the generalized Euler numbers and polynomials attached
to χ.
1 Introduction and Preliminaries
Let p be an odd prime number For n ∈ Z N ∪ {0}, let C p n {ζ | ζ p n
1} be the
cyclic group of order p n , and let T p limn → ∞ C p n n≥0 C p n C p∞ be the space of locally
constant functions in the p-adic number field C p When one talks of q-extension, q is variously considered as an indeterminate, a complex number q ∈ C, or p-adic number q ∈ C p If q ∈ C,
one normally assumes that|q| < 1 If q ∈ C p, one normally assumes that|1 − q| p < 1 In this
paper, we use the notation
x q 1− q x
1− q , x −q 1−
−qx
Let d be a fixed positive odd integer For N ∈ N, we set
X X d lim←−NZ
dpNZ, X1 Zp ,
Trang 2X∗
0<a<dp
a,p1
a dpZ p
,
a dp nZpx ∈ X | x ≡ a
mod dp n
,
1.2
where a ∈ Z lies in 0 ≤ a < dp n; compared to1 16
Let χ be the Dirichlet’s character with an odd conductor d ∈ N Then the generalized
ζ-Euler polynomials attached to χ, E n,χ,ζ x, are defined as
F χ,ζ x, t 2
d−1
l0 −1l χ lζ l e lt
ζ d e dt 1 e xt
∞
n0
E n,χ,ζ x t n
n! , for ζ ∈ T p .
1.3
In the special case x 0, E n,χ,ζ E n,χ,ζ 0 are called the nth ζ-Euler numbers attached to χ For f ∈ UDZ p , the p-adic fermionic integral on Z pis defined by
I−q
f
Zp
f xdμ −q x lim
N → ∞
p N−1
x0
f xμ −q
x p NZp
lim
N → ∞
p N−1
x0
f x−1 x q x
p N
−q , see 7–17
1.4
Let I−1 limq → 1 I −q f Then, we see that
Zp
f xdμ−1x
X
For n ∈ N, let f n x fx n Then, we have
Zp
f x ndμ−1x −1 n
Zp
f xdμ−1x 2 n−1
l0
−1n−1−l f l. 1.6
Thus, we have
I−1
f n
−1n−1 I−1
f
2n−1
l0
−1n−1−l f l, see 7–17. 1.7
Trang 3By1.7, we see that
X
χ
y
ζ y e xyt dμ−1
y
2
d−1
l0 −1l
χ lζ l e lt
ζ d e dt 1 e xt
∞
n0
E n,χ,ζ x t n
From1.8, we can derive the Witt’s formula for E n,χ,ζ x as follows:
X
χ xx n ζ x dμ−1 x E n,χ,ζ ,
X
χ
y
y xn
ζ y dμ−1
y
E n,χ,ζ x, for ζ ∈ T p , see 5–17.
1.9
The nth generalized ζ-Euler polynomials of order k, E k n,χ,ζ, are defined as
2d−1
l0 ζ l−1l χle lt
ζ d e dt 1 e xt
k
∞
n0
E k n,χ,ζ x t n
In the special case x 0, E k n,χ,ζ E k n,χ,ζ 0 are called the nth ζ-Euler numbers of order k attached to χ.
Now, we consider the multivariate p-adic invariant integral on X as follows:
X
· · ·
X
k
i1
χ x i
e x1···x k xt ζ x1···x k dμ−1 x1 · · · dμ−1x k
2d−1
l0 −1l
χle lt
ζ d e dt 1
k
e xt ∞
n0
E k n,χ,ζ x t n
n! .
1.11
By1.10 and 1.11, we see the Witt’s formula for E k n,χ,ζ x as follows:
X
· · ·
X
k
i1
χ x i
x1 · · · x k x n ζ x1···x k dμ−1 x1 · · · dμ−1x k E k n,χ,ζ x. 1.12
The purpose of this paper is to present a systemic study of some formulas of the
twisted q-extension of the generalized Euler numbers and polynomials of order k attached
to χ.
In this section, we assume that q ∈ C pwith|1 − q| p < 1 and ζ ∈ T p For d ∈ N with 2 d, let
χ be the Dirichlet’s character with conductor d For h ∈ Z, k ∈ N, let us consider the twisted
h, q-extension of the generalized Euler numbers and polynomials of order k attached to χ.
Trang 4We firstly consider the twisted q-extension of the generalized Euler polynomials of higher
order as follows:
∞
n0
E n,χ,ζ,q x t n
n!
X
e xy q t ζ y χ
y
dμ−1
y
2 ∞
m0
χ m−1 m ζ m e mx q t
2.1
By2.1, we see that
X
x yn
q χ
y
ζ y dμ−1
y
2 ∞
m0
χ m−ζ m
e mx q t
2d−1
a0
χ a−1 a
ζ a 1
1− qn
n
l0
n l
−1l ζ la q lax
1 q ld ζ ld
2.2
From the multivariate fermionic p-adic invariant integral on Z p, we can derive the twisted
q-extension of the generalized Euler polynomials of order k attached to χ as follows:
∞
n0
E k n,χ,ζ,q x t n
n!
X
· · ·
X
k
i1
χ x i
e x1···x k x q t
ζ x1···x k dμ−1 x1 · · · dμ−1x k . 2.3
Thus, we have
E n,χ,ζ,q k x
X
· · ·
X
k
i1
χ x i
x1 · · · x k x n
q ζ x1···x k dμ−1 x1 · · · dμ−1x k
d−1
a1, ,a k0
k
i1
χ a i
−ζk j1 a j 2k
1− qn
n
l0
n
l−1l
q lxk j1 a j
1 q ld ζ d
2k d−1
a1, ,a k0
k
i1
χ a i−ζk j1 a j
∞
m0
m k − 1 m
×−ζ d m
x a1 · · · a k md n
q
2.4
Let F q,χ,ζ k t, x ∞n0 E k n,χ,ζ,q xt n /n! be the generating function for E n,χ,ζ,q k x By 2.3,
Trang 5we easily see that
F k q,χ, t, x 2 k d−1
a1, ,a k0
k
i1
χ a i
−ζk j1 a j
∞
m0
m k − 1 m
× −ζ dm
e xa1···a k md q t
2k ∞
n1, ,n k0
−ζ n1···n k
k
i1
χ n i
e n1···n k x q t
2.5
Therefore, we obtain the following theorem
Theorem 2.1 For k ∈ N, n ≥ 0, one has
E k n,χ,ζ,q x 2 k ∞
n1, ,n k0
−ζ n1···n k
k
i1
χ n i
n1 · · · n k x n
q
d−1
a1, ,a r0
k
i1
χ a i
−ζk j1 a j 2k
1− qn
n
l0
n
l−1l
q lxk j1 a j
1 q ld ζ dn
2.6
Let h ∈ Z, r ∈ N Then we define the extension of E r n,χ,ζ,q x as follows:
∞
n0
E h,r n,χ,ζ,q x t n
n!
X
· · ·
X
qr j1 h−jx j
k
i1
χ x i
e xr j1 x jq t × ζ x1···x r dμ−1x1 · · · dμ−1x r .
2.7
Then, E r n,χ,ζ,q x are called the nth generalized h, q-Euler polynomials of order r attached
to χ In the special case x 0, E r n,χ,ζ,q E r n,χ,ζ,q 0 are called the nth generalized h, r-Euler numbers of order r By 1.7, we obtain the Witt’s formula for E r n,χ,ζ,q x as follows:
E h,r n,χ,ζ,q x
X
· · ·
X
qr j1 h−jx j
k
i1
χ x i
⎡
⎣x r
j1
x j
⎤
⎦
n
q
ζ x1···x r dμ−1x1 · · · dμ−1x r
d−1
a1, ,a r0
r
i1
χ a i
−ζr j1 a j qr j1 a j h−j× 2r
1− qn
n
l0
n
l−1l q lxr j1 a j
−q dh−rl ζ d ; q d
r
,
2.8 wherea; q r 1 − a1 − aq · · · 1 − aq r−1
Trang 6kq n q n − 1 q · · · n − k 1 q /k q! n q !/k q!n − kq! where kq!
k q k − 1 q· · · 2q1q From2.8, we note that
E n,χ,ζ,q h,r x 2r
1− qn
d−1
a1, ,a r0
r
i1
χ a i
−ζr j1 a j qr j1 h−ja j
× n
l0
n l
−1l q lxr j1 a j ∞
m0
m r − 1 m
q d
−ζ d m
q dh−rm q ldm
2r d−1
a1, ,a r0
r−1
i1
χ a i
−ζr j1 a j qr j1 h−ja j
× ∞
m0
m r − 1 m
q d
−ζ d m
q dh−rm 1
1− qn
1− q dmxk
j1 a j /d n
2r d n
q
∞
m0
m r − 1 m
q d
−ζ d m
q dh−rm
d−1
a1, ,a r0
r−1
i1
χ a i
× −ζr j1 a j qr j1 h−ja j
⎡
⎣m x
d−1
j1 a j
d
⎤
⎦
n
q d
.
2.9
Let F q,χ,ζ h,r t, x ∞n0 E n,χ,ζ,q h,r xt n /n! be the generating function for E h,r n,χ,ζ,q x From
2.8, we can easily derive
F q,χ,ζ h,r t, x 2 r ∞
n1, ,n r0
qr j1 h−jn j −ζr j1 n j
⎛
⎝r
j1
χ
n j
⎞⎠e n1···n r x q t
2r ∞
m0
m r − 1 m
q
−ζ d m
q dh−rm
d−1
a1, ,a r0
r−1
i1
χ a i
× −ζr j1 a j qr j1 h−ja j e mdxr j1 a jq t
.
2.10
By2.10, we obtain the following theorem
Trang 7Theorem 2.2 For h ∈ Z, r ∈ N, one has
E n,χ,ζ,q h,r x 2 r ∞
n1, ,n r0
qr j1 h−jn j −ζr j1 n j
⎛
⎝r
j1
χ
n j
⎞⎠n1 · · · n r x n
q
2r d n
q
∞
m0
m r − 1 m
q
−ζ d m
q dh−rm
d−1
a1, ,a r0
r−1
i1
χ a i
× −ζr j1 a j qr j1 h−ja j
m x
r
j1 a j
d
n
q d
d−1
a1···a r0
⎛
⎝r
j1
χ
n j
⎞⎠−ζr
j1 a j qr j1 h−ja j× 2r
1− qn
n
l0
n
l−1l q lxr j1 a j
−q dh−rl ζ d ; q d
r
.
2.11
Let h r Then we see that
E r,r n,χ,ζ,q x 2r
1− qn
d−1
a1, ,a r0
r−1
i1
χ a i
−ζr i1 a i qr j1 h−ja j× n
l0
n
l−1l q lr j1 a j x
−q ld ζ d ; q d
r
2r d n
q
∞
m0
m r − 1 m
q
−ζ m d−1
a1, ,a r0
r
i1
χ a i
× −ζr j1 a j qr j1 r−ja j
m x
r
j1 a j
d
n
q d
.
2.12
It is easy to see that
X
· · ·
X
k
i1
χ x i
qr j1 h−jx j xm ζ x1···x r dμ−1 x1 · · · dμ−1x r
d−1
a1, ,a r0
r
i1
χ a i
q mxr j1 h−ja j −ζr j1 a j×
X
· · ·
X
qr j1 m−jx j dμ−1 x1 · · · dμ−1x r
2
r q mxd−1
a1, ,a r0r
j1 χ
a j
qr j1 m−ja j −ζr j1 a j
−q dm−r ζ d ; q d
r
.
2.13
Trang 8Thus, we have
2r q mxd−1
a1, ,a r0r
j1 χ
a j
qr j1 m−ja j −ζr j1 a j
−q dm−r ζ d ; q d
r
X
· · ·
X
x x1 · · · x rqq − 1
1m q−r j1 jx j ζ x1···x r
×
⎛
⎝r
j1
χ
x j
⎞⎠dμ−1x1 · · · dμ−1x r
m
l0
m l
q − 1l
X
· · ·
X
⎛
⎝r
j1
χ
x j
⎞⎠
× x x1 · · · x rl
q q−r j1 jx j ζ x1···x r dμ−1 x1 · · · dμ−1x r
m
l0
m l
q − 1l
E 0,r l,χ,ζ,q x.
2.14
By2.14, we obtain the following theorem
Theorem 2.3 For d, k ∈ N with 2 d, one has
2r q mxd−1
a1, ,a r0r
j1 χ
a j
qr j1 m−ja j −ζr j1 a j
−q dm−r ζ d ; q d
r
m
l0
m l
q − 1l
E l,χ,ζ,q 0,r x. 2.15
By1.7, we easily see that
X
f x ddμ−1x
X
f xdμ−1x 2 d−1
l0
−1l f l. 2.16 Thus,we have
q dh−1
X
· · ·
X
x d x1 · · · x rn
q qr j1 r−jx j ζr j1 x j
×
⎛
⎝r
j1
χ
x j
⎞⎠dμ−1x1 · · · dμ−1x r
−
X
· · ·
X
x x1 · · · x rn
q qr j1 r−jx j ζr j1 x j×
⎛
⎝r
j1
χ
x j
⎞⎠dμ−1x1 · · · dμ−1x r
2d−1
l0
χ l−ζ l
X
· · ·
X
x l x2 · · · x rn
q
⎛
⎝r−1
j1
χ
x j1
⎞⎠
× qr−1 j1 x j1 h−1−j ζ x2x3···x r dμ−1x2 · · · dμ−1x r .
2.17
By2.17, we obtain the following theorem
Trang 9Theorem 2.4 For h ∈ Z, d ∈ N with 2 d, one has
q dh−1 E h,r n,χ,ζ,q x d E h,r n,χ,ζ,q x 2 d−1
l0
χ l−1 l E h−1,r−1 n,χ,ζ,q x l. 2.18
It is easy to see that
q x E h1,r n,χ,ζ,q x q − 1
E h,r n1,χ,ζ,q E n,χ,ζ,q h,r x. 2.19
Let F q,χ,ζ h,1 t, x ∞n0 E h,1 n,χ,ζ,q xt n /n! Then we note that
F q,χ,ζ h,1 t, x 2 ∞
n0
χ nq h−1n −ζ n
e nx q t 2.20
From2.20, we can derive
E h,1 n,χ,ζ,q x 2 ∞
m0
χ mq h−1m −ζ m m x n
q 2
1− qn
d−1
a0
χ a−ζ a n
l0
n
l−1l q lxa
1 q ld ζ d 2.21
3 Further Remark
In this section, we assume that q ∈ C with |q| < 1 Let χ be the Dirichlet’s character with an odd conductor d ∈ N From the Mellin transformation of F h,r q,χ,ζ t, x in 2.10, we note that
1
Γs
F q,χ,ζ h,r −t, xt s−1 dt 2 r
∞
m1, ,m r0
qr j1 h−jm j −ζ m1···m rr
j1 χ
m j
m1 · · · m r x s
q
, 3.1
where h, s ∈ C, x / 0, −1, −2, , and r ∈ N, ζ e 2πi/d By3.1, we can define the Dirichlet’s type multipleh, q-l-function as follows.
Definition 3.1 For s ∈ C, x ∈ R with x / 0, −1, −2, , one defines the Dirichlet’s type multiple
h, q-l-function related to higher order h, q-Euler polynomials as
l h,r q
s, x | χ
2r ∞
m1,··· ,m r0
qr j1 h−jm j −ζ m1···m rr
i1 χ m i
m1 · · · m r x s
q
where s, h ∈ C, x / 0, −1, −2, · · · , r ∈ N, and ζ e 2πi/d
Trang 10Note that l h,r q s, x | χ is analytic continuation in whole complex s-plane In 2.10, we note that
F q,χ,ζ h,r t, x 2 r ∞
n1, ,n r0
qr j1 h−jn j −ζ n1···n r
⎛
⎝r
j1
χ
n j
⎞⎠e n1···n r x q t
∞
n0
E h,r n,χ,ζ,q x t n
n! .
3.3
By Laurent series and Cauchy residue theorem in 3.1 and 3.3, we obtain the following theorem
Theorem 3.2 Let χ be Dirichlet’s character with odd conductor d ∈ N, and let ζ e 2πi/d For
h, s ∈ C, x / 0, −1, −2, , r ∈ N, and n ∈ Z, one has
l h,r q
−h, x | χ E n,χ,ζ,q h,r x. 3.4
References
1 T Kim, “q-Volkenborn integration,” Russian Journal of Mathematical Physics, vol 9, no 3, pp 288–299,
2002
2 T Kim, “On a q-analogue of the p-adic log gamma functions and related integrals,” Journal of Number
Theory, vol 76, no 2, pp 320–329, 1999.
3 T Kim, “Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral onZp ,” Russian Journal of Mathematical Physics, vol 16, no 4, pp 484–491,
2009
4 T Kim, “Note on the Euler q-zeta functions,” Journal of Number Theory, vol 129, no 7, pp 1798–1804,
2009
5 T Kim, “Note on multiple q-zeta functions,” to appear in Russian Journal of Mathematical Physics.
6 T Kim, “Barnes-type multiple q-zeta functions and q-Euler polynomials,” Journal of Physics A, vol 43,
no 25, Article ID 255201, 11 pages, 2010
7 T Kim, “Analytic continuation of multiple q-zeta functions and their values at negative integers,”
Russian Journal of Mathematical Physics, vol 11, no 1, pp 71–76, 2004.
8 T Kim, “On the multiple q-Genocchi and Euler numbers,” Russian Journal of Mathematical Physics, vol.
15, no 4, pp 481–486, 2008
9 T Kim, “q-Bernoulli numbers and polynomials associated with Gaussian binomial coefficients,”
Russian Journal of Mathematical Physics, vol 15, no 1, pp 51–57, 2008.
10 T Kim, “Note on the q-Euler numbers and polynomials,” Advanced Studies in Contemporary
Mathematics, vol 16, no 2, pp 161–170, 2008.
11 T Kim, “Note on Dedekind type DC sums,” Advanced Studies in Contemporary Mathematics, vol 18,
no 2, pp 249–260, 2009
12 T Kim, “On Euler-Barnes multiple zeta functions,” Russian Journal of Mathematical Physics, vol 10, no.
3, pp 261–267, 2003
13 S.-H Rim, S J Lee, E J Moon, and J H Jin, “On the q-Genocchi numbers and polynomials associated with q-zeta function,” Proceedings of the Jangjeon Mathematical Society, vol 12, no 3, pp 261–267, 2009.
14 L.-C Jang, “A study on the distribution of twisted q-Genocchi polynomials,” Advanced Studies in
Contemporary Mathematics, vol 19, no 2, pp 181–189, 2009.
15 I N Cangul, V Kurt, H Ozden, and Y Simsek, “On the higher-order w-q-Genocchi numbers,”
Advanced Studies in Contemporary Mathematics, vol 19, no 1, pp 39–57, 2009.
Trang 1116 M Can, M Cenkci, V Kurt, and Y Simsek, “Twisted Dedekind type sums associated with Barnes’
type multiple Frobenius-Euler -functions,” Advanced Studies in Contemporary Mathematics, vol 18, no.
2, pp 135–160, 2009
17 Y.-H Kim, W Kim, and C S Ryoo, “On the twisted q-Euler zeta function associated with twisted
q-Euler numbers,” Proceedings of the Jangjeon Mathematical Society, vol 12, no 1, pp 93–100, 2009.
... x. 1.12The purpose of this paper is to present a systemic study of some formulas of the
twisted q-extension of the generalized Euler numbers and polynomials of order k attached...
17 Y.-H Kim, W Kim, and C S Ryoo, ? ?On the twisted q -Euler zeta function associated with twisted< /i>
q -Euler numbers, ” Proceedings of the Jangjeon Mathematical Society, vol 12,... class="text_page_counter">Trang 4
We firstly consider the twisted q-extension of the generalized Euler polynomials of higher< /i>
order as follows:
∞