We prove mean value theorems of Cauchy type for that new inequality by taking its difference.. Furthermore, we prove the positive semidefiniteness of the matrices generated by the differen
Trang 1Volume 2010, Article ID 948430, 17 pages
doi:10.1155/2010/948430
Research Article
Generalization of an Inequality for Integral
Transforms with Kernel and Related Results
Sajid Iqbal,1 J Pe ˇcari ´c,1, 2 and Yong Zhou3
1 Abdus Salam School of Mathematical Sciences, GC University, Lahore 54000, Pakistan
2 Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
3 School of Mathematics and Computational Science, Xiangtan University, Hunan 411105, China
Correspondence should be addressed to Sajid Iqbal,sajid uos2000@yahoo.com
Received 27 March 2010; Revised 2 August 2010; Accepted 27 October 2010
Academic Editor: Andr´as Ront ´o
Copyrightq 2010 Sajid Iqbal et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
We establish a generalization of the inequality introduced by Mitrinovi´c and Peˇcari´c in 1988
We prove mean value theorems of Cauchy type for that new inequality by taking its difference Furthermore, we prove the positive semidefiniteness of the matrices generated by the difference
of the inequality which implies the exponential convexity and logarithmic convexity Finally, we define new means of Cauchy type and prove the monotonicity of these means
1 Introduction
Let Kx, t be a nonnegative kernel Consider a function u : a, b → R, where u ∈ Uv, K, and the representation of u is
u x
b
a
K x, tvtdt 1.1
for any continuous function v on a, b Throughout the paper, it is assumed that all integrals
under consideration exist and that they are finite
The following theorem is given in1 see also 2, page 235
function such that φ x is convex and increasing for x > 0 Then
b
a
r xφ
u1x
u2x
dx≤
b
a
s xφ
v1x
v2x
dx, 1.2
Trang 2s x v2x
b
a
r tKt, x
u2t dt, u2t / 0. 1.3 The following definition is equivalent to the definition of convex functions
Definition 1.2see 2 Let I ⊆ R be an interval, and let φ : I → R be convex on I Then, for
s1, s2, s3∈ I such that s1< s2< s3, the following inequality holds:
φ s1s3− s2 φs2s1− s3 φs3s2− s1 ≥ 0. 1.4 Let us recall the following definition
Definition 1.3see 3, page 373 A function h : a, b → R is exponentially convex if it is continuous and
n
i,j1
ξ i ξ j h
x i x j
for all n ∈ N and all choices of ξ i ∈ R,x i x j ∈ a, b, i, j 1, , n.
The following proposition is useful to prove the exponential convexity
i h is exponentially convex.
ii h is continuous, and
n
i,j1
ξ i ξ j h
x
i x j
2
for every n ∈ N,ξ i ∈ a, b, and x i ∈ a, b, 1 ≤ i ≤ n.
h
λx 1 − λy≤ hx λ h
y1−λ
∀x, y ∈ a, b, λ ∈ 0, 1. 1.7
This paper is organized in this manner In Section 2, we give the generalization
of Mitrinovi´c-Peˇcari´c inequality and prove the mean value theorems of Cauchy type We also introduce the new type of Cauchy means In Section 3, we give the proof of positive semidefiniteness of matrices generated by the difference of that inequality obtained from the generalization of Mitrinovi´c-Peˇcari´c inequality and also discuss the exponential convexity At the end, we prove the monotonicity of the means
Trang 32 Main Results
interval, let φ : I → R be convex, and let u1x/u2x, v1x/v2x ∈ I Then
b
a
r xφ
u1x
u2x
dx≤
b
a
q xφ
v1x
v2x
where
q x v2x
b
a
r tKt, x
u2t dt, u2t / 0. 2.2
Proof Since u1 b
a K x, tv1tdt and v2t > 0, we have
b
a
r xφ
u1x
u2x
dx
b
a
r xφ 1
u2x
b
a
K x, tv1tdt
dx
b
a
r xφ 1
u2x
b
a
K x, tv2t v1t
v2t dt
dx
b
a
r xφ b
a
K x, tv2t
u2x
v1t
v2t dt
dx.
2.3
By Jensen’s inequality, we get
b
a
r xφ
u1x
u2x
dx≤
b
a
r x b
a
K x, tv2t
u2x φ
v1t
v2t
dt
dx
b
a
b a
r xKx, tv2t
u2x φ
v1t
v2t
dt
dx
b
a φ
v1t
v2t
v2t b
a
r xKx, t
u2x dx
dt
b
a
q tφ
v1t
v2t
dt.
2.4
Remark 2.2 If φ is strictly convex on I and v1x/v2x is nonconstant, then the inequality in
2.1 is strict
Trang 4Remark 2.3 Let us note thatTheorem 1.1follows fromTheorem 2.1 Indeed, let the condition
ofTheorem 1.1be satisfied, and letu i ∈ U|v|, K; that is,
u1x
b
a
K x, t|v1t|dt. 2.5
So, byTheorem 2.1, we have
b
a
q xφ
v1x
v2x
dx
b
a
q xφ
|v
1x|
v2x
dx≥
b
a
r xφ
u
1x
u2x
dx. 2.6
On the other hand, φ is increasing function, we have
φ
u
1x
u2x
φ 1
u2x
b
a
K x, t|v1t|dt
≥ φ 1
u2x
b
a
K x, tv1tdt
φ
|u
1x|
u2x
φ
u1x
u2x
.
2.7
From2.6 and 2.7, we get 1.2
If f ∈ Ca, b and α > 0, then the Riemann-Liouville fractional integral is defined by
I a α f x 1
Γα
x
a
f tx − t α−1dt. 2.8
We will use the following kernel in the upcoming corollary:
K I x, t
⎧
⎪
⎪
x − t α−1
Γα , a ≤ t ≤ x,
0, x < t ≤ b.
2.9
an interval, let φ : I → R be convex, u1x/u2x, I α u1x/I α u2x ∈ I, and u1x, u2x have
Riemann-Liouville fractional integral of order α > 0 Then
b
a
r xφ
I α u
1x
I α u2x
dx≤
b
a φ
u1t
u2t
Q I tdt, 2.10
where
Q I t u2t
Γα
b
t
r xx − t α−1
I α u2x dx, I a α u2x / 0. 2.11
Trang 5Let ACa, b be space of all absolutely continuous functions on a, b By AC n a, b,
we denote the space of all functions g ∈ C n a, b with g n−1 ∈ ACa, b.
Let α∈ Rand g ∈ AC n a, b Then the Caputo fractional derivative see 5, p 270
of order α for a function g is defined by
D α ∗a g t 1
Γn − α
t
a
g n s
t − s α −n1 ds, 2.12
where n α 1; the notation of α stands for the largest integer not greater than α.
Here we use the following kernel in the upcoming corollary:
K D x, t
⎧
⎪
⎪
x − t n −α−1
Γn − α , a ≤ t ≤ x,
0, x < t ≤ b.
2.13
interval, let φ : I → R be convex, u n1 t/u n2 t, D α
∗a u1x/D α
∗a u2x ∈ I, and u1x, u2x have
Caputo fractional derivative of order α > 0 Then
b
a
r xφ
D α
∗a u1x
D α
∗a u2x
dx≤
b
a
n
1 t
u n2 t
Q D tdt, 2.14
where
Q D t u
n
2 t
Γn − α
b
t
r xx − t n −α−1
D ∗a α u2x dx, D α ∗a u2x / 0. 2.15
Let L1a, b be the space of all functions integrable on a, b For β ∈ R, we say that
f ∈ L1a, b has an L∞fractional derivative D β a f in a, b if and only if D β a −k f ∈ Ca, b for
k 1, , β 1, D β−1
a f ∈ ACa, b, and D β
a ∈ L∞a, b.
The next lemma is very useful to give the upcoming corollary6 see also 5, p 449
D a β −k f a 0, k 1, ,β
Then
D α a f s 1
Γβ − α
s
a
s − t β −α−1 D a β f tdt 2.17
for all a ≤ s ≤ b.
Trang 6D α f is in AC a, b for β − α ≥ 1,
D α a f is in C a, b for β − α ∈ 0, 1, 2.18
hence
D a α f ∈ L∞a, b,
D α f ∈ L1a, b. 2.19
Now we use the following kernel in the upcoming corollary:
K L s, t
⎧
⎪
⎪
s − t β −α−1
Γβ − α , a ≤ t ≤ s,
0, s < t ≤ b.
2.20
and r x ≥ 0 for all x ∈ a, b Also let D β −k
a u i a 0 for k 1, , β 1 i 1, 2, let φ : I → R
be convex, and D α u1x/D α u2x, D β
a u1x/D β
a u2x ∈ I Then
b
a
r xφ
D α u
1x
D α u2x
dx≤
b
a
β
a u1t
D a β u2t
Q L tdt, 2.21
where
Q L t D
β
a u2t
Γβ − α
b
t
r xx − t β −α−1
D α u2x dx, D a α u2x / 0. 2.22
m ≤ f x ≤ M, ∀x ∈ I. 2.23
Consider two functions φ1, φ2defined as
φ1x Mx2
2 − fx,
φ2x fx − mx2
2 .
2.24
Then φ1and φ2are convex on I.
Trang 7Proof We have
φ1x M − f x ≥ 0,
φ2x f x − m ≥ 0, 2.25 that is φ1, φ2are convex on I.
all x ∈ a, b Also let u1x/u2x, v1x/v2x ∈ I, v1x/v2x be nonconstant, and let qx be
given in2.2 Then there exists ξ ∈ I such that
b
a
q xf
v1x
v2x
− rxf
u1x
u2x
dx
f ξ
2
b
a
q x
v1x
v2x
2
− rx
u1x
u2x
2
dx.
2.26
Proof Since f ∈ C2I and I is a compact interval, therefore, suppose that m min f , M
max f UsingTheorem 2.1for the function φ1defined inLemma 2.8, we have
b
a
r x M
2
u1x
u2x
2
− f
u1x
u2x
dx≤
b
a
q x M
2
v1x
v2x
2
− f
v1x
v2x
dx. 2.27
FromRemark 2.2, we have
b
a
q x
v1x
v2x
2
− rx
u1x
u2x
2
Therefore,2.27 can be written as
2 b
a
q xfv1x/v2x − rxfu1x/u2xdx
b
a
q xv1x/v2x2− rxu1x/u2x2
dx ≤ M. 2.29
We have a similar result for the function φ2defined inLemma 2.8as follows:
2 b
a
q xfv1x/v2x − rxfu1x/u2xdx
b
a
q xv1x/v2x2− rxu1x/u2x2
dx ≥ m. 2.30 Using2.29 and 2.30, we have
m≤ 2
b
a
q xfv1x/v2x − rxfu1x/u2xdx
b
a
q xv1x/v2x2− rxu1x/u2x2
dx ≤ M. 2.31
Trang 8ByLemma 2.8, there exists ξ∈ I such that
b
a
q xfv1x/v2x − rxfu1x/u2xdx
b
a
q xv1x/v2x2− rxu1x/u2x2
dx f ξ
2 . 2.32
This is the claim of the theorem
Let us note that a generalized mean valueTheorem 2.9for fractional derivative was given in7 Here we will give some related results as consequences ofTheorem 2.9
for all x ∈ a, b Also let u1x/u2x, I α u1x/I α u2x ∈ I, let u1x/u2x be nonconstant, let
Q I t be given in 2.11, and u1x, u2x have Riemann-Liouville fractional integral of order α > 0.
Then there exists ξ ∈ I such that
b
a
Q I xf
u1x
u2x
− rxf
I a α u1x
I α u2x
dx
f ξ
2
b
a
Q I x
u1x
u2x
2
− rx
I α u1x
I α u2x
2
dx.
2.33
r x ≥ 0 for all x ∈ a, b Also let u n1 t/u n2 t, D α
∗a u1x/D α
∗a u2x ∈ I, let u n1 x/u n2 x be
nonconstant, let Q D t be given in 2.15, and u1x, u2x have Caputo derivative of order α > 0.
Then there exists ξ ∈ I such that
b
a
Q D xf u
n
1 x
u n2 x
− rxf
D α
∗a u1x
D α
∗a u2x
dx
f ξ
2
b
a
⎛
⎝Q D x u
n
1 x
u n2 x
2
− rx
D α
∗a u1x
D ∗a α u2x
2⎞
⎠dx.
2.34
L∞fractional derivative, and r x ≥ 0 for all x ∈ a, b Let D β −k
a u i a 0 for k 1, , β 1 i
1, 2, D α u1x/D α u2x, D β
a u1x/D β
a u2x ∈ I, let D β
a u1x/D β
a u2x be nonconstant, and let
Q L t be given in 2.22 Then there exists ξ ∈ I such that
b
a
Q L xf D
β
a u1x
D a β u2x
− rxf
D α u
1x
D α u2x
dx
f ξ
2
b
a
⎛
⎝Q L x D
β
a u1x
D a β u2x
2
− rx
D α u1x
D α u2x
2⎞
⎠dx.
2.35
Trang 9Theorem 2.13 Let f, g ∈ C2I, let I be a compact interval, u i ∈ Uv, K i 1, 2, and rx ≥ 0
for all x ∈ a, b Also let u1x/u2x, v1x/v2x ∈ I, v1x/v2x be nonconstant, and let
q x be given in 2.2 Then there exists ξ ∈ I such that
b
a q xfv1x/v2xdx − b
a r xfu1x/u2xdx
b
a q xgv1x/v2xdx − b
a r xgu1x/u2xdx
f ξ
g ξ . 2.36
It is provided that denominators are not equal to zero.
Proof Let us take a function h ∈ C2I defined as
h x c1f x − c2g x, 2.37 where
c1
b
a
q xg
v1x
v2x
dx−
b
a
r xg
u1x
u2x
dx,
c2
b
a
q xf
v1x
v2x
dx−
b
a
r xf
u1x
u2x
dx.
2.38
ByTheorem 2.9with f h, we have
0c1
2f ξ − c2
2g ξ b
a
q x
v1x
v2x
2
dx−
b
a
r x
u1x
u2x
2
dx
. 2.39
Since
b
a
q x
v1x
v2x
2
dx−
b
a
r x
u1x
u2x
2
dx / 0, 2.40
so we have
c1f ξ − c2g ξ 0. 2.41 This implies that
c2
c1 f ξ
This is the claim of the theorem
Let us note that a generalized Cauchy mean-valued theorem for fractional derivative was given in8 Here we will give some related results as consequences ofTheorem 2.13
Trang 10Corollary 2.14 Let f, g ∈ C2I, let I be a compact interval, u i ∈ Ca, b i 1, 2, and rx ≥ 0
for all x ∈ a, b Also let u1x/u2x, I α u1x/I α u2x ∈ I, let u1x/u2x be nonconstant,
let Q I t be given in 2.11, and u1x, u2x have Riemann-Liouville fractional derivative of order
α > 0 Then there exists ξ ∈ I such that
b
a Q I xfu1x/u2xdx − b
a r xfI α u1x/I α u2xdx
b
a Q I xgu1x/u2xdx − b
a r xgI α u1x/I α u2xdx
f ξ
g ξ . 2.43
It is provided that denominators are not equal to zero.
r x ≥ 0 for all x ∈ a, b Also let u n1 t/u n2 t, D α
∗a u1x/D α
∗a u2x ∈ I, let u n1 x/u n2 x
be nonconstant, let Q D t be given in 2.15, and u1x, u2x have Caputo fractional derivative of
order α > 0 Then there exists ξ ∈ I such that
b
a Q D xfu n1 x/u n2 xdx− b
a r xfD α
∗a u1x/D α
∗a u2xdx
b
a Q D xgu n1 x/u n2 xdx− b
a r xgD α
∗a u1x/D α
∗a u2xdx
f ξ
g ξ . 2.44
It is provided that denominators are not equal to zero.
an L∞fractional derivative D a β u i in a, b, and rx ≥ 0 for all x ∈ a, b Also let D β −k
a u i a 0 for
k 1, , β 1 i 1, 2, D α u1x/D α u2x, D β
a u1x/D β
a u2x ∈ I, let D β
a u1x/D β
a u2x be
nonconstant, and let Q L t be given in 2.22 Then there exists ξ ∈ I such that
b
a Q L xfD β a u1x/D β
a u2xdx− b
a r xfD α u1x/D α u2xdx
b
a Q L xgD β a u1x/D β
a u2xdx− b
a r xgD α u1x/D α u2xdx
f ξ
g ξ . 2.45
It is provided that denominators are not equal to zero.
all x ∈ a, b Let u1x/u2x, v1x/v2x ∈ I, let v1x/v2x be nonconstant, and let qx be
given in2.2 Then, for s, t ∈ R \ {0, 1} and s / t, there exists ξ ∈ I such that
ξ
⎛
⎝ss − 1
t t − 1
b
a q xv1x/v2x t dx− b
a r xu1x/u2x t dx
b
a q xv1x/v2x s dx− b
a r xu1x/u2x s dx
⎞
⎠
1/t−s
. 2.46
Trang 11Proof We set f x x t and gx x s , t / s, s, t / 0, 1 ByTheorem 2.13, we have
b
a q xv1x/v2x t dx− b
a r xu1x/u2x t dx
b
a q xv1x/v2x s dx− b
a r xu1x/u2x s dx t t − 1ξ t−2
s s − 1ξ s−2. 2.47
This implies that
ξ t −s s s − 1
t t − 1
b
a q xv1x/v2x t dx− b
a r xu1x/u2x t dx
b
a q xv1x/v2x s dx− b
a r xu1x/u2x s dx . 2.48
This implies that
ξ
⎛
⎝ss − 1
t t − 1
b
a q xv1x/v2x t dx− b
a r xu1x/u2x t dx
b
a q xv1x/v2x s dx− b
a r xu1x/u2x s dx
⎞
⎠
1/t−s
. 2.49
Remark 2.18 Since the function ξ → ξ t −sis invertible and from2.46, we have
m≤
⎛
⎝ss − 1
t t − 1
b
a q xv1x/v2x t dx− b
a r xu1x/u2x t dx
b
a q xv1x/v2x s dx− b
a r xu1x/u2x s dx
⎞
⎠
1/t−s
≤ M. 2.50
Now we can suppose that f /g is an invertible function, then from2.36 we have
ξf
g
−1⎛
⎝
b
a q xv1x/v2xdx − b
a r xu1x/u2x t dx
b
a q xv1x/v2xdx − b
a r xu1x/u2x s dx
⎞
⎠. 2.51
We see that the right-hand side of2.49 is mean, then for distinct s, t ∈ R it can be written as
M s,t
t
s
1/t−s
2.52
Trang 12as mean in broader sense Moreover, we can extend these means, so in limiting cases for
s, t / 0, 1,
lim
t → s M s,t
M s,s
exp
⎛
⎝
b
a q xAx slogAxdx − b
a r xBx slogBxdx
b
a q xAx s dx− b
a r xBx s dx − 2s− 1
s s − 1
⎞
⎠,
lim
s→ 0M s,s
M 0,0 exp
⎛
⎜ a b q xlog2Axdx − b
a r xlog2Bxdx
2 b
a q x log Axdx − b
a r x log Bxdx 1
⎞
⎟
⎠,
lim
s→ 1M s,s
M 1,1
exp
⎛
⎜ a b q xAxlog2Axdx − b
a r xBxlog2Bxdx
2 b
a q xAx log Axdx − b
a r xBx log Bxdx − 1
⎞
⎟
⎠,
lim
t→ 0M s,t
M s,0
⎛
⎜ a b q xAx s dx− b
a r xBx s dx
b
a q x log Axdx − b
a r x log Bxdxs s − 1
⎞
⎟
1/s
,
lim
t→ 1M s,t
M s,1
⎛
⎜ b
a q xAx log Axdx − b
a r xBx log Bxdxs s − 1
b
a q xAx s dx− b
a r xBx s dx
⎞
⎟
1/1−s
,
2.53
whereAx v1x/v2x and Bx u1x/u2x.
Remark 2.19 In the case of Riemann-Liouville fractional integral of order α > 0, we well use
the notation M s,t instead of M s,t and we replace v i x with u i x, u i x with I α u i x, and
q x with Q I x.
... Trang 12as mean in broader sense Moreover, we can extend these means, so in limiting cases for< /p>
s,...
. 2.46
Trang 11Proof We set f x x t and gx x s... φ1and φ2are convex on I.
Trang 7Proof We have
φ1x