1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article The Best Lower Bound Depended on Two Fixed Variables for Jensen’s Inequality with Ordered Variables" pot

12 386 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 12
Dung lượng 492,87 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2010, Article ID 128258, 12 pagesdoi:10.1155/2010/128258 Research Article The Best Lower Bound Depended on Two Fixed Variables for Jensen’s Inequality with Ordered Variables Vasil

Trang 1

Volume 2010, Article ID 128258, 12 pages

doi:10.1155/2010/128258

Research Article

The Best Lower Bound Depended on

Two Fixed Variables for Jensen’s Inequality with Ordered Variables

Vasile Cirtoaje

Department of Automatic Control and Computers, University of Ploiesti, 100680 Ploiesti, Romania

Correspondence should be addressed to Vasile Cirtoaje,vcirtoaje@upg-ploiesti.ro

Received 16 June 2010; Accepted 4 November 2010

Academic Editor: R N Mohapatra

Copyrightq 2010 Vasile Cirtoaje This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

We give the best lower bound for the weighted Jensen’s discrete inequality with ordered variables

applied to a convex function f, in the case when the lower bound depends on f, weights, and two

given variables Furthermore, under the same conditions, we give some sharp lower bounds for the weighted AM-GM inequality and AM-HM inequality

1 Introduction

Let x  {x1, x2, , x n } be a sequence of real numbers belonging to an interval I, and let

p  {p1, p2, , p n } be a sequence of given positive weights associated to x and satisfying

p1 p2 · · ·  p n  1 If f is a convex function on I, then the well-known discrete Jensen’s

inequality1 states that

Δf, p, x≥ 0, 1.1 where

Δf, p, x p1f x1  p2f x2  · · ·  p n f x n  − fp1x1 p2x2 · · ·  p n x n



1.2

is the so-called Jensen’s difference The next refinement of Jensen’s inequality was proven in

2, as a consequence of its Theorem2.1, partii

Δf, p, x≥ max

1≤i<k≤n



p i f x i   p k f x k −p i  p k



f

p

i x i  p k x k

p i  p k



≥ 0. 1.3

Trang 2

By1.3, for fixed x i and x k, we get

Δf, p, x≥ p i f x i   p k f x k −p i  p k



f

p

i x i  p k x k

p i  p k

 : Sp,f x i , x k . 1.4

In this paper, we will establish that the best lower bound L p,f x i , x k of Jensen’s difference

Δf, p, x for

x1≤ · · · ≤ x i ≤ · · · ≤ x k ≤ · · · ≤ x n 1.5 has the expression

L p,f x i , x k   Q i f x i   R k f x k  − Q i  R k f



Q i x i  R k x k

Q i  R k



where

Q i  p1 p2 · · ·  p i , R k  p k  p k1 · · ·  p n 1.7 Logically, we need to have

L p,f x i , x k  ≥ S p,f x i , x k . 1.8 Indeed, this inequality is equivalent to Jensen’s inequality



Q i − p i



f x i R k − p k



f x k p i  p k



f

p

i x i  p k x k

p i  p k



≥ Q i  R k f



Q i x i  R k x k

Q i  R k



.

1.9

2 Main Results

Theorem 2.1 Let f be a convex function on I, and let x1 , x2, , x n ∈ I n ≥ 3 such that

x1≤ x2≤ · · · ≤ x n 2.1

For fixed x i and x k (1 ≤ i < k ≤ n), Jensen’s difference Δf, p, x is minimal when

x1  x2  · · ·  x i−1 x i , x k1 x k2 · · ·  x n  x k ,

x i1 x i2 · · ·  x k−1 Q i x i  R k x k

Q i  R k

,

2.2

Trang 3

that is,

Δf, p, x≥ Q i f x i   R k f x k  − Q i  R k f



Q i x i  R k x k

Q i  R k

 : Lp,f x i , x k .

2.3

For proving Theorem2.1, we will need the following three lemmas

Lemma 2.2 Let p, q be nonnegative real numbers, and let f be a convex function on I If a, b, c, d ∈ I

such that c, d ∈ a, b and

then

pf a  qfb ≥ pfc  qfd. 2.5

Lemma 2.3 Let f be a convex function on I, and let x1 , x2, , x n ∈ I (n ≥ 3) such that

x1≤ x2≤ · · · ≤ x n 2.6

For fixed x i , x i1, , x n , where i ∈ {2, 3, , n − 1}, Jensen’s difference Δf, p, x is minimal when

x1 x2 · · ·  x i−1 x i 2.7

Lemma 2.4 Let f be a convex function on I, and let x1 , x2, , x n ∈ I (n ≥ 3) such that

x1≤ x2≤ · · · ≤ x n 2.8

For fixed x1, x2, , x k , where k ∈ {2, 3, , n − 1}, Jensen’s difference Δf, p, x is minimal when

x k1 x k2 · · ·  x n  x k 2.9

Applying Theorem 2.1 for f x  e x and using the substitutions a1  e x1, a2 

e x2, , a n  e xn, we obtain

Corollary 2.5 Let

0 < a1≤ · · · ≤ a i ≤ · · · ≤ a k ≤ · · · ≤ a n , 2.10

and let p1, p2, , p n be positive real numbers such that p1 p2 · · ·  p n  1 Then,

p1a1 p2a2 · · ·  p n a n − a p1

1a p2

2 · · · a pn n

≥ Q i a i  R k a k − Q i  R k a Qi/ Q i R k

2.11

Trang 4

with equality for

a1 a2 · · ·  a i , a k  a k1 · · ·  a n ,

a i1 a i2 · · ·  a k−1 a Qi/ Q i R k

2.12

Using Corollary2.5, we can prove the propositions below

Proposition 2.6 Let

0 < a1≤ · · · ≤ a i ≤ · · · ≤ a k ≤ · · · ≤ a n , 2.13

and let p1, p2, , p n be positive real numbers such that p1 p2 · · ·  p n  1 If

P

2Q i R k

Q i  R k

, Q i ≤ R k ,

R k , Q i ≥ R k ,

2.14

then

p1a1 p2a2 · · ·  p n a n − a p1

1 a p2

2 · · · a pn

with equality for a1  a2  · · ·  a n When Q i  R k , equality holds again for a1  a2  · · ·  a i ,

a i1 · · ·  a k−1 √a i a k , a k  a k1 · · ·  a n

Proposition 2.7 Let

0 < a1≤ · · · ≤ a i ≤ · · · ≤ a k ≤ · · · ≤ a n , 2.16

and let p1, p2, , p n be positive real numbers such that p1 p2 · · ·  p n  1 Then,

p1a1 p2a2 · · ·  p n a n − a p1

1a p2

2 · · · a pn

4Q i  2R k a k  2Q i  4R k a i

, 2.17

with equality if and only if a1 a2 · · ·  a n

Remark 2.8 For p1 p2 · · ·  p n  1/n, from Proposition2.6we get the inequality

a1 a2 · · ·  a n − nn

a1a2· · · a n ≥ Pa k−√a i2, 2.18 where

P 

2in − k  1

n  i − k  1 , i  k ≤ n  1,

n − k  1, i  k ≥ n  1.

2.19

Trang 5

Equality in2.18 holds for a1  a2  · · ·  a n If i  k  n  1, then equality holds again for

a1 a2  · · ·  a i , a i1 · · ·  a k−1 √a i a k , a k  a k1 · · ·  a n

Remark 2.9 For p1 p2 · · ·  p n  1/n, from Proposition2.7, we get the inequality

a1 a2 · · ·  a n − nn

a1a2· · · a n3in − k  1a k − a i2

2n  2i − k  1ak  22n  i − 2k  2a i , 2.20

with equality if and only if a1 a2 · · ·  a n

Applying Theorem2.1for fx  − ln x, we obtain

Corollary 2.10 Let

0 < a1≤ · · · ≤ a i ≤ · · · ≤ a k ≤ · · · ≤ a n , 2.21

and let p1, p2, , p n be positive real numbers such that p1 p2 · · ·  p n  1 Then,

p1a1 p2a2 · · ·  p n a n

a p1

1 a p2

2 · · · a pn n

Q i a i  R k a k /Q i  R kQi R k

a Qi i a Rk k , 2.22

with equality for

a1 a2 · · ·  a i , a k  a k1 · · ·  a n ,

a i1 a i2 · · ·  a k−1 Q i a i  R k a k

Q i  R k

2.23

Remark 2.11 For p1 p2  · · ·  p n  1/n, from Corollary2.10, we get the inequality

a1 a2 · · ·  a n

nn

a1a2· · · a nn



ia i  n − k  1a k /n  i − k  1 n i−k1

a i

i a n −k1

k

, 2.24

with equality for

a1 a2 · · ·  a i , a k  a k1 · · ·  a n ,

a i1 a i2 · · ·  a k−1 ia i  n − k  1a k

n  i − k  1 .

2.25

If i ≤ n/2 and k  n − i  1, then 2.24 becomes

a1 a2 · · ·  a n

nn

a1a2· · · a n



a i /a n −i1a n −i1 /a i

2

2i/n

Trang 6

with equality for

a1  a2 · · ·  a i , a n −i1  a n −i2  · · ·  a n ,

a i1 a i2 · · ·  a n −i a i  a n −i1

2 .

2.27

In the case i 1, from 2.26, we get

a1 a2 · · ·  a n

nn

a1a2· · · a n



a1/a na n /a1

2

2/n

with equality for

a2 a3 · · ·  a n−1 a1 a n

Applying Theorem2.1for fx  1/x, we obtain the following.

Corollary 2.12 Let

0 < a1≤ · · · ≤ a i ≤ · · · ≤ a k ≤ · · · ≤ a n , 2.30

and let p1, p2, , p n be positive real numbers such that p1 p2 · · ·  p n  1 Then,

p1

a1  p2

a2  · · · p n

a n − 1

p1a1 p2a2 · · ·  p n a nQ i R k a k − a i2

a i a k Q i a i  R k a k, 2.31

with equality for

a1 a2 · · ·  a i , a k  a k1 · · ·  a n ,

a i1 a i2 · · ·  a k−1 Q i a i  R k a k

Q i  R k

.

2.32

Using Corollary2.12, we can prove the following proposition

Proposition 2.13 Let

0 < a1≤ · · · ≤ a i ≤ · · · ≤ a k ≤ · · · ≤ a n , 2.33

and let p1, p2, , p n be positive real numbers such that p1 p2 · · ·  p n  1 If

P 

Q i , Q i ≤ 3R k ,

4Q i R k

Q i  R k

Trang 7

p1

a1  p2

a2  · · · p n

a n − 1

p1a1 p2a2 · · ·  p n a n ≥ P

 1

a i −√1

a k

2

, 2.35

with equality for a1 a2 · · ·  a n

3 Proof of Lemmas

Proof of Lemma 2.2 Since c, d ∈ a, b, there exist λ1, λ2∈ 0, 1 such that

c  λ1a  1 − λ1b, d  λ2a  1 − λ2b. 3.1

In addition, from pa  qb  pc  qd, we get

Applying Jensen’s inequality twice, we obtain

f c  fλ1a  1 − λ1b ≤ λ1f a  1 − λ1fb,

f d  fλ2a  1 − λ2b ≤ λ2f a  1 − λ2fb,

3.3

and hence

pf c  qfd ≤ pλ1f a  1 − λ1fb qλ2f a  1 − λ2fb

 pfa  qfb.

3.4

Proof of Lemma 2.3 We need to show that

p1f x1  p2f x2  · · ·  p i f x i  − fp1x1 p2x2 · · ·  p n x n

≥ Q i f x i  − fQ i x i  p i1x i1 · · ·  p n x n



.

3.5

Using Jensen’s inequality

p1f x1  p2f x2  · · ·  p i f x i  ≥ Q i f

p

1x1 p2x2 · · ·  p i x i

Q i



, 3.6

Trang 8

it suffices to prove that

Q i f

p

1x1 p2x2 · · ·  p i x i

Q i



 fQ i x i  p i1x i1 · · ·  p n x n

≥ Q i f x i   fp1x1 p2x2 · · ·  p n x n



,

3.7

which can be written as

Q i f X i   fY i  ≥ Q i f x i   fX, 3.8 where

X i p1x1 p2x2 · · ·  p i x i

Q i

,

Y i  Q i x i  p i1x i1 · · ·  p n x n ,

X  p1x1 p2x2 · · ·  p n x n

3.9

Since x i , X ∈ X i , Y i and

Q i X i  Y i  Q i x i  X, 3.10

by Lemma2.2, the conclusion follows

Proof of Lemma 2.4 We need to prove that

p k f x k   p k1f x k1  · · ·  p n f x n  − fp1x1 p2x2 · · ·  p n x n

≥ R k f x k  − fp1x1 · · ·  p k−1x k−1 R k x k



.

3.11

By Jensen’s inequality, we have

p k f x k   p k1f x k1  · · ·  p n f x n  ≥ R k f

p

k x k  p k1x k1 · · ·  p n x n

R k



. 3.12 Therefore, it suffices to prove that

R k f



p k x k  p k1x k1 · · ·  p n x n

R k



 fp1x1 · · ·  p k−1x k−1 R k x k



≥ R k f x k   fp1x1 p2x2 · · ·  p n x n



,

3.13

Trang 9

or, equivalently,

R k f X k   fY k  ≥ R k f x k   fX, 3.14 where

X k p k x k  p k1x k1 · · ·  p n x n

Y k  p1x1 · · ·  p k−1x k−1 R k x k ,

X  p1x1 p2x2 · · ·  p n x n

3.15

The inequality3.14 follows from Lemma2.2, since x k , X ∈ Y k , X k and

R k X k  Y k  R k x k  X. 3.16

4 Proof of Theorem

Proof By Lemmas 2.3 and 2.4, it follows that for fixed x i , x i1, , x k, Jensen’s difference

Δf, p, x is minimal when x1  x2  · · ·  x i−1  x i and x k1  x k2  · · ·  x n  x k; that is,

Δf, p, x≥ Q i f x i   p i1f x i1  · · ·  p k−1f x k−1  R k f x k

− fQ i x i  p i1x i1 · · ·  p k−1x k−1 R k x k



.

4.1

Therefore, towards proving2.3, we only need to show that

p i1f x i1  · · ·  p k−1f x k−1  Q i  R k f



Q i x i  R k x k

Q i  R k



≥ fQ i x i  p i1x i1 · · ·  p k−1x k−1 R k x k



.

4.2

Since

Q i  p i1 · · ·  p k−1 R k  1, 4.3 this inequality is a consequence of Jensen’s inequality Thus, the proof is completed

Trang 10

5 Proof of Propositions

Proof of Proposition 2.6 Using Corollary2.5, we need to prove that

Q i a i  R k a k − Q i  R k a Qi/ Q i R k

k ≥ Pa k−√a i2. 5.1

Since this inequality is homogeneous in a i and a k , and also in Q i and R k, without loss of

generality, assume that a i  1 and Q i  1 Using the notations a k  x2and R k  p, where

x ≥ 1 and p > 0, the inequality is equivalent to gx ≥ 0, where

g x  1  px2−1 px 2p/1p − Px − 12, 5.2 with

P 

2p

p 1, p ≥ 1,

p, p ≤ 1.

5.3

We have

gx  2px − x p−1/p1

− 2Px − 1,

gx  2p − P−2p



p− 1

p 1 x −2/p1 .

5.4

If p≥ 1, then

gx  2p



p− 1

p 1



1− x −2/p1

and if p≤ 1, then

gx  2p



1− p

Since gx ≥ 0 for x ≥ 1, and gx is increasing, gx ≥ g1  0, gx is increasing, and hence gx ≥ g1  0 for x ≥ 1 This concludes the proof.

Proof of Proposition 2.7 Using Corollary2.5, we need to prove that

Q i a i  R k a k − Q i  R k a Qi/ Q i R k

4Q i  2R k a k  2Q i  4R k a i

. 5.7

Trang 11

Since this inequality is homogeneous in a i and a k , and also in Q i and R k , we may set a i  1

and Q i  1 Using the notations a k  x and R k  p, where x ≥ 1 and p > 0, the inequality is equivalent to gx ≥ 0, where

g x 4 2px  2  4p1 px −1 px p/ 1p

− 3px − 12. 5.8

We have

1

2

1 2p gx  p



x − x −1/1p

−2 px p/ 1p− 1,

1 p 2p

1 2p gx  1  p  x −2−p/1p



2 px −1/1p ,



1 p2

2p

1 2p2 p gx  x − 1x −3−2p/1p .

5.9

Since gx ≥ 0 for x ≥ 1, gx is strictly increasing, gx ≥ g1  0, and gx is strictly increasing, gx ≥ g1  0, gx is strictly increasing, and hence gx ≥ g1  0 for

x≥ 1

Proof of Proposition 2.13 Using Corollary2.12, we need to prove that

Q i R k a k − a i2

a i a k Q i a i  R k a k≥ P

 1

a i −√1

a k

2

This inequality is true if

Q i R k√a i√a k2≥ PQ i a i  R k a k . 5.11

For Q i ≤ 3R k, we have

Q i R k√a i√a k2

− PQ i a i  R k a k   Q i a i



2R k



a k

a i  R k − Q i



≥ Q i a i 3R k − Q i  ≥ 0.

5.12

Also, for Q i ≥ 3R k, we get

Q i R k√a i√a k2− PQ i a i  R k a k

 Q i R k

Q i  R k R k − 3Q i a i  Q i − 3R k a k  2Q i  R k√a i a k

Q i R k

Q i  R k R k − 3Q i a i  Q i − 3R k a i  2Q i  R k a i   0.

5.13

The proposition is proved

Trang 12

1 D S Mitrinovi´c, J E Peˇcari´c, and A M Fink, Classical and New Inequalities in Analysis, vol 61 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1993.

2 S S Dragomir, J Peˇcari´c, and L E Persson, “Properties of some functionals related to Jensen’s

inequality,” Acta Mathematica Hungarica, vol 70, no 1-2, pp 129–143, 1996.

Ngày đăng: 21/06/2014, 07:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm