Bất đẳng thức là một nội dung khó đối với học sinh nhưng lại là một trong những nội dung quan trọng trong các kiến thức thi Đại Học. Trong quá trình học và ứng dụng lí thuyết để làm bài tập học sinh thường gặp nhiều khó khăn, lúng túng, dễ mắc sai lầm. Có những bài toán tìm GTLN, GTNN nếu không nắm được cách làm thì dễ dẫn đến sai lầm trong quá trình suy luận
Trang 1IV Nhiệmvụnghiêncứu… Trang5
V Phươngphápnghiêncứu… Trang5
VI Phạmvinghiêncứu… Trang5NỘIDUNGNGHIÊNCỨU… Trang6
I Bàitoánxuấtphát Trang6
II Sai lầm trongđ á n h g i á t ừ t r u n g b ì n h c ộ n g s a n g
t r u n g b ì n h nhân… Trang6III Sailầmtrongđ á n h g i á t ừ t r u n g b ì n h n h â n s a n g t r u n g b ì
n h cộng… Trang 15KẾTLUẬNVÀKIẾNNGHỊ… Trang18Cácphụlục… Trang19-22
Trang 2TÊN ĐỀ TÀI:ÁP DỤNG KỸ THUẬT CHỌN ĐIỂM RƠI TÌM GIÁ TRỊLỚN NHẤT, GIÁ TRỊ NHỎ NHẤT TRONG MỘT SỐ BÀI TOÁN BẤTĐẲNG THỨC.
I/LÍDOCHỌNVẤNĐỀNGHIÊNCỨU,TRIỂNKHAIỨNGDỤNG.
Bất đẳng thức là một nội dung khó đối với học sinh nhưng lại là mộttrongnhững nội dung quan trọng trong các kiến thức thi Đại Học Trong quátrình họcvà ứng dụng lí thuyết để làm bài tập học sinh thường gặp nhiều khókhăn,
lúngtúng,d ễ m ắ c s a i l ầ m C ó n h ữ n g b à i t o á n t ì m G T L N , G T N N n ế u k h
ô n g n ắ m được cáchlàmthìdễdẫnđếnsailầmtrongquátrìnhsuyluận
Để giúp các em hạn chế và giảm những sai sót này trong quá trìnhgiảinhững bài toán bất đẳng thức để tìm GTLN, GTNN chúng tôi áp dụng mộtkỹthuậtnhỏgọilà“Kỹthuậtchọnđiểmrơi”.Đólàlídotôichọnđềtàinày
II/MỤCĐÍCHNGHIÊNCỨU:
Thông thường đứng trước bàit o á n b ấ t đ ẳ n g t h ứ c đ ể t ì m
G T L N , G T N N học sinh nghĩ ngay đến dạng mẫu đã học, áp dụng ngay các
họcnhưngthựctếquacácbàitoánbấtđẳngthứcdùngchohọcsinhkhá,giỏihoặcđề thi đại học, cao đẳng học sinh còn gặp những dạng phức tạp mà để giải nó đòihỏiphảic ó n h ữ n g n h ậ n
2/Đốitượngcầnnghiêncứu:
Trang 3Tôilựachọn2lớpcủatrườngTHPTPhanBộiChâucónhữngđiềukiệnthuậnlợichoviệcnghiêncứuứngdụng
Quytrìnhnghiêncứu
*Chuẩnbịbàicủagiáoviên:
ThiếtkếbàydạylớpthựcnghiệmtheohệthốngbàitậpliênquanThiếtkế
bàydạylớpđốichứngtheohệthốngbàitậpcónhiềuloại
Trang 4
Chọn2lớpđểkhảosátvớinộidungđánhgiáđiểmvàkiểmchứngT-Testđểchọnđúng2lớptươngđương
Thờig i a n t i ế n h à n h t h ự c n g h i ệ m : T ổ c h ứ c c á c t i ế t d ạ y h ọ c t h e o n h ư k ếhoạch
4/Đolường
Đánhgiáhọcsinhsautácđộngthôngquabàikiểmtrasauđódùngphépkiểmchứng
thấymứcđộảnhhưởngcủanhómthựcnghiệmlàlớn.BÀNLUẬ
N
Kết quả của bài kiểm tra sau tác động của nhóm thực
nghiệmlàTBC7,4 ,kết quả bài kiểm tra tương ứng của nhóm đốichứng
Trang 5làTBC6,1 Độ chênhlệchđiểmsốgiữahainhómlà1,3;ĐiềuđóchothấyđiểmTBCcủahailớpđốichứngvà
Trang 6- Chohọcsinhlàmmộtsốdạngtoánliênquanđếnđềtàinày
- Khuyếnkhíchcácemtìmtòimộtsốbàitoánliênquanđếnđềtàinày
3/Đánhgiáthựctrạng:Họcsinhnhiềuemchưabiếtứngdụng“Kỹthuậtchọnđiểm rơi”đểgiảimộtsốbàitoánbấtđẳngthức
4/ Đề xuất biện pháp: Trong tiết dạy tự chọn 10 và 12, Giáo viên nênchomộtvàibài toán dạngnàyđểkhíchlệsựtìm tòi,sángtạochohọcsinh
Trang 71 Bài toán xuất phát: Cho a,b 0 Tìm giá trị nhỏ nhất của P a b
II/
SAIL Ầ M T R O N G Đ Á N H G I Á T Ừ T R U N G B Ì N H C Ộ N G S
A N G
TRUNGBÌNHNHÂN.
A)BấtđẳngthứcCôsi:Choa1;a2; ;anlàcácsốkhôngâm.
Tacó a1a2 an nna1a2 an .
Đẳngthứcxảyrakhivàchỉkhi a1a2 an.
Trang 8Xétbảngbiếnthiêncủaa ;1 vàPđểdựđoánMinP
a
Trang 9
1 13
15
16
17
18
19
1
1100
P 313 41 4 51 5 61 6 71 7 818 91 9 10
1
10 …… 100
1100
Trang 10
28a
28.2
Trang 1117
16
15
14
13
12
5
29
14
27
13
25
12
Trang 12Bài 4: Cho a; b 0 và a b 1 Tìm giá trị nhỏ nhất của biểu thức
P ab 1
ab
ab 1ab
Trang 13a bab
Trang 17DoSlàmộtbiểuthứcđốixứngvớia,b,cnêndựđoánMinSđạttạiabc 1
21.4.1 Sơđồđiểmrơi:
Trang 181.2 Nguyênnhânsailầm:
4MinP4
MinP=4abc 1
ab c
Trang 22* Kếtluận:
Đây là một phương pháp giải toán vừa sức đối với học sinh, học sinhlĩnhhội không khó khăn, cho nên các đề thi thỉnh thoảng ra với cách giải đơngiản làáp dụng phương pháp này.Đ ố i v ớ i h ọ c s i n h t h a m g i a c á c
k ỳ t h i đ ạ i h ọ c c a o đẳngthì đâylàmộtphươngphápgiảicần phảibiết
Điều khó khăn khi thực hiện đề tài này là chương trình học sinh khối10họcnộidungbấtđẳngthứcrơivàocác tuầnchuẩnbịthihọckìI,các emphảitập trung học nhiều môn, bất đẳng thức lại là một nội dung khó nên quá nữa sốhọc sinh không theo kịp Đối vớilớp 12 thì có nhiều thuận lợi hơn về thờigiantrongquátrìnhôntậpđểthiĐạihọc,Caođẳng
*Kiếnnghị
Qua thựctế khảo sát học sinh đa sốh ọ c s i n h h ọ c h ọ c c h ư a t ố t
n ộ i d u n g bấtđẳngthứcnênrấtngạihọcphânmônnày,nhiệmvụgiáoviêncủachúngtalà cần hệ thống các bài tập và lựa chọn sao cho phù hợp với từng đối tượng họcsinh để giúp các emnắm vững kiến thức cơ bản cũng như kỹ năng giải toán, cónhư vậy các em mớiyêu thích môn toán và ngày càng đạt nhiều kết quả cao hơn.Trong quá trình hoànthành đề tài chúng tôi rất biết ơn các đồng nghiệp đã nhiệttìnhgiúp đỡ, chúng tôiluônmongmuốnn h ậ n đ ư ợ c ý k i ế n đ ó n g g ó p đ ể
s á n g kiếnnhỏmanglạinhiềulợiíchlớnchocácemhọcsinh.Trântrọngcámơn!
Trang 23
x 1x
Trang 24Dấubằngxảyrakhivàchỉkhi x1
1đ3