1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article Commutators of Littlewood-Paley Operators on the Generalized Morrey Space" doc

20 249 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 550,48 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2010, Article ID 961502, 20 pagesdoi:10.1155/2010/961502 Research Article Commutators of Littlewood-Paley Operators on the Generalized Morrey Space 1 Department of Mathematics and

Trang 1

Volume 2010, Article ID 961502, 20 pages

doi:10.1155/2010/961502

Research Article

Commutators of Littlewood-Paley Operators on the Generalized Morrey Space

1 Department of Mathematics and Mechanics, Applied Science School, University of Science and Technology Beijing, Beijing 100083, China

2 Laboratory of Mathematics and Complex Systems (BNU), School of Mathematical Sciences, Beijing Normal University, Ministry of Education, Beijing 100875, China

3 The College of Mathematics and System Science, Xinjiang University, Urumqi, Xinjiang 830046, China

Received 6 May 2010; Accepted 11 July 2010

Academic Editor: Shusen Ding

Copyrightq 2010 Yanping Chen et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Let μΩ, μ 

S , and μ ∗, λ denote the Marcinkiewicz integral, the parameterized area integral, and

the parameterized Littlewood-Paley gλ function, respectively In this paper, the authors give a

characterization of BMO space by the boundedness of the commutators of μΩ, μ 

S , and μ ∗, λ on

the generalized Morrey space L p,ϕRn

1 Introduction

dσ Suppose thatΩ satisfies the following conditions

Ωμx



S n−1Ωx



x

Trang 2

c Ω ∈ LipS n−1, that is,

Ωx

μΩ

f

x 

0

|F Ω,t x|2dt

t3

1/2

where

F Ω,t x 



|x−y|≤t

Ωx − y

x − yn−1 f

y

We refer to see1,2 for the properties of μΩ

μ 

Γx







1

t 



|y−z|<t

Ωy − z

y − zn − f zdz





2

dydt

t n 1

1/2

:|x − y| < t}, and

μ ∗, λ f x 

Rn 1

t

t x − y

λn





1

t 



|y−z|<t

Ωy − z

y − zn − f zdz





2

dydt

t n 1

1/2

3 8



b, μΩ

0









|x−y|≤t

Ωx − y

x − yn−1



b x − by

f

y

dy







2

dt

t3

1/2

Trang 3

Let 0 <  < n and λ > 1 The commutator b, μ 

S  of μ 

S and the commutatorb, μ ∗, λ  of μ ∗, λ

are defined, respectively, by



b, μ  S

Γx







1

t 



|y−z|≤t

Ωy − z

y − zn − bx − bzfzdz





2

dydt

t n 1

1/2



b, μ ∗, λ 

Rn 1

t

t x − y

λn

×





1

t 



|y−z|≤t

Ωy − z

y − zn − bx − bzfzdz





2

dydt

t n 1

1/2

.

1.10

Let b ∈ LlocRn  It is said that b ∈ BMOR n if

B⊂Rn

M b, B  |B|1



B

There are some results about the boundedness of the commutators formed by BMO

S , and μ ∗, λ see 7,9,10

Many important operators gave a characterization of BMO space In 1976, Coifman et

characterization of BMO space

The purpose of this paper is to give a characterization of BMO space by the

L p,ϕRn

Definition 1.1 Let 1 < p < ∞ Suppose that ϕ : 0, ∞ → 0, ∞ be such that ϕt is

by

L p,ϕRn f ∈ LlocRn :f

where

f

L p,ϕ  sup

x∈Rn

r>0

1

ϕ |Bx, r|

1

|Bx, r|



B x,r

f

yp

dy

1/p

Trang 4

We refer to see13,14 for the known results of the generalized Morrey space L p,ϕ

t λ/n−1/p 0 < λ < n, L p,ϕRn  coincides with the Morrey space L p,λRn

The main result in this paper is as follows

Theorem 1.2 Assume that ϕt is nonincreasing and t 1/p ϕ t is nondecreasing Suppose that b, μΩ

is defined as1.8, Ω satisfies 1.1, 1.2, and

Ωx

 log2/x− yγ , C1> 0, γ > 1, x, y∈ S n−1. 1.15

If b, μΩ is bounded on L p,ϕRn  for some p 1 < p < ∞, then b ∈ BMOR n .

Theorem 1.3 Let 0 <  < n and 1 < p < ∞ Assume that ϕt is nonincreasing and t 1/p ϕ t is

nondecreasing Suppose that b, μ 

S  is defined as 1.9, Ω satisfies 1.1, 1.2, and 1.15 If b, μ 

S

is a bounded operator on L p,ϕRn  for some p 1 < p < ∞, then b ∈ BMOR n .

Theorem 1.4 Let 0 <  < n, λ > 1, and 1 < p < ∞ Assume that ϕt is nonincreasing and

t 1/p ϕ t is nondecreasing Suppose that b, μ ∗,ϕ λ  is defined as 1.10, Ω satisfies 1.1, 1.2, and

1.15 If b, μ ∗, λ  is on L p,ϕRn  for some p 1 < p < ∞, then b ∈ BMOR n .

Remark 1.5 It is easy to check that b, μ 

Theorem 1.3forb, μ 

S

Remark 1.6 It is easy to see that the condition1.15 is weaker than Lipβ S n−1 for 0 < β ≤ 1.

Marcinkiewicz integral and the parameterized Littlewood-Paley operators are neither the convolution operator nor the linear operators, hence, we need new ideas and nontrivial estimates in the proof

Let us begin with recalling some known conclusion

Lemma 2.1 If Ω satisfies conditions 1.1, 1.2, and 1.15, let β > 0, then for |x| > 2|y|, we have







Ωx − y

x − yβΩx

|x| β





 ≤

C

|x| β

Trang 5

We may assume thatb, μΩL p,ϕ →L p,ϕ  1 We want to prove that, for any x0∈ Rnand

N 1

|Bx0, r|



B x0,r

b

y

− a0dy ≤ A

holds, where a0 |Bx0, r|−1B x0,rb ydy Since b − a0, μΩ  b, μΩ, we may assume that

a0 0 Let

f

y

sgn

b

y

− c0



χ B x0,r

y

where c0  1/|Bx0, r|B x

0,rsgnbydy Since 1/|Bx0, r|B x

0,rb ydy  a0  0, we

f



Rn

f

y

f

y

b

y

> 0, y ∈ Bx0, r , 2.7 1

|Bx0, r|



Rn

f

y

b

y

A i 1 ≤ i < j Since Ω satisfies 1.2, then there exists an A1such that 0 < A1< 1 and

σ



x∈ S n−1: Ωx

condition1.15, it is easy to see that

Λ :



x∈ S n−1: Ωx

 log2/A1γ



2.10

is a closed set We claim that

if x∈ Λ and y∈ S n−1, satisfying x− y ≤ A1, thenΩy

Trang 6

In fact, since|Ωx − Ωy| ≤ C1/ log2/|x− y| γ ≤ C1/ log2/A1γ , note that Ωx ≥ 2C1/ log2/A1γ , we can get Ωy ≥ C1/ log2/A1γ Taking A2> 3/A1, let

b, μΩ

f x ≥ μΩ

bfx − |bx|μΩf x



0











|x−y|≤t

x − y

x − yn−1 b

y

f

y

dy









2

dt

t3

1/2

− |bx|

0











|x−y|≤t

x − y

x − yn−1 f

y

dy









2

dt

t3

1/2

: I1− I2.

2.13

For I1, noting that if y ∈ Bx0, r , then |x − x0| > A2|y − x0| for x ∈ G Thus, we have



x − y− x − x0 ≤ 2y − x0

|x − x0| ≤

2

A2

< A1. 2.14

Using2.11, we get Ωx − y ≥ C1/ log2/A1γ Noting that |x − x0

from2.5, 2.7, 2.8, and H¨older’s inequality that

I1≥

|x−x0 |

B x0,r

x − yb

y

f

y

x − yn−1 χ {|x−y|≤t}

y

dy

2

dt

t3

1/2

|x−x0 |



B x0,r

x − yb

y

f

y

x − yn−1 χ {|x−y|≤t} dy dt

t3

|x−x0 |

dt

t3

−1/2

log2/A1γ |x − x0|



B x0,r

x − y−n 1 b

y

f

y 

|x−x0|≤t

|x−y|≤t

dt

t3dy

log2/A1γ |x − x0|−n

B x0,rb

y

f

y

dy

 A3Nr n |x − x0|−n

2.15

Trang 7

For x ∈ G, by Ω ∈ LS n−1, 2.4, 2.5, 2.6, the Minkowski inequality, andLemma 2.1, we obtain

I2 |bx|

0









Rn

f

y Ωx − y

x − yn−1χ {|x−y|≤t}Ωx − x0

|x − x0|n−1χ {|x−x0|≤t} dy





2

dt

t3

1/2

≤ |bx|

0



|x−y|≤t<|x−x0 |

Ωx − y

x − yn−1 f

ydy 2dt

t3

1/2

0



|x−x0|≤t<|x−y|

|Ωx − x0|

|x − x0|n−1f

ydy 2dt

t3

1/2

0

|x−x0|≤t

|x−y|≤t







Ωx − y

x − yn−1 − Ωx − x0

|x − x0|n−1





f

ydy⎞⎠

2

dt

t3

1/2

≤ |bx|



B x0,r

Ωx − y

x − yn−1 f

y 

|x−y|≤t<|x−x0 |

dt

t3

1/2

dy



B x0,r

|Ωx − x0|

|x − x0|n−1f

y 

|x−y|>t≥|x−x0 |

dt

t3

1/2

dy



B x0,r

f

y





Ωx − y

x − yn−1− Ωx − x0

|x − x0|n−1







|x−y|≤t

|x−x0|≤t

dt

t3

1/2

dy

≤ C|bx|

r 1/2



B x0,r

f

y

|x − x0|n 1/2 dy



B x0,r

f

y

|x − x0|n

log|x − x0|/rγ dy

≤ A4|bx|r n |x − x0|−n

 log|x − x0|

r

−γ

.

2.16

Let

F

!

x ∈ G : |bx| > A3N

2A4

 log|x − x0|

r

γ

, |x − x0| < N 1/n r

"

Trang 8

result Since ϕt is nonincreasing, it follows that ϕ|Bx0, N 1/n r | ≤ ϕ|Bx0, r |  ϕr n By

2.13, 2.15, and 2.16, we have

fp

L p,ϕ ≥b, μΩ

fp

L p,ϕ

ϕB

x0, N 1/n rpB

x0, N 1/n r



|x−x0|<N 1/n r

b, μΩ

f xp

dx

ϕ r np Nr n



G\F∩{|x−x0|<N 1/n r}

 1

2A3Nr

n |x − x0|−n

p

dx

ϕ r np

Nr n



{A5|F| A2rn1/n

< |x−x0|<N 1/n r }∩G

 1

n |x − x0|−np

dx

ϕ r np

Nr n



A3Nr n

2

pN 1/n r

A5|F| A2rn1/n t −pn n−1 dt

≥  ω n−1

ϕ r np Nr np−1A3/2p

n − np



N1−pr n 1−p − A 1−pn5 |F| A2rn1−p

.

2.18

Thus,



|F| A2rn1−p

≤ A6N1−pr n 1−p

1 ϕr npfp

L p,ϕ



Now, we claim that

f

L p,ϕC

where C is independent of r In fact,

f

L p,ϕ sup

x∈Rn

t>0

1

ϕ |Bx, t|

1

|Bx, t|



B x,t

f

yp

dy

1/p

Case 1 t > r Since s 1/p ϕ s is nondecreasing in s, then

1

ϕ |Bx, t|

1

ϕ r n

1

Trang 9

f

L p,ϕ≤ sup

x∈Rn

t>0

1

ϕ r n

1

r n/p



B x,t

f

yp

dy

1/p

 sup

x∈Rn

t>0

1

ϕ r n

1

r n/p



B x,t∩Bx0,r

f

yp

dy

1/p

ϕ r n.

2.23

Case 2 t ≤ r Since ϕs is nonincreasing in s, then

1

ϕ |Bx, t|

1

Thus,

f

L p,ϕ≤ sup

x∈Rn

t>0

1

ϕ r n

1

|Bx, t|



B x,t

f

yp

dy

1/p

ϕ r n.

2.25

7 A n2, thenTheorem 1.2is proved If N > 2A−17 A n2, then

Let gy  χ B x0,ry For x ∈ F, we have

b, μΩ

g x ≥ |bx|

0











|x−y|≤t

x − y

x − yn−1 g

y

dy









2

dt

t3

1/2

0











|x−y|≤t

x − y

x − yn−1 b

y

g

y

dy









2

dt

t3

1/2

: K1− K2.

2.28

Trang 10

Noting that if y ∈ Bx0, r  and x ∈ F, we get |x − y− x − x0| ≤ A1 Applying2.11, we

follows that

|x−x0 |

B x0,r

x − y

x − yn−1 χ {|x−y|≤t}

y

dy

2

dt

t3

1/2

≥ |bx|

|x−x0 |



B x0,r

x − y

x − yn−1 χ {|x−y|≤t} dy dt

t3

|x−x0 |

dt

t3

−1/2



log2/A1γ |x − x0|



B x0,r

x − y−n 1

|x−x0|≤t

|x−y|≤t

dt

t3dy

≥ A8|bx||x − x0|−n



B x0,rdy

 A8r n |bx||x − x0|−n

2.29

we have

K2≤ C



B x0,r

b

y

x − yn dy

≤ A9|x − x0|−n



B x0,r

b

ydy

 A9Nr n |x − x0|−n

2.30

Thus, by2.28, 2.29, and 2.30, we get, for x ∈ F,

b, μΩ

Trang 11

ϕ Nr n  ≤ ϕr n , and |bx| > NA3/2A4log|x − x0|/r γ when x ∈ F, we have

A10

ϕ r n ≥g

L p,ϕ≥b, μΩ

g

L p,ϕ

ϕ Nr n Nr n1/p



|x−x0|<N 1/n r

b, μΩ

g xp

dx

1/p

ϕ r n Nr n1/p



|x−x0|<N 1/n r

b, μΩ

g xdx 

|x−x0|<N 1/n r

dx

−1/p

ϕ r n Nr n



F

b, μΩ

g xdx

ϕ r n Nr n



F

|bx||x − x0|−n dxA9Nr n

ϕ r n Nr n



F

|x − x0|−n dx

ϕ r n



F

 log|x − x0|

r

γ

|x − x0|−n dx

ϕ r n



F

|x − x0|−n dx

: L1− L2.

2.32

We first estimate L2 Since A2r < |x − x0| < N 1/n r for x ∈ F, we have

L2≤ A9ω n−1

ϕ r n

N 1/n r

A2r

ρ−1A12

Case 1 γ ≥ n Since the function log s/s is decreasing for s ≥ 3 and 3r < A2r < |x − x0| <

N 1/n r for x ∈ F, by 2.27, we get

L1 A11r −n

ϕ r n



F

 log|x − x0|/r

|x − x0|/r

n log|x − x0|

r

γ −n

dx

A7A11

2ϕr n



log A2γ −n

N

N 1/n

n

ϕ r n



log Nn

.

2.34

Trang 12

Case 2 1 < γ < n Since the function log s γ /s n is decreasing for s ≥ 3 and 3r < A2r <

|x − x0| < N 1/n r for x ∈ F, by 2.27, we have

L1 A11r −n

ϕ r n



F

 log|x − x0|/rγ

A7A11

2ϕr nN



log N 1/nγ

N

ϕ r n



log Nγ

.

2.35

L1≥ A15

ϕ r n



log Nτ

So by2.32, 2.33, and 2.36, we get

A10≥ A15



log Nτ

SL p,ϕ →L p,ϕ  1 We want to prove that, for any x0 ∈ Rnand

N |Bx1

0, r|



B x0,r

b

y

− a0dy ≤ B

holds, where a0 |Bx0, r|−1

B x0,rb ydy Since b − a0, μ  S   b, μ 

a0 0 Let fy be as 2.3, then 2.4–2.8 hold In this proof for j  1, , 13, B jis a positive

exists a B1such that 0 < B1< 1 and

σ



x∈ S n−1: Ωx



Trang 13

where σ is the measure on S n−1which is induced from the Lebesgue measure onRn By the condition1.15, it is easy to see that

Λ :



x∈ S n−1:Ωx

log2/B1γ



3.3

if x∈ Λ and y∈ S n−1, satisfyingx− y ≤ B1, thenΩy



Taking B2> 3/B1 1, let

b, μ 

S



f x ⎛⎝∞

0



|x−y|<t









|y−z|<t

Ωy− z

y − zn − bx − bzfzdz





2

dydt

t n 1 2

1/2

4|x−x 0 |



|x−y|<t

2|x−x 0|<|y−x0|<3|x−x0 |

×







|y−z|<t

Ωy − z

y − zn − bx − bzfzdz





2

dydt

t n 1 2

1/2

4|x−x 0 |



|x−y|<t

2|x−x 0|<|y−x0|<3|x−x0|, y−x0   ∈Λ

×







|y−z|<t

Ωy − z

y − zn − b zfzdz





2

dydt

t n 1 2

1/2

− |bx|

4|x−x 0 |



|x−y|<t

2|x−x 0|<|y−x0|<3|x−x0 |









|y−z|<t

Ωy − z

y − zn − f zdz





2

dydt

t n 1 2

1/2

: I1− I2.

3.6

Trang 14

For I1, noting that if |z − x0| < r, |x − x0| > B2|z − x0|, and |y − x0| > 2B2|z − x0|, then we get



y − z−y − x0

 ≤ 2|z − x0|

y − x0 ≤ B12 < B1. 3.7

Then by3.4, we get Ωy − z ≥ C1/ log2/B1γ Since 4|x−x0| > |y−x0| |z−x0| ≥ |y−z| ≥

|y−x0|−|z−x0| > 2|x−x0|−|x−x0|/2  3|x−x0|/2 and 4|x−x0| > |x−y| ≥ |y−x0|−|x−x0| > |x−x0|,

we get 4|x − x0| ≥ |y − z| ≥ 3|x − x0|/2 and 4|x − x0| > |x − y| > |x − x0| Thus, by 2.5, 2.7,

I1≥ C

4|x−x 0 |



|x−y|<t, y−x0   ∈Λ 2|x−x 0|<|y−x0|<3|x−x0 |



B x0,r

Ωy − z

y − zn − b zfzχ {|y−z|<t} dz dydt

t n 1 2

×

4|x−x 0 |



|x−y|<t, y−x0   ∈Λ 2|x−x 0|<|y−x0|<3|x−x0 |

dydt

t n 1 2

−1/2

≥ C|x − x0|2−n



B x0,rb zfz



y−x0   ∈Λ 2|x−x 0|<|y−x0|<3|x−x0 |



4|x−x 0|<t, |x−y|<t

|y−z|<t

dtdy

t n 1 2 dz

 C|x − x0|2−n



B x0,rb zfz



y−x0   ∈Λ 2|x−x 0|<|y−x0|<3|x−x0 |



4|x−x 0|<t

dtdy

t n 1 2 dz

≥ C|x − x0|−n

B x0,rb zfzdz

 B3Nr n |x − x0|−n

3.8

By2.5 and 2.6, we have

I2 |bx|

4|x−x 0 |



|x−y|<t

2|x−x 0|<|y−x0|<3|x−x0 |

×







Rn

Ωy − z

y − zn − χ {|y−z|<t}− Ω



y − x0



y − x0n − χ {|y−x0|<t} f zdz





2

dydt

t n 1 2

1/2

Trang 15

≤ |bx|

4|x−x 0 |



|x−y|<t

2|x−x 0|<|y−x0|<3|x−x0 |

×









|y−z|<t

|y−x0|<t

Ωy − z

y − zn − − Ω



y − x0



y − x0n − f zdz







2

dydt

t n 1 2

1/2

|bx|

4|x−x 0 |



|x−y|<t

2|x−x 0|<|y−x0|<3|x−x0 |









|y−z|<t

|y−x0|≥t

Ωy − z

y − zn − f zdz







2

dydt

t n 1 2

1/2

|bx|

4|x−x 0 |



|x−y|<t

2|x−x 0|<|y−x0|<3|x−x0 |









|y−z|≥t

|y−x0|<t

Ωy − x0



y − x0n − f zdz







2

dydt

t n 1 2

1/2

: I1

2 I2

2 I3

2.

3.9

In I22, we have t ≤ |y − x0| < 3|x − x0| and t ≥ 4|x − x0| In I3

2, we get t ≤ |y − z| < 4|x − x0|

and t ≥ 4|x − x0| It is easy to see that I2

2  I3

2, by Ω ∈ LS n−1, the

I21 ≤ C|bx|



B x0,r

f zdz⎛⎝

2|x−x 0|<|y−x0|<3|x−x0 |



4|x−x 0|≤t, |y−z|<t

|y−x0|<t, |x−y|≤t

×y − x02n− 1

logy − x0/r

dtdy

t n 1 2

1/2

≤ B4|bx|r n |x − x0|−n

 log|x − x0|

r

−γ

.

3.10

I2≤ B4|bx|r n |x − x0|−n

 log|x − x0|

r

−γ

Let

F

!

x ∈ G : |bx| > B3N

2B4

 log|x − x0|

r

γ

, |x − x0| < N 1/n r

"

Trang 16

Without loss of generality, we may assume that N > B2 > 1, otherwise, we get the desired

result Since ϕt is nonincreasing, we have ϕ|Bx0, N 1/n r | ≤ ϕ|Bx0, r |  ϕr n Then by,

3.6, 3.8, and 3.11, we get

fp

L p,ϕ≥b, μ 

S



fp

L p,ϕ

ϕB

x0, N 1/n rpB

x0, N 1/n r



|x−x0|<N 1/n r

b, μ  S



f xp

dx

ϕ r np

Nr n



G\F∩{|x−x0|<N 1/n r}

 1

2B3Nr

n |x − x0|−np

dx

ϕ r np

Nr n



{B5|F| B2rn1/n < |x−x0|<N 1/n r }∩G

 1

2B3Nr

n |x − x0|−n

p

dx

ϕ r np

Nr n



B3Nr n

2

pN 1/n r

B5|F| B2rn1/n t −pn n−1 dt



ΛJ

x



x

ϕ r np σ ΛNr np−1B3/2p

n − np



N1−pr n 1−p − B51−pn|F| B2rn1−p

.

3.13

Thus,



|F| B2rn1−p

≤ B6N1−pr n 1−p

1 ϕ r npfp

L p,λ



7 B n

2, thenTheorem 1.3is proved If N > 2B−17 B n

2, then

|F| ≥ B7

...

Trang 4

We refer to see13,14 for the known results of the generalized Morrey space L p,ϕ

t... integral and the parameterized Littlewood-Paley operators are neither the convolution operator nor the linear operators, hence, we need new ideas and nontrivial estimates in the proof

Let...

Trang 13

where σ is the measure on S n−1which is induced from the Lebesgue

Ngày đăng: 21/06/2014, 07:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm