We give some interesting equation of p-adic q-integrals onZp.. From those p-adic q-integrals, we present a systemic study of some families of extended Carlitz type q-Bernoulli numbers an
Trang 1Volume 2010, Article ID 575240, 17 pages
doi:10.1155/2010/575240
Research Article
Numbers and Polynomials Associated with
q-Volkenborn Integrals
T Kim,1 J Choi,1 B Lee,2 and C S Ryoo3
Seoul 139-701, Republic of Korea
Correspondence should be addressed to T Kim,tkkim@kw.ac.kr
Received 23 August 2010; Accepted 30 September 2010
Academic Editor: Alberto Cabada
Copyrightq 2010 T Kim et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
We give some interesting equation of p-adic q-integrals onZp From those p-adic q-integrals,
we present a systemic study of some families of extended Carlitz type q-Bernoulli numbers and polynomials in p-adic number field.
1 Introduction
Let p be a fixed prime number Throughout this paper, Z p,Qp,C, and Cpwill, respectively,
denote the ring of p-adic rational integer, the field of p-adic rational numbers, the complex
number field, and the completion of algebraic closure of Qp Let N be the set of natural numbers andZ {0} ∪ N
Let ν pbe the normalized exponential valuation ofCpwith|p| p p −ν p p p−1 When
one talks of q-extension, q is considered as an indeterminate, a complex number q ∈ C, or
assume that|1 − q| p < 1 We use the notation
x q 1− q x
The q-factorial is defined as
n q! n q n − 1 q· · · 2q1q , 1.2
Trang 2and the Gaussian q-binomial coefficient is defined by
n k
q
n q!
n − k q!kq! n q n − 1 q · · · n − k 1 q
see 1 Note that
lim
q → 1
n k
q
n k
n n − 1 · · · n − k 1
From1.3, we easily see that
n 1 k
q
n
k − 1
q
q k
n k
q
q n1−k
n
k − 1
q
n k
q
see 2,3 For a fixed positive integer f, f, p 1, let
X X f lim←−
N
Z
fp NZ
, X1 Zp ,
0<a<fp
a,p1
, a fp NZpx ∈ X | x ≡ a
modfp N , 1.6
where a ∈ Z and 0 ≤ a < fp Nsee 1 14
We say that f is a uniformly differential function at a point a ∈ Z p and denote this
property by f ∈ UDZ p if the difference quotients
F f
x, y
f x − f
y
have a limit l f a as x, y → a, a For f ∈ UDZ p, let us begin with the expression
1
p N
q
p N−1
x0
f xq x
0≤x<pN
f xμ q
x p NZp
representing a q-analogue of the Riemann sums for f, see 1 3,11–18 The integral of f
Trang 3onZp is defined as the limitN → ∞ of the sums if exists The p-adic integral
q-Volkenborn integral of f ∈ UDZp is defined by
I q
f
X
f xdμ q x
Zp
f xdμ q x lim
N−→∞
1
p N
q ≤x<p N
f xq x , 1.9
see 12 Carlitz’s q-Bernoull numbers β k,q can be defined recursively by β 0,q 1 and by the rule that
q
qβ∗ 1k − β∗
k,q
⎧
⎨
⎩
1, if k 1,
0, if k > 1, 1.10
with the usual convention of replacingβ∗i by β∗i,q,see 1 13
It is well known that
β∗n,q
Zp
x n
q dμ q x
X
x n
q dμ q x, n ∈ Z,
β∗n,q x
Zp
y x n
q dμ q
y
X
y x n
q dμ q
y
1.11
see 1, where β∗
n,q x are called the nth Carlitz’s q-Bernoulli polynomials see 1,12,13
Let χ be the Dirichlet’s character with conductor f ∈ N, then the generalized Carlitz’s
q-Bernoulli numbers attached to χ are defined as follows:
β∗n,χ,q
X
χ xx n
see 13 Recently, many authors have studied in the different several areas related to
q-theorysee 1 13 In this paper, we present a systemic study of some families of multiple
Carlitz’s type q-Bernoulli numbers and polynomials by using the integral equations of p-adic
From these equations, we give some interesting formulae for the higher-order Carlitz’s type
q-Bernoulli numbers and polynomials in the p-adic number field.
and Polynomials
In this section, we assume that q ∈ C pwith|1 − q| p < 1 We first consider the q-extension of
Bernoulli polynomials as follows:
∞
n0
β n,q x t n
Z q −y e xy qt dμ q
y
−t∞
m0
e xm qt q xm 2.1
Trang 4From2.1, we note that
β n,q x 1
1− qn
n
l0
n l
−q xl l
l q
1
1− qn−1
n
l0
n l
−q xl
l
1− q l
n
1− qn−1
n−1
l0
n − 1 l
q l1x
1
1− q l1
−1l1
−n
1− qn−1
∞
m0
q mx
n−1
l0
n − 1 l
q lxm
−n ∞
m0
q mx x m n−1
q
2.2
Note that
lim
q → 1 β n,q x −n∞
m0
x m n−1 B n x, 2.3
where B n x are called the n th ordinary Bernoulli polynomials In the special case, x 0,
β n,q 0 β n,q are called the n th q-Bernoulli numbers.
By2.2, we have the following lemma
Lemma 2.1 For n ≥ 0, one has
β n,q x
Zp
q −y
x y n
q dμ q
y
−n ∞
m0
q mx x m n−1
q
1
1− qn
n
l0
n l
−q xl l
l q .
2.4
Now, one considers the q-Bernoulli polynomials of order r ∈ N as follows:
∞
n0
β n,q r x t n
Zp
· · ·
Zp
r times
q −x1···x re xx1···x rqt dμ q x1 · · · dμ q x r .
2.5
Trang 5By2.5, one sees that
β n,q r x
Zp
· · ·
Zp
r times
q −x1···x rx x1 · · · x rn
q dμ q x1 · · · dμ q x r
1
1− qn
n
l0
n l
−1l q xl
l
l q
r
.
2.6
In the special case, x 0, the sequence β n,q r 0 β r n,q is refereed to as the q-extension of Bernoulli numbers of order r For f ∈ N, one has
β r n,q x
X
· · ·
X
r times
q −x1···x rx x1 · · · x rn
q dμ q x1 · · · dμ q x r
1
1− qn
n
l0
n l
−1l f−1
a1, ,a r0
q lxa1···a r l r
lf r q
f n−r q f−1
a1, ,a r0
β r n,q f
a1 · · · a r x
f
.
2.7
By2.5 and 2.7, one obtains the following theorem
Theorem 2.2 For r ∈ Z, f ∈ N, one has
β r n,q x 1
1− qn
n
l0
f−1
a1, ,a r0
n l
−1l q la1···a r x l r
lf r
q
f n−r
q f−1
a1, ,a r0
β r n,q f
a1 · · · a r x
f
.
2.8
Let χ be the primitive Dirichlet’s character with conductor f ∈ N, then the generalized q-Bernoulli polynomials attached to χ are defined by
∞
n0
β n,χ,q x t n
X
χ
y
q −y e xy qt dμ q
y
Trang 6From2.9, one derives
β n,χ,q x
X
χ
y
q −y
x y n
q dμ q
y
f−1
a0
χ a lim
N−→∞
1
fp N
q
fp N−1
y0
a x fy n
q
1
1− qn f−1
a0
χ a n
l0
n l
−1l q lxa l
lf
q
f−1
a0
m0
−nx a mf n−1
q
−n∞
m0
χ mx m n−1
q
2.10
By2.9 and 2.10, one can give the generating function for the generalized q-Bernoulli polynomials
attached to χ as follows:
F χ,q x, t −t ∞
m0
χ me xm qt ∞
n0
β n,χ,q x t n
From1.3, 2.10, and 2.11, one notes that
β n,χ,q x 1
f
q
f−1
a0
χ a
Zp
q −fy
a x fy n
q dμ q f
y
f n−1
q f−1
a0
χ aβ n,q f
a x f
.
2.12
In the special case, x 0, the sequence β n,χ,q 0 β n,χ,q are called the n th generalized q-Bernoulli numbers attached to χ.
Let one consider the higher-order q-Bernoulli polynomials attached to χ as follows:
X
· · ·
X
r times
r
i1
χ x i
e xx1···x rqt q −x1···x rdμ q x1 · · · dμ q x r ∞
n0
β r n,χ,q x t n
n! , 2.13
where β r n,χ,q x are called the n th generalized q-Bernoulli polynomials of order r attaches to χ.
Trang 7By2.13, one sees that
β r n,χ,q x 1
1− qn
n
l0
n l
−q xl f−1
a1, ,a r0
r
i1
χ a i
q lr i1 a i l r
lf r
q
f n−r
q f−1
a1, ,a r0
r
i1
χ a i
β r n,q f
x a1 · · · a r
f
.
2.14
In the special case, x 0, the sequence β r n,χ,q 0 β r n,χ,q are called the n th generalized q-Bernoulli numbers of order r attaches to χ.
By2.13 and 2.14, one obtains the following theorem
Theorem 2.3 Let χ be the primitive Dirichlet’s character with conductor f ∈ N For n ∈ Z, r ∈ N, one has
β r n,χ,q x 1
1− qn
n
l0
n l
−q xl f−1
a1, ,a r0
r
i1
χ a i
q lr i1 a i l r
lf r
q
f n−r
q f−1
a1, ,a r0
r
i1
χ a i
β r n,q f
x a1 · · · a r
f
.
2.15
For h ∈ Z, and r ∈ N, one introduces the extended higher-order q-Bernoulli polynomials as follows:
β n,q h,r x
Zp
· · ·
Zp
r times
qr j1 h−j−1x j x x1 · · · x rn
q dμ q x1 · · · dμ q x r .
2.16
From2.16, one notes that
β n,q h,r x 1
1− qn
n
l0
n l
−1l q lx
lh−1
r
lh−1
r
q
r!
r q!, 2.17
and
β h,r n,q x f n−r
q f−1
a1, ,a r0
qr j1 h−ja j β h,r n,q f
x a1 · · · a r
f
. 2.18
In the special case, x 0, β n,q h,r 0 β h,r n,q are called the n th h, q-Bernoulli numbers of order r.
By2.17, one obtains the following theorem
Trang 8Theorem 2.4 For h ∈ Z, r ∈ N, one has
β h,r n,q x 1
1− qn
n
l0
n l
−q xl
lh−1
r
lh−1
r
q
r!
r q!,
β h,r n,q x f n−r
q f−1
a1, ,a r0
qr j1 h−ja j β h,r n,q f
x a1 · · · a r
f
.
2.19
Let χ be the primitive Dirichlet’s character with conductor f ∈ N, then one considers the generalized h, q-Bernoulli polynomials attached to χ of order r as follows:
β h,r n,χ,q x
X
· · ·
X
r times
qr j1 h−j−1x j
⎛
⎝r
j1
χ
x j
⎞⎠x x1 · · · x rn
q dμ q x1 · · · dμ q x r .
2.20
By2.20, one sees that
β h,r n,χ,q x f n−r
q f−1
a1, ,a r0
qr j1 h−ja j
⎛
⎝r
j1
χ
a j
⎞⎠β h,r
n,q f
x a1 · · · a r
f
. 2.21
In the special case, x 0, β h,r n,χ,q 0 β n,χ,q h,r are called the n th generalized h, q-Bernoulli numbers attached to χ of order r.
From2.20 and 2.21, one notes that
β h,r n,χ,qq − 1
β n1,χ,q h−1,r β h−1,r n,χ,q 2.22
By2.16, it is easy to show that
β n,χ,q h,r
Zp
· · ·
Zp
r times
x1 · · · x rn
q qr j1 h−j−1x j dμ q x1 · · · dμ q x r
Zp
· · ·
Zp
x1 · · · x rn
q
x1 · · · x rqq − 1
1 q
r j1 h−j−2x j
dμ q x1 · · · dμ q x r .
2.23
Thus, one has
β h,r n,q q − 1
β n1,q h−1,r β h−1,r n,q 2.24
Trang 9From2.16 and 2.23, one can also derive
Zp
· · ·
Zp
r times
q n−2x1n−3x2···n−r−1x r dμ q x1 · · · dμ q x r
Z
p· · ·Z
p q −x1···x rq nx1···x rq −x1−2x2−···−rx r dμ q x1 · · · dμ q x r
n
l0
n
l
q − 1l
Zp· · ·Zp x1 · · · x rl
q q −x1···x rq −x1−2x2−···−rx r dμ q x1 · · · dμ q x r
n
l0
n
l
q − 1l
β 0,r l,q ,
Zp
· · ·
Zp
q n−2x1n−3x2···n−r−1x r dμ q x1 · · · dμ q x r
n−1
r
n−1
r
q
r!
r q!.
2.25
It is easy to see that
n
j0
n
j
q − 1j
Zp
x j
q q h−2x dμ q x
Zp
q − 1
x q 1 n q h−2x dμ q x
n h − 1 q .
2.26
By2.23, 2.25, and 2.26, one obtains the following theorem
Theorem 2.5 For h ∈ Z, r ∈ N, and n ∈ Z, one has
β h,r n,q q − 1
β h−1,r n1,q β h−1,r n,q ,
n
l0
n l
q − 1l
β 0,r l,q
n−1
r
n−1
r
q
r!
r q!.
2.27
Furthermore, one gets
n
l0
n l
q − 1l
β l,q h,1 n h − 1
n h − 1 q . 2.28
Trang 10Now, one considers the polynomials of β 0,r n,q x by
β 0,r n,q x
Zp
· · ·
Zp
r times
x x1 · · · x rn
q q −2x1−3x2−···−r−1x r dμ q x1 · · · dμ q x r
1
1− qn
n
l0
n l
−1l
q lx
l−1
r
l−1
r
q
r!
r q!.
2.29
By2.29, one obtains the following theorem
Theorem 2.6 For r ∈ N and n ∈ Z, one has
1− qn
β 0,r n,q x n
l0
n l
−1l
q lx
l−1
r
l−1
r
q
r!
r q!. 2.30
By using multivariate p-adic q-integral on Z p , one sees that
q nx
n−1
r
n−1
r
q
r!
r q!
Zp
· · ·
Zp
r times
q nxn−2x1···n−r−1x r dμ q x1 · · · dμ q x r
Zp
· · ·
Zp
q − 1
x x1 · · · x rq 1 n q −2x1···−r1x r dμ q x1 · · · dμ q x r
n
l0
n
l
q − 1l
Zp
· · ·
Zp
x x1 · · · x rl
q q −2x1···−r1x r dμ q x1 · · · dμ q x r
n
l0
n
l
q − 1l
β 0,r l,q x.
2.31
Therefore, one obtains the following corollary
Corollary 2.7 For r ∈ N and n ∈ Z, one has
q nx
n−1
r
n−1
r
q
r!
r q! n
l0
n l
q − 1l
β l,q 0,r x. 2.32
Trang 11It is easy to show that
Zp
· · ·
Zp
r times
x x1 · · · x rn
q q −2x1···−r1x r dμ q x1 · · · dμ q x r
f n−r
q f−1
i1, ,i r0
q−r l1 li l
×
Zp
· · ·
Zp
q −fr l1 l1x l
x r
l1 i l
l1
x l n
q f
dμ q f x1 · · · dμ q f x r .
2.33
From2.33, one notes that
β 0,r n,q x f n−r
q f−1
i1, ,i r0
q −i1−2i2− −ri r β 0,r n,q f
x i1 · · · i r
f
. 2.34
From the multivariate p-adic q-integral on Z p , one has
Zp
· · ·
Zp
r times
x x1 · · · x rn
q q −2x1−3x2−···−r1x r dμ q x1 · · · dμ q x r
Zp
· · ·
Zp
x q q x x1 · · · x rq n q −2x1−3x2−···−r1x r dμ q x1 · · · dμ q x r
n
l0
n
l
x n−l
q q lx
Zp
· · ·
Zp
x1 · · · x rl
q q −2x1−3x2−···−r1x r dμ q x1 · · · dμ q x r ,
2.35
Zp
· · ·
Zp
r times
x y x1 · · · x r
n
q q −2x1−3x2−···−r1x r dμ q x1 · · · dμ q x r
n
l0
n
l
y n−l
q q ly
Zp
· · ·
Zp
x x1 · · · x rl
q q −2x1−3x2−···−r1x r dμ q x1 · · · dμ q x r .
2.36
By2.35 and 2.36, one obtains the following corollary
Trang 12Corollary 2.8 For r ∈ N and n ∈ Z, one has
β 0,r n,q x n
l0
n l
x n−l
q q lx β l,q 0,r ,
β 0,r n,q
x y
n
l0
n l
y n−l
q q ly β 0,r l,q x.
2.37
Now, one also considers the polynomial of β h,1 n,q x From the integral equation on Z p , one notes that
β h,1 n,q x
Zp
x x1n
q q x1h−2 dμ q x1
1
1− qn
n
l0
n l
−1l q lx l h − 1
l h − 1 q .
2.38
By2.38, one easily gets
β h,1 n,q x 1
1− qn−1
n
l0
n
l−1l
q lx l
1− q lh−1 h − 1
1− qn−1
n
l0
n
l−1l
q lx
1− q lh−1
−n
1− qn−1
n−1
l0
n−1
l
−1l
q x q lx
1− qn−1
n
l0
n
l−1l
q lx
1− q lh−1
−n∞
m0
q hmx x m n−1
q h − 11− q ∞
m0
q h−1m x m n
q
2.39
Thus, one obtains the following theorem
Theorem 2.9 For h ∈ Z and n ∈ Z, one has
β h,1 n,q x −n ∞
m0
q hmx x m n−1
q h − 11− q ∞
m0
q h−1m x m n
q 2.40
From the definition of p-adic q-integral on Z p , one notes that
Zp
q h−2x1x x1n
q dμ q x1
1
f
q
f−1
i0
q h−1i i n
q
Z
!
x i
"n
q f
q fh−2x1dμ q f x1.
2.41
Trang 13Thus, one has
β h,1 n,q x 1
f
q
f−1
i0
q h−1i i n
q β h,1 n,q f
x i f
By2.38, one easily gets
Zp
x x1n
q q x1h−2 dμ q x1
q −x
Zp
x x1n
q
x x1qq − 1
1 q x1h−3 dμ q x1.
2.43
From2.43, one has
β h,1 n,q x q −x
q − 1
β n1,q h−1,1 x β h−1,1 n,q x . 2.44
That is,
q x β n,q h,1 x q − 1
β n1,q h−1,1 x β h−1,1 n,q x. 2.45
By2.38 and 2.43, one easily sees that
Zp
q h−2x1x x1n
q dμ q x1
Zp
q h−2x1
x q q x x1q n dμ q x1
n
l0
n l
x n−l
q q lx
Zp
q h−2x1x1l
q dμ q x1,
2.46
and
q h−1
Zp
q h−2x1x1 1 x n
q dμ q x1 −
Zp
q h−2x1x x1n
q dμ q x1
q x n x n−1
q hq − 1
x n
q−q − 1
x n
q
2.47
For x 0, this gives
q h−1
Zp
q h−2x1x1 1n
q dμ q x1 −
Zp
q h−2x1x1n
q dμ q x1
⎧
⎨
⎩
1, if n 1,
0, if n > 1, 2.48
and
β 0,q h,1
Z q h−2x1dμ q x1 h − 1 h − 1
q
Trang 14From2.46 and 2.48, one can derive the recurrence relation for β h,1 n,q as follows:
q h−1 β h,1 n,q 1 − β n,q h,1 δ n,1 , 2.50
where δ n,1 is kronecker symbol.
By2.46, 2.48, and 2.50, one obtains the following theorem
Theorem 2.10 For h ∈ Z and n ∈ Z, one has
β h,1 n,q x n
l0
n l
x n−l
q q lx β h,1 l,q ,
q h−1 β h,1 n,q x 1 − β h,1 n,q q x n x n−1
q hq − 1
x n
q−q − 1
x n
q
2.51
Furthermore,
q h−2
q − 1
β h−1,1 n1,q 1 q h−2 β h−1,1 n,q 1 − β h,1 n,q δ n,1 , 2.52
where δ n,1 is kronecker symbol.
From the definition of p-adic q-integral on Z p , one notes that
Zp
q −h−2x11 − x x1n
q−1dμ q−1x1
−1n q nh−2
Zp
q h−2x1x x1n
q dμ q x1.
2.53
By2.53, one sees that
β h,1 n,q−11 − x −1 n
q nh−2 β h,1 n,q x. 2.54
Note that
B n 1 − x lim
q−→1 β h,1 n,q−11 − x lim
q−→1−1n q nh−2 β h,1 n,q x −1 n B n x, 2.55
where B n x are the n th ordinary Bernoulli polynomials.
In the special case, x 1, one gets
β h,1 n,q−1 −1n
q nh−2 β h,1 n,q 1 −1n
q n−1 β h,1 n,q , if n > 1. 2.56
... called the nth Carlitz’s q-Bernoulli polynomials see 1,12,13Let χ be the Dirichlet’s character with conductor f ∈ N, then the generalized Carlitz’s
q-Bernoulli numbers. .. are called the n th generalized q-Bernoulli polynomials of order r attaches to χ.
Trang 7By2.13,...
By2.17, one obtains the following theorem
Trang 8Theorem 2.4 For h ∈ Z, r ∈ N, one has
β