1. Trang chủ
  2. » Khoa Học Tự Nhiên

Báo cáo hóa học: " Research Article Nonsquareness and Locally Uniform Nonsquareness in Orlicz-Bochner Function Spaces Endowed with Luxemburg Norm" pot

15 348 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Nonsquareness and Locally Uniform Nonsquareness in Orlicz-Bochner Function Spaces Endowed with Luxemburg Norm
Tác giả Shaoqiang Shang, Yunan Cui, Yongqiang Fu
Trường học Harbin Institute of Technology
Chuyên ngành Mathematics
Thể loại bài báo nghiên cứu
Năm xuất bản 2011
Thành phố Harbin
Định dạng
Số trang 15
Dung lượng 509,8 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Volume 2011, Article ID 875649, 15 pagesdoi:10.1155/2011/875649 Research Article Nonsquareness and Locally Uniform Nonsquareness in Orlicz-Bochner Function Spaces Endowed with Luxemburg

Trang 1

Volume 2011, Article ID 875649, 15 pages

doi:10.1155/2011/875649

Research Article

Nonsquareness and Locally Uniform

Nonsquareness in Orlicz-Bochner Function

Spaces Endowed with Luxemburg Norm

1 Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China

2 Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, China

Received 5 July 2010; Accepted 12 February 2011

Academic Editor: Nikolaos Papageorgiou

Copyrightq 2011 Shaoqiang Shang et al This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

Criteria for nonsquareness and locally uniform nonsquareness of Orlicz-Bochner function spaces equipped with Luxemburg norm are given We also prove that, in Orlicz-Bochner function spaces generated by locally uniform nonsquare Banach space, nonsquareness and locally uniform nonsquareness are equivalent

1 Introduction

A lot of nonsquareness concepts in Banach spaces are knownsee 1 Nonsquareness are important notions in geometry of Banach space One of reasons is that these properties are strongly related to the fixed point property see 2 The criteria for nonsquareness and locally uniform nonsquareness in the classical Orlicz function spaces have been given in3,4 already However, because of the complicated structure of Orlicz-Bochner function spaces equipped with the Luxemburg norm, the criteria for nonsquareness and locally uniform nonsquareness of them have not been found yet The aim of this paper is to give criteria for nonsquareness and locally uniform nonsquareness of Orlicz-Bochner function spaces equipped with Luxemburg norm

LetX,  ·  be a real Banach space SX and BX denote the unit sphere and unit

ball, respectively Let us recall some geometrical notions concerning nonsquareness A Banach

space X is said to be nonsquare if for any x, y ∈ SX we have min{xy/2, x−y/2} <

1 A Banach space X is said to be uniformly nonsquare if there exists δ > 0 such that for any

x, y ∈ SX, min{x  y/2, x − y/2} < 1 − δ A Banach space X is said to be locally

uniformly nonsquare if for any x ∈ SX, there exists δ x > 0 such that min{x  y/2, x − y/2} < 1 − δ x , where y ∈ SX.

Trang 2

Let R be set of real numbers A function M : R → R is called an N-function if M is convex, even, M0  0, Mu > 0 u / 0 and limu → 0 Mu/u  0, and lim u → 0 Mu/u

 ∞

Let T, Σ, μ be a nonatomic measurable space p denotes right derivative of M.

Moreover, for a given Banach space X,  · , we denote by X T the set of all strongly μ-measurable function from T to X, and for each u ∈ X T , we define the modular of u by

ρ M u 



G

Put

L M



u t ∈ X T:



G

M λutdt < ∞ for some λ > 0



The linear set L Mendowed with the Luxemburg norm

u  infλ > 0 : ρ M u

λ



is a Banach space We say that an Orlicz function M satisfies condition Δ2 M ∈ Δ2 if there

exist K > 2 and u0 ≥ 0 such that

M 2u ≤ KMu u ≥ u0. 1.4 First let us recall a known result that will be used in the further part of the paper

ρ M u n  −→ 0 ⇐⇒ u n  −→ 0, ρ M u n  −→ 1 ⇐⇒ u n  −→ 1n −→ ∞. 1.5

2 Main Results

a M ∈ Δ2;

b X is nonsquare.

In order to prove the theorem, we give a lemma

Lemma 2.2 If X is nonsquare, then for any x, y / 0, we have

Trang 3

Case 1 If x < y, then

x  y x  x

y · y 

1− x y · y

< x  x  y − x

 x  y

2.2

or

x − y < x  y . 2.3

Case 2 If x ≥ y, then

x  yy

x · x  y



x

y − 1 · y

< y  y  x − y

 x  y

2.4

or

x − y < x  y . 2.5 This impliesx  y − min{x  y, x − y} > 0 This completes the proof.

Proof of Theorem 2.1 a Necessity Suppose that M /∈ Δ2, then there exist u ∈ SL M  and δ > 0 such that ρ M u  1 − δ < 1 Pick c > 0 such that E  {t ∈ T : ut ≤ c} is not a null set Since

M /∈ Δ2, there exist sequence{r n}∞n1and disjont subsets{E n}∞n1 of E such that

r n > 2nc, M



1 1

n



r n



> 2 n M



1 1

2n



r n



, 2n M



1 1

2n



r n



μE n 2−n δ.

2.6

Therefore, if we define v ∞

n1 r n χ E n , then for any l > 1, we have

ρ M lv ∞

n1

ρ M



lr n χ E n



≥ ∞

nm

ρ M



11

n



r n χ E n



>



nm

2n ρ M



1 1

2n



r n χ E n



≥ ∞

nm

2n M



1 1

2n



r n



μE n ∞

nm

2n· 2−n δ  ∞,

ρ M v ∞

n1

M r n μE n <



n1

M r n  cμE n <



n1

M



1 1

2n



r n



μE n  δ.

2.7

Trang 4

This yields

v  1, ρ M u ± v ≤ ρ M u ∞

n1

M r n  cμE n  1 − δ  δ  1. 2.8

Hence,u ± v ≤ 1 But u  v  u − v ≤ 2u  2, and we deduce that u  v  u − v  1.

Moreover, we have1/2u  v  1/2u − v  1 and 1/2u  v − 1/2u − v}  1,

a contradiction with nonsquareness of L M

Ifb is not true, then there exist x, y ∈ SX such that x  y  1/2x  y 

1/2x − y Pick α > 0 such thatT Mαdt  1 Put

u t  α · x · χ T t, v t  α · y · χ T t. 2.9 Then we have

ρ M u 



T

M αxdt 



T

M αdt  1,

ρ M v 



T

M αy dt 

T

M αdt  1.

2.10

It is easy to see u, v ∈ SL M We know that

u t  vt

2  α · x  y

2 · χ T t, u t − vt

2  α · x − y

2 · χ T t. 2.11 Hence, we have

ρ M u  v

2







T

M

α · x  y2 dt 



T

M αdt  1,

ρ M



u − v

2







T

M

α · x − y2 dt 



T

M αdt  1.

2.12

It is easy to see1/2u  v, 1/2u − v ∈ SL M, a contradiction!

Sufficiency Suppose that there exists u, v ∈ SL M such that

u  v 

12u  v

 12u − v

 1. 2.13

We will derive a contradiction for each of the following two cases

Trang 5

Case 1 μ{t ∈ T : ut /  0} ∩ {t ∈ T : vt / 0}  0 Let G  {t ∈ T : ut / 0} Hence, we

have

1

2ρ M u  1

2ρ M v  1

2



G

M utdt  1

2



T\G

M vtdt

 1 2



G

M ut  vtdt 1

2



T\G

M ut  vtdt

>



G

M

 1

2ut  vt



dt 



T\G

M

 1

2ut  vt



dt





T

M

 1

2ut  vt



dt

 ρ M

 1

2u  v



.

2.14

Since M ∈ Δ2, we have ρ M u  ρ M v  1 Hence, ρ M u  v/2 < 1 This implies u 

v/2 < 1, a contradiction!

Case 2 μ{t ∈ T : ut /  0} ∩ {t ∈ T : vt / 0} > 0 ByLemma 2.2, without loss of

generality, we may assume that there exists T1⊂ {t ∈ T : ut / 0} ∩ {t ∈ T : vt / 0} such

thatut  vt > ut  vt, t ∈ T1and μT1> 0 Therefore,

1

2ρ M u1

2ρ M v 1

2



T

M utdt 1

2



T

M vtdt





T

1

2M ut 1

2M vtdt



T1

M

 1

2ut  1

2vt



dt



T\T1

M

 1

2ut1

2vt



dt

>



T1

M

 1

2ut  vt



dt 



T\T1

M

 1

2ut  vt



dt

 ρ M u  v

2



.

2.15

Since M ∈ Δ2, we have ρ M u  ρ M v  1 Hence, ρ M u  v/2 < 1 This implies

u  v/2 < 1, a contradiction!

a M ∈ Δ2;

b X is locally uniformly nonsquare.

Trang 6

In order to prove the theorem, we give a lemma.

Lemma 2.4 If X is locally uniformly nonsquare, then

a For any x / 0, r1≥ r2> 0, we have

inf

y / 0 x  y 2≤ y ≤ r1

> 0 2.16

b If x n → x, then lim n → ∞ δx n   δx, where

δ x  inf

y / 0 x  y 2≤ y ≤ r1

. 2.17

Proof a Since X is locally uniformly nonsquare, we have η x > 0 and η λx  λη x , where λ > 0

and

η x inf

In fact, since X is locally uniformly nonsquare, we have

η x inf

y x  y

 x · inf y



2− min

x x 

y

y ,

x x

y

y

 :x  y > 0> 0,

η λx inf

y λx  y

 λ · inf

y



x 

λ1y − min x 1λ y

, x −1λ y

:x 

1λ y

> 0

 λ · inf

y x  y

 λ · η x

2.19

Trang 7

Case 1 If x ≥ y, then

x  y ≤ 1− y

x x  y 

y

x x

1− y

x x



y 

y

x x

≤ x − y  y  y − η y/xx

≤ x  y − η r2/xx

2.20

or

x − y ≤ x  y − η r2/xx 2.21

Case 2 If x < y, then

x  yx

y · y  x 

1− x y · y

≤ x  x − η x y − x

 x  y − η x

≤ x  y − η x

2.22

or

x − y ≤ x  y − η x 2.23 Therefore, we get, the following inequality

inf

2/xx , η x

> 0 2.24

holds

b1 Suppose that lim supn → ∞ δx n  > δx, where x n → x n → ∞ Then there exist

a > 0 and subsequence {n} of {n}, such that δx n −δx ≥ a By definition of δx, there exist

y0∈ X such that

x  y0 0 , x − y0 < δ x  a

8, r1≤ y0 ≤ r2. 2.25

We will derive a contradiction for each of the following two cases

Trang 8

Case 1 x  y0  x − y0 Since x n → x n → ∞, there exists n0such thatx n0− x < a/8.

Therefore,

x n0  y0 − x n0 y0 ≤ x  x n0− x  y0 − x n0 y0

≤ x  x n0− x  y0 −  x  y0 − x n0− x

 x  y0 − x  y0  2x n0− x

≤ δx  a8  2x n0− x

< δ x  a

8  2 ·a 8

 δx  3

8a.

2.26

This implies δx n0 ≤ δx  3/8a, a contradiction!

Case 2 x − y0 / x  y0 Without loss of generality, we may assume x − y0 > x  y0  r, where r > 0 Since x n → x n → ∞, there exists n0such thatx n0−x < min{1/8a, 1/8r}.

Therefore, we have

x n

0− y0  x − y0 x n0− x

x − y0 − x n0− x

x − y0 − 1

8r,

x n

0 y0  x  y0 x n0− x

x  y0  x n0− x

x  y0  18r.

2.27

This implies

x n0− y0 ≥ x − y0 − 18r ≥ x  y0  r − 18r ≥ x  y0  18r ≥ x n0 y0 . 2.28 Similarly, we have

x n0  y0 − x n0 y0 ≤ δx  38a. 2.29 Therefore, we have

x n0  y0 n

0 y0 , x n

0− y0 ≤ δx  3

8a. 2.30

This implies δx n  ≤ δx  3/8a, a contradiction! Hence, lim sup n → ∞ δx n  ≤ δx.

Trang 9

b2 Suppose that lim infn → ∞ δx n  < δx, where x n → x n → ∞ Then there exist

b > 0 and subsequence {n} of {n}, such that δx − δx n  ≥ b Since x n → x n → ∞, then there exist n0 ∈ N such that x n0− x n  < 1/8b, whenever n ≥ n0 By definition of δx n0,

there exist y0∈ X such that

x n0  y0 n

0 y0 , x n

0− y0 < δ x n

0  b

8, r2≤ y0 ≤ r1. 2.31

Therefore, we have

x n  y0 n  y0 , x n − y0

 x n0− x n0 x n  y0 n

0− x n0 x n  y0 , x n

0− x n0 x n − y0

≤ x n0 1

8b  y0 n

0 y0 , x n

0− y0  1

8b

 x n0  y0 n

0 y0 , x n

0− y0  1

4b

< δ x n0  1

8b 1

4b

< δ x n0  3

8b

2.32

whenever n ≥ n0 Since x n → x n → ∞, there exists n1 > n0 such that|ηx − ηx n1| <

1/8b, where

η x  x  y0 0 , x − y0 . 2.33

Hence, we have

η x n1 > ηx −1

8b ≥ δ x −1

8b ≥ δ x n0  b −1

8b  δ x n0 7

8b. 2.34

This implies

x n1  y0 n

1 y0 , x n

1− y0 ≥ δx n0 7

8b, 2.35

which contradict2.32 Hence, lim infn → ∞ δx n  ≥ δx.

Combingb1 with b2, we get limn → ∞ δx n   δx This completes the proof.

Trang 10

Proof of Theorem 2.3 Necessity By Theorem 2.1, M ∈ Δ2 If b is not true, then there exist

x ∈ SX, {y n}∞

n1 ⊂ SX such that 1/2x  y n  → 1 and 1/2x − y n  → 1 as n → ∞ Pick α > 0 such that

T Mαdt  1 Put

u t  α · x · χ T t, v n t  α · y n · χ T t. 2.36 Then we have

ρ M u 



T

M αxdt 



T

M αdt  1,

ρ M v n 



T

M αy n dt 

T

M αdt  1.

2.37

It is easy to see u, v n ∈ SL M We know that

u t  v n t

2  α · x  y n

2 · χ T t, u t − v n t

2  α · x − y n

2 · χ T t. 2.38

Moreover, we have Mα·xy n /2 ≤ Mα, Mα·x−y n /2 ≤ Mα By the dominated

convergence theorem, we have

lim

n → ∞



T

M



α ·

x  y n

2

dt 



T

lim

n → ∞ M



α ·

x  y n

2

dt 



T

M αdt  1,

lim

n → ∞



T

M



α ·

x − y n

2

dt 



T

lim

n → ∞ M



α ·

x − y n

2

dt 



T

M αdt  1.

2.39

It is easy to see ρ M 1/2uv n  → 1, ρ M 1/2u−v n  → 1 as n → ∞ ByLemma 1.1, we have1/2u  v n  → 1 and 1/2u − v n  → 1 as n → ∞, a contradiction with locally uniform nonsquareness of L M

Sufficiency Suppose that there exist u ∈ SL M , {v n}∞n1 ⊂ SL M  such that 1/2u 

v n  → 1, 1/2u − v n  → 1 as n → ∞ We will derive a contradiction for each of the

following two cases

Case 1 There exist ε0 > 0, σ0> 0 such that μG n > ε0, where G n  {t ∈ T : v n t ≥ σ0} Put

H n 



t ∈ T : σ0≤ v n t ≤ M−1

4

ε0



We have

1



T

M v n tdt ≥



G \H M v n tdt ≥ 4

ε0 · μG n \ H n . 2.41

Trang 11

This implies μG n \ H n  ≤ 1/4ε0 Hence, μH n > 1/2ε0 We define a function

η t  inf

y / 0



ut  y 0≤ y ≤ M−1

4

ε0



2.42

on T0, where T0  {t ∈ T : ut / 0} By Lemma 2.4, we have ηt > 0 μ-a.e on T0 Let

h n t → ut μ-a.e on T0, where h nis simple function Hence,

η n t inf

y / 0



h n t y n ty , h n t−y : σ0≤ y ≤M−1

4

ε0



2.43

is μ-measurable ByLemma 2.4, we have η n t → ηt μ-a.e on T0 Then ηt is μ-measurable.

Using

T ⊃



i1



t ∈ T0: 1

i  1 < η t ≤ 1

i



we get that there exists η0> 0 such that μH < 1/8ε0, where

H  t ∈ T0: ηt ≤ 2η0

Let E n  H n \ H, E1

n  H n ∩ {t ∈ T : ut / 0} \ H, E2

n  H n ∩ {t ∈ T : ut  0} \ H It

is easy to see E n  E1

n ∪ E2

n , E1

n ∩ E2

n  φ and μE n ≥ 3/8ε0 If t ∈ E1

n, byLemma 2.4, we have

ut  v n t − min{ut  v n t, ut − v n t} ≥ ηt ≥ 2η0. 2.46

Without loss of generality, we may assume that there exists F1

n ⊂ E1

nsuch that

μF n1≥ 1

2μE1n , ut  v n t − ut  v n t ≥ 2η0t ∈ F n1. 2.47

Moreover, for any u ≥ v > 0, we have

1

2M u − M

 1

2u



 1

2M v − M

 1

2v



 1 2

u

0

p tdt −

1/2u

0

p tdt − 1

2

v

0

p tdt 

1/2v

0

p tdt



 1 2

u

0

p tdt −1

2

v

0

p tdt



1/2u

0

p tdt −

1/2v

0

p tdt



 1 2

u

v

p tdt −

1/2u

1/2v p tdt

1/2u1/2v

v

p tdt −

1/2u

1/2v p tdt ≥ 0.

2.48

Trang 12

Hence, if t ∈ E2

n, then

1

2M v n t 1

2M v n t ≥ 1

2M σ0 − M σ0

2



Let F n  F1

n ∪ E2

n Then μF n ≥ 1/8ε0 Therefore,

1

2ρ M u  1

2ρ M v n  − ρ M u  v n

2



 1

2



T

M utdt 1

2



T

M v n tdt −



T

M

ut  v

n t

2



dt





T

 1

2M ut 1

2M v n t − M

ut  v

n t

2



dt



F1

 1

2M ut 1

2M v n t − M

ut  v

n t

2



dt





E2

 1

2M ut  1

2M v n t − M

ut  v

n t

2



dt



F1



M

 1

2ut 1

2v n t



− M

ut  v

n t

2



dt





E2

 1

2M ut  1

2M v n t − M

ut  v

n t

2



dt



F1



M

ut  v

n t

2  η0



− M

ut  v

n t

2



dt





E2

 1

2M v n t − M

v

n t

2



dt



F1M

η0



dt 



E2

 1

2M σ0 − M σ0

2



dt



F n

min



M

η0



,1

2M σ0 − M σ0

2



dt

 min



M

η0



,1

2M σ0 − M σ0

2



· μF n

≥ min



M

η0



,1

2M σ0 − M σ0

2



·1

8ε0.

2.50

By Lemma 1.1, we have ρ M u  ρ M v n   1, ρ M u  v n /2 → 1 as n → ∞ This is in

contradiction with1/2ρ M u  1/2ρ M v n  − ρ M u  v n /2 ≥ min{Mη0, 1/2Mσ0 −

Mσ0/2} · 1/8ε0

... Δ2;

b X is locally uniformly nonsquare.

Trang 6

In order to prove the theorem,... following two cases

Trang 8

Case x  y0  x − y0 Since... derive a contradiction for each of the following two cases

Trang 5

Case μ{t ∈ T : ut /  0} ∩ {t

Ngày đăng: 21/06/2014, 05:20

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm