Some sufficient conditions for the existence of bounded nonoscillatory solutions of this equation are established by using Schauder fixed point theorem and Krasnoselskii fixed point theore
Trang 1Volume 2010, Article ID 767620, 14 pages
doi:10.1155/2010/767620
Research Article
Solvability of a Higher-Order Nonlinear Neutral Delay Difference Equation
Min Liu and Zhenyu Guo
School of Sciences, Liaoning Shihua University, Fushun, Liaoning 113001, China
Correspondence should be addressed to Zhenyu Guo,guozy@163.com
Received 19 March 2010; Revised 10 July 2010; Accepted 5 September 2010
Academic Editor: S Grace
Copyrightq 2010 M Liu and Z Guo This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
The existence of bounded nonoscillatory solutions of a higher-order nonlinear neutral delay difference equation Δakn · · · Δa 2n Δa 1n Δx n b n x n−d fn, x n−r 1n , x n−r 2n , , x n−r sn 0, n ≥ n0,
where n0 ≥ 0, d > 0, k > 0, and s > 0 are integers, {a in}n≥n0 i 1, 2, , k and {b n}n≥n0are real sequences,s
j1 {r jn}n≥n0 ⊆ Z, and f : {n : n ≥ n0} ×Rs → R is a mapping, is studied Some
sufficient conditions for the existence of bounded nonoscillatory solutions of this equation are established by using Schauder fixed point theorem and Krasnoselskii fixed point theorem and expatiated through seven theorems according to the range of value of the sequence{b n}n≥n0 Moreover, these sufficient conditions guarantee that this equation has not only one bounded nonoscillatory solution but also uncountably many bounded nonoscillatory solutions
1 Introduction and Preliminaries
Recently, the interest in the study of the solvability of difference equations has been increasing
see 1 17
difference equations For example,
ΔanΔxn pn x g n 0, n ≥ 0 1.1
see 14
ΔanΔxn qn x n1, ΔanΔxn qn f xn1, n ≥ 0 1.2
Trang 2see 11
Δ2
x n pxn −m pn x n −k − qn x n −l 0, n ≥ n0 1.3
see 6
Δ2
x n pxn −k fn, xn 0, n ≥ 1 1.4
see 10
Δ2
x n − pxn −τm
i1
q i f ixn −σ i , n ≥ n0 1.5
see 9
ΔanΔxn bxn −τ fn, xn −d 1n , x n −d 2n , , x n −d kn cn , n ≥ n0 1.6
see 8
Δm xn cxn −k pn x n −r 0, n ≥ n0 1.7
see 15
Δm xn cn x n −k pn f xn −r 0, n ≥ n0 1.8
see 3,4,12,13
Δm xn cxn −k u
s1
p n s f sxn −r s qn , n ≥ n0 1.9
see 16
Δm xn cxn −k pn x n −r − qn x n −l 0, n ≥ n0 1.10
see 17
Motivated and inspired by the papers mentioned above, in this paper, we investigate the following higher-order nonlinear neutral delay difference equation:
Δakn · · · Δa 2n Δa 1n Δxn bn x n −d fn, xn −r 1n , x n −r 2n , , x n −r sn 0, n ≥ n0, 1.11
where n0≥ 0, d > 0, k > 0, and s > 0 are integers, {ain} n ≥n0i 1, 2, , k and {bn} n ≥n0are real sequences,s
j1{rjn} n ≥n ⊆ Z, and f : {n : n ≥ n0} × Rs → R is a mapping Clearly, difference
Trang 3equations1.1–1.10 are special cases of 1.11 By using Schauder fixed point theorem and Krasnoselskii fixed point theorem, the existence of bounded nonoscillatory solutions of1.11
is established
Lemma 1.1 Schauder fixed point theorem Let Ω be a nonempty closed convex subset of a Banach
space X Let T : Ω → Ω be a continuous mapping such that TΩ is a relatively compact subset of X.
Then T has at least one fixed point in Ω.
Lemma 1.2 Krasnoselskii fixed point theorem Let Ω be a bounded closed convex subset of a
Banach space X, and let T1, T2 : Ω → X satisfy T1x T2y ∈ Ω for each x, y ∈ Ω If T1 is a contraction mapping and T2is a completely continuous mapping, then the equation T1x T2x x has
at least one solution in Ω.
The forward difference Δ is defined as usual, that is, Δx n xn1− xn The higher-order difference for a positive integer m is defined as Δ m x n ΔΔm−1x n, Δ0x n xn Throughout this paper, assume that R −∞, ∞, N and Z stand for the sets of all positive integers and integers,
respectively, α inf{n − rjn : 1 ≤ j ≤ s, n ≥ n0}, β min{n0− d, α}, limn→ ∞n − rjn ∞,
1≤ j ≤ s, and l∞
β denotes the set of real sequences defined on the set of positive integers lager than β where any individual sequence is bounded with respect to the usual supremum norm x sup n ≥β |xn|
for x {xn} n ≥β ∈ l∞
β It is well known that l∞β is a Banach space under the supremum norm A subset
Ω of a Banach space X is relatively compact if every sequence in Ω has a subsequence converging to
an element of X.
for every ε > 0, there exists an integer N0such that
whenever i, j > N0for any x {xk} k ≥βinΩ
is relatively compact.
Let
A M, N x {xn} n ≥β ∈ l∞
β : M ≤ xn ≤ N, ∀n ≥ β for N > M > 0. 1.13
Obviously, A M, N is a bounded closed and convex subset of l∞
β Put
b lim sup
n→ ∞ b n , b lim inf
n→ ∞ b n 1.14
By a solution of 1.11, we mean a sequence {xn} n ≥β with a positive integer N0 ≥
n0 d |α| such that 1.11 is satisfied for all n ≥ N0 As is customary, a solution of1.11 is
said to be oscillatory about zero, or simply oscillatory, if the terms x nof the sequence{xn} n ≥β
are neither eventually all positive nor eventually all negative Otherwise, the solution is called nonoscillatory
Trang 42 Existence of Nonoscillatory Solutions
In this section, a few sufficient conditions of the existence of bounded nonoscillatory solutions
of1.11 are given
Theorem 2.1 Assume that there exist constants M and N with N > M > 0 and sequences
{ain} n ≥n0 1 ≤ i ≤ k, {bn} n ≥n0, {hn} n ≥n0, and {qn} n ≥n0such that, for n ≥ n0,
b n ≡ −1, eventually, 2.1
f n, u1, u2, , u s − fn, v1, v2, , v s ≤ hnmax{|ui− vi| : ui , v i
2.2
f n, u1, u2, , u s ≤ qn , u i 2.3
∞
t n0
max
1
|ait| , h t , q t: 1≤ i ≤ k < ∞. 2.4
Then1.11 has a bounded nonoscillatory solution in AM, N.
Proof Choose L ∈ M, N By 2.1, 2.4, and the definition of convergence of series, an
integer N0> n0 d |α| can be chosen such that
b n ≡ −1, ∀n ≥ N0, 2.5
∞
j1
∞
t1N0jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i
≤ min{L − M, N − L}. 2.6
Define a mapping T L : AM, N → X by
TL xn
⎧
⎪
⎪
L− −1k∞
j1
∞
t1njd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i
, n ≥ N0,
TL xN0, β ≤ n < N0
2.7
for all x ∈ AM, N.
i It is claimed that TL x ∈ AM, N, for all x ∈ AM, N.
Trang 5In fact, for every x ∈ AM, N and n ≥ N0, it follows from2.3 and 2.6 that
TL xn ≥ L −∞
j1
∞
t1njd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r
1t , x t −r 2t , , x t −r st
k
i1a it i
≥ L −∞
j1
∞
t1N0jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i
≥ M,
TL xn ≤ L ∞
j1
∞
t1N0jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i
≤ N.
2.8
That is,TL x AM, N ⊆ AM, N.
ii It is declared that TLis continuous
Let x {xn} ∈ AM, N and x u {x n u } ∈ AM, N be any sequence such that
x u n → xn as u → ∞ For n ≥ N0,2.2 guarantees that
TL x u n − TL x n
≤∞
j1
∞
t1njd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
ft, x u t −r
1t , x u t −r 2t , , x u t −r
st
− ft, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i
≤∞
j1
∞
t1njd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
h tmaxx u
t −r jt − xt −r jt
: 1 ≤ j ≤ s
k
i1a it i
≤x u − x∞
j1
∞
t1N0jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
h t
k
i1a it i.
2.9
This inequality and2.4 imply that TLis continuous
iii It can be asserted that TL A M, N is relatively compact.
Trang 6By2.4, for any ε > 0, take N3≥ N0large enough so that
∞
j1
∞
t1N3jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i
<
ε
2. 2.10
Then, for any x {xn} ∈ AM, N and n1, n2≥ N3,2.10 ensures that
|TL x n1− TL x n2| ≤∞
j1
∞
t1n1jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r
1t , x t −r 2t , , x t −r st
k
i1a it i
∞
j1
∞
t1n2jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i
≤∞
j1
∞
t1N3jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i
∞
j1
∞
t1N3jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i
< ε
2 ε
2 ε,
2.11
which means that TL A M, N is uniformly Cauchy Therefore, byLemma 1.4, TL A M, N is
relatively compact
ByLemma 1.1, there exists x {xn} ∈ AM, N such that TL x x, which is a bounded
nonoscillatory solution of1.11 In fact, for n ≥ N0 d,
x n L − −1 k∞
j1
∞
t1njd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i ,
x n −d L − −1 k∞
j1
∞
t nj−1d
∞
t t · · · ∞
t t−1
∞
t t
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it ,
2.12
Trang 7which derives that
x n − xn −d −1k∞
j1
n jd−1
t1nj−1d
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i ,
Δxn − xn −d −1k∞
j1
njd
t1n1j−1d
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i
− −1k∞
j1
n jd−1
t1nj−1d
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i
−−1k∞
j1
∞
t2nj−1d
∞
t3t2
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
a1nj−1dk
i2a it i
−1k∞
j1
∞
t2njd
∞
t3t2
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
a1njdk
i2a it i
−1k−1∞
t2n
∞
t3t2
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
a 1n k
i2a it i .
2.13
That is,
a 1n Δxn − xn −d −1k−1∞
t2n
∞
t3t2
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i2a it i , 2.14
by which it follows that
Δa 1n Δxn − xn −d −1k−1 ∞
t2n1
∞
t3t2
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i2a it i
−−1k−1∞
t2n
∞
t3t2
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i2a it i
−1k−2∞
t3n
∞
t4t3
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
a 2n k
i3a it i
,
Δakn · · · Δa 2n Δa 1n Δxn bn x n −d −1k −k1 f n, xn −r 1n , x n −r 2n , , x n −r sn
−fn, xn −r 1n , x n −r 2n , , x n −r sn .
2.15
Therefore, x is a bounded nonoscillatory solution of1.11 This completes the proof
Trang 8Remark 2.2 The conditions of Theorem 2.1 ensure the 1.11 has not only one bounded nonoscillatory solution but also uncountably many bounded nonoscillatory solutions
In fact, let L1, L2 ∈ M, N with L1/ L2 For L1 and L2, as the preceding proof
in Theorem 2.1, there exist integers N1, N2 ≥ n0 d |α| and mappings TL1, T L2
satisfying 2.5–2.7, where L, N0 are replaced by L1, N1 and L2, N2, respectively, and ∞
j1∞
t1N4jd∞
t2t1· · ·∞t k t k−1∞t t k ht /|k
i1a it i | < |L1 − L2|/2N for some N4 ≥ max{N1, N2} Then the mappings TL1and TL2have fixed points x, y ∈ AM, N, respectively,
which are bounded nonoscillatory solutions of1.11 in AM, N For the sake of proving
that1.11 possesses uncountably many bounded nonoscillatory solutions in AM, N, it is only needed to show that x / y In fact, by 2.7, we know that, for n ≥ N4,
x n L1− −1k∞
j1
∞
t1njd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i
,
y n L2− −1k∞
j1
∞
t1njd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f
t, y t −r 1t , y t −r 2t , , y t −r st k
i1a it i
.
2.16
Then,
x n − yn ≥ |L1− L2|
−∞
j1
∞
t1njd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st − f
t, y t −r 1t , y t −r 2t , , y t −r st
k
i1a it i
≥ |L1− L2| −x − y∞
j1
∞
t1N4jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
h t
k
i1a it i
≥ |L1− L2| − 2N∞
j1
∞
t1N4jd
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
h t
k
i1a it i
> 0, n ≥ N4,
2.17
that is, x / y.
Theorem 2.3 Assume that there exist constants M and N with N > M > 0 and sequences
{ain} n ≥n0 1 ≤ i ≤ k, {bn} n ≥n0, {hn} n ≥n0, {qn} n ≥n0, satisfying2.2–2.4 and
b n ≡ 1, eventually. 2.18
Then1.11 has a bounded nonoscillatory solution in AM, N.
Trang 9Proof Choose L ∈ M, N By 2.18 and 2.4, an integer N0> n0 d |α| can be chosen such
that
b n ≡ 1, ∀n ≥ N0,
∞
j1
N02jd−1
t1N02j−1d
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i ≤ min{L − M, N − L}. 2.19 Define a mapping T L : AM, N → X by
TL xn
⎧
⎪
⎪
⎪
⎪
⎪
⎪
L −1k∞
j1
n 2jd−1
t1n2j−1d
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i
, n ≥ N0,
TL xN0, β ≤ n < N0
2.20
for all x ∈ AM, N.
The proof that TL has a fixed point x {xn} ∈ AM, N is analogous to that in
Theorem 2.1 It is claimed that the fixed point x is a bounded nonoscillatory solution of1.11
In fact, for n ≥ N0 d,
x n L −1 k∞
j1
n 2jd−1
t1n2j−1d
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i ,
x n −d L −1 k∞
j1
n 2j−1d−1
t1n2j−1d
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i
,
2.21
by which it follows that
x n xn −d 2L −1 k∞
j1
n jd−1
t1nj−1d
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i . 2.22 The rest of the proof is similar to that inTheorem 2.1 This completes the proof
Theorem 2.4 Assume that there exist constants b, M, and N with N > M > 0 and sequences
{ain} n ≥n01 ≤ i ≤ k, {bn} n ≥n0, {hn} n ≥n0, {qn} n ≥n0, satisfying2.2–2.4 and
|bn| ≤ b < N − M
Then1.11 has a bounded nonoscillatory solution in AM, N.
Trang 10Proof Choose L ∈ M bN, N − bN By 2.23 and 2.4, an integer N0> n0 d |α| can be
chosen such that
|bn| ≤ b < N − M
2N , ∀n ≥ N0,
∞
t1N0
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i
≤ min{L − bN − M, N − bN − L}. 2.24 Define two mappings T 1L , T 2L : AM, N → X by
T 1L xn
⎧
⎨
⎩
L − bn x n −d , n ≥ N0,
T 1L xN0, β ≤ n < N0,
T 2L xn
⎧
⎪
⎪
−1k∞
t1n
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
f t, xt −r 1t , x t −r 2t , , x t −r st
k
i1a it i
, n ≥ N0,
T 2L xN0, β ≤ n < N0
2.25
for all x ∈ AM, N.
i It is claimed that T 1L x T 2L y ∈ AM, N, for all x, y ∈ AM, N.
In fact, for every x, y ∈ AM, N and n ≥ N0, it follows from2.3, 2.24 that
T 1L x T 2L y
n ≥ L − bN − ∞
t1N0
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i
≥ M,
T 1L x T 2L y
n ≤ L bN ∞
t1N0
∞
t2t1
· · · ∞
t k t k−1
∞
t t k
q t
k
i1a it i
≤ N.
2.26
That is,T 1L x T 2L y AM, N ⊆ AM, N.
ii It is declared that T 1L is a contraction mapping on AM, N.
In reality, for any x, y ∈ AM, N and n ≥ N0, it is easy to derive that
T 1L xn−T 1L y
n ≤ |bn|x n −d − yn −d ≤ bx − y, 2.27 which implies that
T 1L x − T 1L y ≤ bx − y. 2.28
Then, b < N − M/2N < 1 ensures that T 1L is a contraction mapping on AM, N.
iii Similar to ii and iii in the proof ofTheorem 2.1, it can be showed that T 2Lis completely continuous
ByLemma 1.2, there exists x {xn} ∈ AM, N such that T 1L x T 2L x x, which is a
bounded nonoscillatory solution of1.11 This completes the proof