Volume 2011, Article ID 483816, 17 pagesdoi:10.1155/2011/483816 Research Article Nonlocal Cauchy Problem for Nonautonomous Fractional Evolution Equations Fei Xiao Department of Mathemati
Trang 1Volume 2011, Article ID 483816, 17 pages
doi:10.1155/2011/483816
Research Article
Nonlocal Cauchy Problem for
Nonautonomous Fractional Evolution Equations
Fei Xiao
Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, China
Correspondence should be addressed to Fei Xiao,sheaf@mail.ustc.edu.cn
Received 28 November 2010; Accepted 29 January 2011
Academic Editor: Toka Diagana
Copyrightq 2011 Fei Xiao This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
We investigate the mild solutions of a nonlocal Cauchy problem for nonautonomous fractional
evolution equations d q u t/dt q −Atut ft, K1u t, K2u t, , K n u t, t ∈ I 0, T,
u 0 A−10gu u0, in Banach spaces, where T > 0, 0 < q < 1 New results are obtained by
using Sadovskii’s fixed point theorem and the Banach contraction mapping principle An example
is also given
1 Introduction
During the past decades, the fractional differential equations have been proved to be valuable tools in the investigation of many phenomena in engineering and physics; they attracted many researcherscf., e.g., 1 9 On the other hand, the autonomous and nonautonomous evolution equations and related topics were studied in, for example,6,7,10–20, and the nonlocal Cauchy problem was considered in, for example,2,5,18,21–26
In this paper, we consider the following nonlocal Cauchy problem for nonautonomous fractional evolution equations
d q u t
dt q −Atut ft, K1u t, K2u t, , Kn u t, t ∈ I 0, T,
u 0 A−10gu u0,
1.1
in Banach spaces, where 0 < q < 1, g : CI; X → X The terms Ki u t, i 1, , n are
Trang 2defined by
Ki u t
t
0
k it, susds, 1.2
the positive functions k it, s are continuous on D {t, s ∈ R2: 0≤ s ≤ t ≤ T} and
K i∗ sup
t ∈0,T
t
0
k it, sds < ∞. 1.3
Let us assume that u ∈ L0, T; X and At is a family linear closed operator defined
in a Banach space X The fractional order integral of the function u is understood here in the
Riemann-Liouville sense, that is,
I q u t 1
Γq
t
0
t − s q−1u sds. 1.4
In this paper, we denote that C is a positive constant and assume that a family of closed
linear{At : t ∈ 0, T} satisfying
A1 the domain DA of {At : t ∈ 0, T} is dense in the Banach space X and in-dependent of t,
A2 the operator At λ−1exists in LX for any λ with Re λ ≤ 0 and
At λ−1 ≤ C
|λ 1| , t ∈ 0, T. 1.5
A3 There exists constant γ ∈ 0, 1 and C such that
At1 − At2A−1s ≤ C|t
1− t2|γ , t1, t2, s ∈ 0, T. 1.6
Under conditionA2, each operator −As, s ∈ 0, T generates an analytic semigroup
exp−tAs, t > 0, and there exists a constant C such that
A n s exp−tAs ≤ C
where n 0, 1, t > 0, s ∈ 0, T 11
We study the existence of mild solution of 1.1 and obtain the existence theorem based on the measures of noncompactness An example is given to show an application of the abstract results
Trang 32 Preliminaries
Throughout this work, we set I 0, T We denote by X a Banach space, LX the space
of all linear and bounded operators on X, and CI, X the space of all X-valued continuous functions on I.
Lemma 2.1 see 9 1 I q : L10, T → L10, T.
2 For g ∈ L10, T, we have
t
0
η
0
t − ηq−1
η − sγ−1g sds dη Bq, γ t
0
t − s q γ−1 g sds, 2.1
where Bq, γ is a Beta function.
Definition 2.2 Let B be a bounded set of seminormed linear space Y The Kuratowski’s
measure of noncompactnessfor brevity, α-measure of B is defined as
α B infd > 0 : B has a finite cover by sets of diameter ≤ d. 2.2
From the definition, we can get some properties of α-measure immediately, see27
Lemma 2.3 see 27 Let A and B be bounded sets of X Then
1 αA ≤ αB, if A ⊆ B.
2 αA αAcl, where Acldenotes the closure of A.
3 αA 0 if and only if A is precompact.
4 αλA |λ|αA, λ ∈ R.
5 αA ∪ B max{αA, αB}.
6 αA B ≤ αA αB, where A B {x y : x ∈ A, y ∈ B}.
7 αA x0 αA, for any x0∈ X.
For H ⊂ CI, X we define
t
0
H sds
t
0
u sds : u ∈ H
for t ∈ I, where Hs {us ∈ X : u ∈ H}.
The following lemma will be needed
Lemma 2.4 see 27 If H ⊂ CI, X is a bounded, equicontinuous set, then
1 αH sup t ∈I α Ht.
2 α t
0H sds ≤ t
0α Hsds, for t ∈ I.
Trang 4Lemma 2.5 see 28 If {un}∞n1⊂ L1I, X and there exists a m· ∈ L1I, R such that
then α {unt}∞n1 is integrable and
α
t
0
u nsds
∞
n1
≤ 2
t
0
α {uns}∞n1ds. 2.5
We need to use the following Sadovskii’s fixed point theorem
Definition 2.6see 29 Let P be an operator in Banach space X If P is continuous and takes bounded, sets into bounded sets, and αPH < αH for every bounded set H of X with
α H > 0, then P is said to be a condensing operator on X.
Lemma 2.7 Sadovskii’s fixed point theorem 29 Let P be a condensing operator on Banach
space X If P B ⊆ B for a convex, closed, and bounded set B of X, then P has a fixed point in B.
According to4, a mild solution of 1.1 can be defined as follows
Definition 2.8 A function u ∈ CI, X satisfying the equation
u t A−10gu u0
t
0
ψ
t − η, ηU
η
A0 A−10gu u0
dη
t
0
ψ
t − η, ηf
η, K1uη
, K2uη
, , Kn uη
dη
t
0
η
0
ψ
t − η, ηϕ
η, s
f s, K1u s, K2u s, , Kn u sds dη,
2.6
is called a mild solution of1.1, where
ψ t, s q
∞
0
θt q−1ξ qθ exp−t q θA sdθ, 2.7
and ξq is a probability density function defined on0, ∞ such that its Laplace transform is
given by
∞
0
e −σx ξ qσdσ ∞
j0
−x j
Γ1 qj , q ∈ 0, 1, x > 0,
ϕ t, τ ∞
k1
ϕ kt, τ,
2.8
Trang 5ϕ1t, τ At − Aτψt − τ, τ,
ϕ k1t, τ
t
τ
ϕ kt, sϕ1s, τds, k 1, 2 ,
U t −AtA−10 −
t
0
ϕ t, sAsA−10ds.
2.9
To our purpose, the following conclusions will be needed For the proofs refer to4
Lemma 2.9 see 4 The operator-valued functions ψt − η, η and Atψt − η, η are continuous
in uniform topology in the variables t, η, where 0 ≤ η ≤ t − ε, 0 ≤ t ≤ T, for any ε > 0 Clearly,
ψ
t − η, η ≤ Ct − η q−1. 2.10
Moreover, we have
ϕ
t, η ≤ Ct − η γ−1. 2.11
Remark 2.10 From the proof of Theorem 2.5 in4, we can see
γ
2 For t ∈ I, t
0ψ t − η, ηUηdη is uniformly continuous in the norm of LX and
t
0
ψ
t − η, ηU
η
dη
≤C2t q
1
q t γ B
q, γ 1: Mt. 2.12
3 Existence of Solution
Assume that
B1 f : I × X × X × · · · × X → X satisfies f·, v1, v2, , v n : I → X is measurable for all
v i ∈ X, i 1, 2, , n and ft, ·, ·, , · : X × X × · · · × X → X is continuous for a.e t ∈ I, and there exist a positive function μ· ∈ L p I, R p > 1/q > 1 and a continuous nondecreasing function ω : 0, ∞ → 0, ∞ such that
f t, v1, v2, , v n ≤ μtωn
i1
i
, t, v1, v2, , v n ∈ I × X × X × · · · × X, 3.1
and set Tp,q max{T q −1/p , T q}
Trang 6B2 For any bounded sets D, D1, D2, , D n ⊂ X, and 0 ≤ τ ≤ s ≤ t ≤ T,
α
g D≤ βtαD,
α
ψ t − s, sfs, D1, D2, , D n
≤ β1t, sαD1 β2t, sαD2 · · · βnt, sαDn,
α
ψ t − s, sϕs, τfτ, D1, D2, , D n
≤ ζ1t, s, ταD1 ζ2t, s, ταD2 · · · ζnt, s, ταDn,
3.2
where βt is a nonnegative function, and sup t ∈I β t : β < ∞,
sup
t ∈I
t
0
β it, sds : βi < ∞, i 1, 2, , n,
sup
t ∈I
t
0
s
0
ζ jt, s, τdτ ds : ζj < ∞, j 1, 2, , n.
3.3
B3 g : CI; X → X is continuous and there exists
0 < α1<
CMT−1, α2≥ 0 3.4 such that
g u ≤ α1 2. 3.5
B4 The functions μ and ω satisfy the following condition:
C
1 CBq, γ
T p,q γ Ωp,q
n
i1
K i∗
μ
L plim inf
τ→ ∞
ω τ
τ < 1 − α1
CMT, 3.6
whereΩp,q p − 1/pq − 1 p−1/p , and T p,q γ max{Tp,q , T p,q γ}
Theorem 3.1 Suppose that (B1)–(B4) are satisfied, and if C MTβ 4Σ n
i1βi 2ζiK∗
i < 1,
then1.1 has a mild solution on 0, T.
Trang 7Proof Define the operator F : C I; X → CI; X by
F ut A−10gu u0
t
0
ψ
t − η, ηU
η
A0 A−10gu u0
dη
t
0
ψ
t − η, ηf
η, K1uη
, K2uη
, , Kn uη
dη
t
0
η
0
ψ
t − η, ηϕ
η, s
f s, K1u s, K2u s, , Kn u sds dη, t ∈ I.
3.7 Then we proceed in five steps
Step 1 We show that F is continuous.
Let ui be a sequence that ui → u as i → ∞ Since f satisfies B1, we have
f t, K1u it, K2u it, , Kn u it −→ ft, K1u t, K2u t, , Kn u t, as i −→ ∞.
3.8 Then
i
≤A−10g ui − gu t
0
ψ
t − η, ηU
ηg ui − gudη
t
0
ψ
t − η, ηf
η, K1u iη
, K2u iη
, , Kn u iη
−fη, K1uη
, K2uη
, , Kn uηdη
t
0
η
0
ψ
t − η, ηϕ
η, s
f s, K1u is, K2u is, , Kn u is
−fs, K1u s, K2u s, , Kn u sds dη.
3.9
According to the conditionA2, 2.12, and the continuity of g, we have
A−10g ui − gu −→ 0, as i −→ ∞;
t
0
ψ
t − η, ηU
ηg ui − gudη −→ 0, as i −→ ∞. 3.10
Trang 8Noting that ui i
Therefore, we have
f t, K1u it, K2u it, , Kn u it − ft, K1u t, K2u t, , Kn u t
≤ μt
⎡
⎣ω
⎛
⎝n
j1
K j u i
t⎞⎠ ωn
j1
K j u
t⎤⎦
≤ μt
⎡
⎣ω
⎛
⎝n
j1
K j∗
⎞
⎠ ω
⎛
⎝n
j1
K∗j
⎞
⎠
⎤
⎦.
3.11
Using2.10 and by means of the Lebesgue dominated convergence theorem, we obtain
t
0
ψ
t − η, ηf
η, K1u iη
, K2u iη
, , Kn u iη
−fη, K1uη
, K2uη
, , Kn uηdη
≤ C
t
0
t − ηq−1f
η, K1u iη
, K2u iη
, , Kn u iη
−fη, K1uη
, K2uη
, , Kn uηdη,
−→ 0, as i −→ ∞.
3.12
Similarly, by2.10 and 2.11, we have
t
0
η
0
ψ
t − η, ηϕ
η, s
×f s, K1u it, K2u it, , Kn u it
−fs, K1u s, K2u s, , Kn u sds dη
≤ C2
t
0
η
0
t − ηq−1
η − sγ−1
×f s, K1u it, K2u it, , Kn u it
−fs, K1u s, K2u s, , Kn u sds dη
−→ 0, as i −→ ∞.
3.13
Therefore, we deduce that
lim
Trang 9Step 2 We show that F maps bounded sets of C I, X into bounded sets in CI, X.
For any r > 0, we set Br r, byB1, we can see
f t, K1u t, K2u t, , Kn u t ≤ μtω⎛⎝n
j1
K∗j r
⎞
⎠. 3.15
Based on2.12, we denote that St : t
0ψ t − η, ηUηdη, we have
1
q t γ B
q, γ 1 0 0 3.16
Then for any u ∈ Br, byA2, 2.10, 2.11, andLemma 2.1, we have
A−10gu
0 S tgu 0
t
0
ψ
t − η, ηf
η, K1uη
, K2uη
, , Kn uηdη
t
0
η
0
ψ
t − η, ηϕ
η, s
f s, K1u s, K2u s, , Kn u sds dη
≤C Mtgu
C
t
0
t − ηq−1μ
η
ω
⎛
⎝n
j1
K j∗r
⎞
⎠dη
C2
t
0
η
0
t − ηq−1
η − sγ−1μ sω
⎛
⎝n
j1
K∗j r
⎞
⎠ds dη
≤ α1
C Mt 2
C Mt 0 0
M1
C
t
0
t − ηq−1
μ
η
dη C2B
q, γ t
0
t − ηq γ−1
μ
η
dη
,
3.17
where M1 ω n
j1K j∗r
By means of the H ¨older inequality, we have
t
0
t − ηq−1
μ
η
dη t pq−1/p M p,qμ
L p ≤ Tp,qΩp,qμ
L p ,
t
0
t − ηγ q−1
μ
η
dη ≤ Tp,q γΩp,qγμ
L p
3.18
Trang 101
CMTr α2
M1Ωp,qT p,q γ C C2B
q, γμ
L p: !r
3.19
This means FBr ⊂ B !r
Step 3 We show that there exists m ∈ N such that FBm ⊂ Bm
Suppose the contrary, that for every m ∈ N, there exists um ∈ Bm and tm ∈ I, such that mtm
f t, K1u mt, K2u mt, , Kn u mt ≤ μtω⎛⎝n
j1
K j∗m
⎞
⎠, 3.20
we have
CMT m 2
CMT 0
M 0 1
C
t m
0
t m − ηq−1μ
η
dη C2B
q, γ t m
0
t m − ηq γ−1 μ
η
dη
≤ α1
CMT m 2
CMT 0
M 0 1Ωp,qT p,q γ C C2B
q, γμ
L p
≤ α1
CMTm α2
CMT 0
M 0 1Ωp,qT p,q γ C C2B
q, γμ
L p
3.21
Dividing both sides by m and taking the lower limit as m → ∞, we obtain
C
1 CBq, γ
T p,q γ Ωp,qn
j1
K∗jμ
L plim inf
m→ ∞
w m
m ≥ 1 − α1
CMT 3.22
which contradictsB4
Step 4 Denote
F ut A−10gu u0
t
0
ψ
t − η, ηU
η
A0 A−10gu u0
dη Gut, 3.23
Trang 11G ut
t
0
ψ
t − η, ηf
η, K1uη
, K2uη
, , Kn uη
dη
t
0
η
0
ψ
t − η, ηϕ
η, s
f s, K1u s, K2u s, , Kn u sds dη.
3.24
We show that Gu· is equicontinuous.
Let 0 < t2< t1< T and u ∈ Bm Then
1 − Gut2 1 I2 I3 I4, 3.25 where
I1
t2
0
ψ
t1− η, η− ψt2− η, ηf
η, K1uη
, K2uη
, , Kn uηdη,
I2
t1
t2
ψ
t1− η, ηf
η, K1uη
, K2uη
, , Kn uηdη,
I3
t2
0
η
0
ψ
t1− η, η− ψt2− η, ηϕ
η, s
f s, K1u s, K2u s, , Kn u sds dη,
I4
t1
t2
η
0
ψ
t1− η, ηϕ
η, s
f s, K1u s, K2u s, , Kn u sds dη.
3.26
It follows fromLemma 2.9,B1, and 3.20 that I1, I3 → 0, as t2 → t1
For I2, from2.10, 3.20, and B1, we have
I2
t1
t2
ψ
t1− η, ηf
η, K1uη
, K2uη
, , Kn uηdη
≤ CM1
t1
t2
t1− ηq−1
μ
η
dη −→ 0, as t2−→ t1.
3.27
Similarly, by2.10, 2.11, B1, andLemma 2.1, we have
I4
t1
t2
η
0
ψ
t1− η, ηϕ
η, s
f s, K1u s, K2u s, , Kn u sds dη
≤ C2M1
t1
t
t1− ηq−1
η
0
η − sγ−1μ sds dη −→ 0, as t2−→ t1.
3.28
Trang 12Step 5 We show that α FH < αH for every bounded set H ⊂ Bm For any ε > 0, we can
take a sequence{hv}∞
v1⊂ H such that
α H ≤ 2α{hv} ε, 3.29
cf 30 So it follows from Lemmas2.3–2.5,2.9,2 inRemark 2.10, andB2 that
α FH ≤ Cαg H
M Tαg H 2αG{hv} ε
≤ Cαg HMTαg H
2 sup
t ∈I α
t
0
ψ
t − η, ηf
η, K1h vη
, K2h vη
, , Kn h vη
dη
t
0
η
0
ψ
t − η, ηϕ
η, s
×fs, K1h vs, K2h vs, , Kn h vsds dη
ε
≤ CβαH MTβαH
4 sup
t ∈I
t
0
α
ψ
t − η, ηf
η, K1h vη
, K2h vη
, , Kn h vη
dη
8 sup
t ∈I
t
0
η
0
α
ψ
t − η, ηϕ
η, s
f s, K1h vs, K2h vs, , Kn h vs
ε ≤ CβαH
M TβαH 4 sup
t ∈I
t
0
n
i1
β i
t, η
K i∗
α {hv}dη
8 sup
t ∈I
t
0
η
0
n
i1
ζ i
t, η, s
K i∗
α {hv}ds dη
ε
≤ CβαH MTβαH
4
n
i1
β i K∗i 8n
i1
ζ i K∗i
α {hv} ε
CMTβ 4
n
i1
β i 2ζiK∗i
α H ε.
3.30
Since ε is arbitrary, we can obtain
α FH ≤ C
M Tβ 4Σn
i1
β i 2ζiK∗i
α H < αH. 3.31
Trang 13In summary, we have proven that F has a fixed point !u ∈ Bm Consequently,1.1 has
at least one mild solution
Our next result is based on the Banach’s fixed point theorem
G1 There exists a positive function l· ∈ L1I, R and a constant μ > 0 such that
g u − gu∗ ∗
f t, v1, v2, , v n − ft, w1, w2, , w n
≤ lt
n
i1
i − wi
, vi , w i ∈ X2, i 1, 2, , n.
3.32
G2 There exists a constant 0 < δ < 1 such that the function Λ : I → Rdefined by
Λt μCMT C
n
i1
K∗i
Γq
I q l t C2
n
i1
K∗i
Γq
Γγ
I q γ l t ≤ δ, t ∈ I.
3.33
Theorem 3.2 Assume that (G1), (G2) are satisfied, then 1.1 has a unique mild solution.
Proof Let F be defined as inTheorem 3.1 For any u, u∗∈ CI, X, we have
f t, K1u t, K2u t, , Kn u t − ft, K1u∗t, K2u∗t, , Kn u∗t
≤ lt
n
i1
i u t − Ki u∗
≤ ltn
i1
K i∗ ∗
3.34
Thus, fromA2, 2.10, 2.11,Lemma 2.1, we have
∗
0
ψ
t − η, ηU
t
0
ψ
t − η, ηf
η, K1uη
, K2uη
, , Kn uη
−fη, K1u∗η
, K2u∗η
, , Kn u∗ηdη
t
0
η
0
ψ
t − η, ηϕ
η, sf s, Kus, Hus − fs, Ku∗s, Hu∗sds dη
... Trang 12Step We show that α FH < αH for every bounded set H ⊂ Bm For any ε > 0, we... 3.10
Trang 8Noting that ui i
Therefore, we have
f... ∞.
3.13
Therefore, we deduce that
lim
Trang 9Step We show that F maps