1. Trang chủ
  2. » Khoa Học Tự Nhiên

Hindawi Publishing Corporation Journal of Inequalities and Applications Volume 2011, Article ID pptx

19 310 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 556,58 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Pe ˇcari ´c2, 4 1 Department of Mathematics, University of Pannonia, University Street 10, 8200 Veszpr´em, Hungary 2 Abdus Salam School of Mathematical Sciences, GC University, 68-B, New

Trang 1

Volume 2011, Article ID 350973, 19 pages

doi:10.1155/2011/350973

Research Article

Refinements of Results about Weighted Mixed

Symmetric Means and Related Cauchy Means

L ´aszl ´o Horv ´ath,1 Khuram Ali Khan,2, 3 and J Pe ˇcari ´c2, 4

1 Department of Mathematics, University of Pannonia, University Street 10,

8200 Veszpr´em, Hungary

2 Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Town,

Lahore 54600, Pakistan

3 Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan

4 Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia

Received 26 November 2010; Accepted 23 February 2011

Academic Editor: Michel Chipot

Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

A recent refinement of the classical discrete Jensen inequality is given by Horv´ath and Peˇcari´c

In this paper, the corresponding weighted mixed symmetric means and Cauchy-type means are defined We investigate the exponential convexity of some functions, study mean value theorems, and prove the monotonicity of the introduced means

1 Introduction and Preliminary Results

A new refinement of the discrete Jensen inequality is given in1 The following notations are also introduced in1

Let X be a set, P X its power set, and |X| denotes the number of elements in X Let

u ≥ 1 and v ≥ 2 be fixed integers Define the functions

S v,w:{1, , u} v −→ {1, , u} v−1, 1≤ w ≤ v,

S v :{1, , u} v −→ P{1, , u} v−1

,

T v : P

{1, , u} v

−→ P{1, , u} v−1

1.1

Trang 2

S v,w i1, , i v  : i1, , i w−1, i w1, , i v , 1 ≤ w ≤ v,

S v i1, , i v  v

w1

{S v,w i1, , i v },

T v I 



i1, ,i v ∈I

S v i1, , i v , I / φ,

1.2

Further, introduce the function

via

α v,i i1, , i v  : Number of occurrences of i in the sequence i1, , i v . 1.4

For each I ∈ P{1, , u} v, let

α I,i:

i1, ,i v ∈I

α v,i i1, , i v , 1 ≤ i ≤ u. 1.5

It is easy to observe from the construction of the functions S v , S v,w , T v and α v,ithat they do

not depend essentially on u, so we can write for short S v for S u, and so on

H1 The following considerations concern a subset I kof{1, , n} ksatisfying

where n ≥ 1 and k ≥ 2 are fixed integers.

Next, we proceed inductively to define the sets I l ⊂ {1, , n} l k − 1 ≥ l ≥ 1 by

By1.6, I1 {1, , n} and this implies that α I1,i  1 for 1 ≤ i ≤ n From 1.6, again, we have

α I l ,i ≥ 1 k − 1 ≥ l ≥ 1, 1 ≤ i ≤ n.

For every k ≥ l ≥ 2 and for any j1, , j l−1 ∈ I l−1, let

H I l



j1, , j l−1

: i1, , i l , m ∈ I l × {1, , l} | S l,m i1, , i l j1, , j l−1 . 1.8

Trang 3

Using these sets we define the functions t I k ,l : I l → N k ≥ l ≥ 1 inductively by

t I k ,k i1, , i k  : 1, i1, , i k  ∈ I k ,

t I k ,l−1

j1, , j l−1

i1, ,i l ,m∈H Ilj1, ,j l−1

t I k ,l i1, , i l . 1.9

Let J be an interval in R, let x : x1, , x n  ∈ J n, let p : p1, , p n such that

p i > 0 1 ≤ i ≤ n andn

i1p i  1, and let f : J → R be a convex function For any k ≥ l ≥ 1,

set

A l,l  A l,l I k;x; p :

i1, ,i l ∈I l

 l

s1

p i s

α I l ,i s



f

l

s1



p i s /α I l ,i s

x i s

l

s1p i s /α I l ,i s



and associate to each k − 1 ≥ l ≥ 1 the number

A k,l  A k,l I k;x; p

: k − 11

i1, ,i l ∈I l

t I k ,l i1, , i l

 l

s1

p i s

α I k ,i s



f

l

s1



p i s /α I k ,i s



x i s

l

s1p i s /α I k ,i s



We need the following hypotheses

H2 Let x : x1, , x n  and p : p1, , p n  be positive n-tuples such thatn

i1p i 1

H3 Let J ⊂ R be an interval, let x : x1, , x n  ∈ J n, letp : p1, , p n be a positive

n-tuples such that n

i1p i  1, and let h, g : J → R be continuous and strictly

monotone functions

H4 Let J ⊂ R be an interval, let x : x1, , x n  ∈ J n, and letp : p1, , p2 be positive

n-tuples such thatn

p i p i  1 Further, let f : J → R be a convex function.

Assume H1 and H2 The power means of order r ∈ R corresponding to i l :

i1, , i n  ∈ I1 l  1, , k are given as

M r



I k ,il :

l

s1p i s /α I k ,i s x r

i s

l

s1p i s /α I k ,i s

1/r

, r /  0,

 l



s1

x p i is /α Ik,is

s

1/l

s1p is /α Ik,is

, r  0.

1.12

We also use the means

M r :

 n

i1

p i x r i

1/r

, r /  0, n



i1

x p i

i , r  0.

1.13

Trang 4

For γ, η ∈ R, we introduce the mixed symmetric means with positive weights as follows:

M η,γ1 I k , k :

ik i1, ,i k ∈I k

 k

s1

p i s

α I k ,i s





M γ I k ,ikη

1/η , η /  0,



ik i1, ,i k ∈I k



M γ I k ,ikk1p is /α Ik,is

, η  0,

1.14

and, for k − 1 ≥ l ≥ 1,

M1η,γ I k , l :

k − 1 l

il i1, ,i l ∈I l

t I k ,lil

 l

s1

p i s

α I k ,i s





M γ I k ,ilη

1/η

, η /  0,

il i1, ,i l ∈I l



M γ



I k ,ilt Ik,lill

s1p is /α Ik,is

1/k−1 l

, η  0.

1.15

We deduce the monotonicity of these means from the following refinement of the discrete Jensen inequality in1

Theorem 1.1 Assume (H1) and (H4) Then,

f

 n

i1

p i x i



≤ A k,k ≤ A k,k−1≤ · · · ≤ A k,2 ≤ A k,1 n

i1

p i f x i , 1.16

where the numbers A k,l k ≥ l ≥ 1 are defined in 1.10 and 1.11 If f is a concave function, then

the inequalities in1.16 are reversed.

Under the conditions of the previous theorem,

Υ1

x, p, f: Ak,m − A k,l ≥ 0, k ≥ l > m ≥ 1,

Υ2

x, p, f: Ak,l − f

 n

i1

p i x i



Corollary 1.2 Assume (H1) and (H2) Let η, γ ∈ R such that η ≤ γ, then

M γ  M1

γ,η I k , 1  ≥ · · · ≥ M1

M η  M1

η,γ I k , 1  ≤ · · · ≤ M1

Trang 5

Proof Assume η, γ / 0 To obtain 1.18, we can apply Theorem 1.1to the function fx 

x γ/η x > 0 and the n-tuples x η

1, , x η n to get the analogue of 1.16 and to raise the

power 1/γ Equation1.19 can be proved in a similar way by using fx  x η/γ x > 0

andx γ

1, , x γ n  and raising the power 1/η.

When η  0 or γ  0, we get the required results by taking limit.

AssumeH1 and H3 Then, we define the quasiarithmetic means with respect to

1.10 and 1.11 as follows:

M1h,g I k , k  : h−1

i1, ,i k ∈I k

 k

s1

p i s

α I k ,i s



h ◦ g−1

k

s1



p i s /α I k ,i s

g x i s

k

s1p i s /α I k ,i s

⎞

and, for k − 1 ≥ l ≥ 1,

M1h,g I k , l   h−1

k − 1 l

il i1, ,i l ∈I l

t I k ,l



il l

s1

p i s

α I k ,i s



h ◦ g−1

l

s1



p i s /α I k ,i s

g x i s

l

s1p i s /α I k ,i s

⎞

⎠.

1.21 The monotonicity of these generalized means is obtained in the next corollary

Corollary 1.3 Assume (H1) and (H3) For a continuous and strictly monotone function q : J → R,

one defines

M q: q−1

 n

i1

p i q x i



Then,

M h  M1

h,g I k , 1  ≥ · · · ≥ M1

if either h ◦ g−1is convex and h is increasing or h ◦ g−1is concave and h is decreasing,

M g  M1

g,h I k , 1  ≤ · · · ≤ M1

if either g ◦ h−1is convex and g is decreasing or g ◦ h−1is concave and g is increasing.

Proof First, we can apply Theorem 1.1 to the function h ◦ g−1 and the n-tuples

gx1, , gx n , then we can apply h−1 to the inequality coming from 1.16 This gives

1.23 A similar argument gives 1.24: g ◦ h−1, hx1, , hx n  and g−1can be used Throughout Examples 1.4-1.5, 1.9–1.12, which are based on examples in 1, the conditionsH2, in the mixed symmetric means, and H3, in the quasiarithmetic means, will

be assumed

Trang 6

Example 1.4 Suppose

I2:i1, i2 ∈ {1, , n}2| i1|i2



where i1|i2means that i1divides i2 Since i|i i  1, , n, therefore 1.6 holds We note that

α I2,in

i



wheren/i is the largest positive integer not greater than n/i, and di means the number of positive divisors of i Then,1.14 gives for η, γ ∈ R

M η,γ1 I2, 2 

i2i1,i2∈I2

 2

s1

p is

n/i s   di s





M γ

I2,ikn

1/n

, η /  0,



i2i1,i2∈I2



M γ

I2,i2 2

1p is / n/i s di s

η /  0,

1.27

while1.20 gives

M1h,g I2, 2   h−1

i1,i2∈I2

 2

s1

p i s

n/i s   di s



h ◦ g−1

2

s1



p i s / n/i s   di sg x i s

2

s1

p i s / n/i s   di s

⎞

⎠.

1.28

AssumeH4 holds, and consider the set I2inExample 1.4 Then,Theorem 1.1implies that

f

 n

r1

p r x r



i1,i2∈I2

 2

s1

p i s

n/i s   di s



f

2

s1



p i s / n/i s   di sx i s

2

s1

p i s / n/i s   di s



n

r1

p r f x r ,

1.29 and thus

Υ3

x, p, f:

i1,i2∈I2

 2

s1

p i s

n/i s   di s



f

2

s1

p i s / n/i s   di sx i s

2

s1



p i s / n/i s   di s



−f

 n

r1

p r x r



≥0,

Υ4

x, p, f: n

r1

p r f x r −

i1,i2∈I2

 2

s1

p i s

n/i s   di s



f

2

s1



p i s / n/i s   di sx i s

2

s1

p i s / n/i s   di s



≥ 0.

1.30

Trang 7

Example 1.5 Let c i ≥ 1 be an integer i  1, , n, let k : n

i1c i , and also let I k  P c1, ,c n

k

consist of all sequences i1, , i k  in which the number of occurrences of i ∈ {1, , n} is

c i i  1, , n Obviously, 1.6 holds, and, by simple calculations, we have

I k−1n

i1

P c1, ,c i−1,c i −1,c i1, ,c n

k−1 , α I k ,i k!

c1!· · · c n!c i , i  1, , n. 1.31

Moreover, t I k ,k−1i1, , i k−1  k for

i1, , i k−1 ∈ P c1, ,c i−1,c i −1,c i1, ,c n

Under the above settings,1.15 can be written as

M1η,γ I k , k− 1 

⎣ 1

k− 1

n

i1



c i − p i

n

r1p r x γ r −p i /c i

x γ i

1−p i /c i



η/γ

1/η

, η /  0, γ / 0,

⎝n

i1

n

r1p r x γ r −p i /c i

x γ i

1−p i /c i

c i −p i /γ

1/k−1

, γ /  0, η  0,

n

i1



x i −p i

n

i1

x r p r

1.33 while1.21 becomes

M h,g1 I k , k − 1  h−1

 1

k− 1

n

i1



c i − p i



h ◦ g−1

n

r1p r g x r −p i /c i



g x i

1−p i /c i



. 1.34

AssumeH4 holds, and consider the set I kinExample 1.5 Then,Theorem 1.1yields that

A k,k−1 1

k− 1

n

i1



c i − p i



f

n

r1p r x r−p i /c i



x i

1−p i /c i





,

f

 n

r1

p r x r



≤ A k,k−1≤ n

r1

p r f x r .

1.35

This shows that

Υ5

x, p, f: Ak,k−1− f

 n

r1

p r x r



≥ 0,

Υ6

x, p, f: n

r1

p r f x r  − A k,k−1≥ 0.

1.36

Trang 8

The following result is also given in1.

Theorem 1.6 Assume (H1) and (H4), and suppose |H I I j1, , j l−1|  β l−1for any j1, , j l−1 ∈

I l−1 k ≥ l ≥ 2 Then,

A k,l  A l,l n

l |I l|

i1, ,i l ∈I l

 l

s1

p i s



f

l

s1p i s x i s

l

s1p i s



and thus

f

 n

r1

p r x r



≤ A k,k ≤ A k −1,k−1 ≤ · · · ≤ A 2,2 ≤ A 1,1 n

r1

p r f x r . 1.38

If f is a concave function then the inequalities1.38 are reversed.

Under the conditions of the previous theorem, we have, from1.38, that

Υ7

x, p, f: Am,m − A l,l ≥ 0, k ≥ l > m ≥ 1,

Υ8

x, p, f: Al,l − f

 n

r1

p r x r



AssumeH1 and H2, and suppose |H I I j1, , j l−1|  β l−1for anyj1, , j l−1 ∈ I l−1k ≥

l ≥ 2 In this case, the power means of order r ∈ R corresponding to i l : i1, , i l  ∈ I l l 

1, , k has the form

M r

I l ,il

 M r



I k ,il



l

s1p i s x r

i s

l

s1p i s

1/r

, r /  0,

l

s1

x i s p is

1/l

s1p is

, r  0.

1.40

Now, for γ, η ∈ R and k ≥ l ≥ 1, we introduce the mixed symmetric means with positive

weights related to1.37 as follows:

M2

η,γ I l :

⎣ n

l |I l|

il i1, ,i l ∈I l

 l

s1

p i s





M γ

I l ,ilη

1/η

, η /  0,

il i1, ,i l ∈I l



M γ

I l ,ill

s1p is

n/l |I l|

, η  0.

1.41

Trang 9

Corollary 1.7 Assume (H1) and (H2), and suppose |H I I j1, , j l−1|  β l−1for any j1, , j l−1 ∈

I l−1k ≥ l ≥ 2 Let η, γ ∈ R such that η ≤ γ Then,

M γ  M2

γ,η I1 ≥ · · · ≥ M2

γ,η I k  ≥ M η ,

M η  M2

η,γ I1 ≤ · · · ≤ M2

η,γ I k  ≤ M γ

1.42

Proof The proof comes fromCorollary 1.2

AssumeH1 and H3, and suppose |H I I j1, , j l−1|  β l−1 for any j1, , j l−1 ∈

I l−1 k ≥ l ≥ 2 We define for k ≥ l ≥ 1 the quasiarithmetic means with respect to 1.37 as follows:

M2h,g I l  : h−1

⎝ n

l |I l|

i1, ,i l ∈I l

 l

s1

p i s



h ◦ g−1l

s1p i s g x i s

l

s1p i s

⎞

Corollary 1.8 Assume (H1) and (H3), and suppose |H I I j1, , j l−1|  β l−1for any j1, , j l−1 ∈

I l−1 k ≥ l ≥ 2 Then,

M h  M2

h,g I1 ≥ · · · ≥ M2

where either h ◦ g−1is convex and h is increasing or h ◦ g−1is concave and h is decreasing,

M g  M2

g,h I1 ≤ · · · ≤ M2

where either g ◦ h−1is convex and g is decreasing or g ◦ h−1is concave and g is increasing.

Proof The proof is a consequence ofCorollary 1.3

Example 1.9 If we set

I k:i1, , i k  ∈ {1, , n} k | i1< · · · < i k



then α I n ,i  1 i  1, , n, that is, 1.6 is satisfied for k  n It comes easily that T k I k 

I k−1k  2, , n, |I k|  n

k  k  1, , n, and for each k  2, , n

H I

k



j1, , j k−1  n − k − 1, j1, , j k−1

Trang 10

In this case,1.41 becomes for n ≥ k ≥ 1

M2

η,γ I k 

n−1

k−1

1≤i 1< ···<i k ≤n

 k

s1

p i s





M γ I k ,ikη

1/η

, η /  0,

!

 1≤i 1< ···<i k ≤n



M γ I k ,ikk1p is

"1/#n−1

k−1

$

, η  0,

1.48

and1.43 has the form

M2

h,g I k   h−1

 1

n−1

k−1

1≤i 1< ···<i k ≤n

 k

s1

p i s



h ◦ g−1k

s1p i s g x i s

k

s1p i s



Equation1.48 is a weighted mixed symmetric mean and 1.49 is a generalized mean, as given in2 Therefore, Corollaries1.7and1.8are more general than the Corollaries 1.2 and 1.3 given in2

AssumeH4 holds, and consider the set I kinExample 1.9 Then,Theorem 1.6shows that

A k,k  n1−1

k−1

1≤i 1< ···<i k ≤n

 k

s1

p i s



f

k

s1p i s x i s

k

s1p i s



, k  1, , n,

f

 n

r1

p r x r



 A n,n ≤ A n −1,n−1 ≤ · · · ≤ A 1,1 n

r1

p r f x r .

1.50

Thus, we have

Υ9

x, p, f: Am,m − A l,l ≥ 0, n ≥ l > m ≥ 1. 1.51

Example 1.10 If we set

I k:i1, , i k  ∈ {1, , n} k | i1≤ · · · ≤ i k



then α I k ,i ≥ 1 i  1, , n and thus 1.6 is satisfied It is easy to see that T k I k   I k−1 k 

2, , |I k| n k−1

k



k  1, , and for each l  2, , k

H I

l



j1, , j l−1  n, j1, , j l−1

Trang 11

Under these settings1.41 becomes

M2η,γ I k 

n k−1

k−1

1≤i 1≤···≤i k ≤n

 k

s1

p i s





M γ I k ,ikη

1/η

, η /  0,

1≤i 1≤···≤i k ≤n



M γ



I k ,ikk

1p is"1/

#n k−1

k−1

$

, η  0,

1.54

and1.43 has the form

M2h,g I k   h−1

 1

n k−1

k−1

1≤i 1≤···≤i k ≤n

 k

s1

p i s



h ◦ g−1k

s1p i s g x i s

k

s1p i s



Equation1.54 represents weighted mixed symmetric means, and 1.55 defines generalized means, as given in 2 Therefore, Corollaries 1.7 and 1.8 are more general than the Corollaries 1.9 and 1.10 given in2

AssumeH4 holds, and consider the set I k in Example 1.10 Then, it follows from

f

 n

r1

p r x r



≤ · · · ≤ A k,k ≤ · · · ≤ A 1,1 n

r1

where

A k,k  n k−11

k−1

1≤i 1≤···≤i k ≤n

 k

s1

p i s



f

k

s1p i s x i s

k

s1p i s



This yields that

Υ10

x, p, f A k,k − A l,l ≥ 0, l > k ≥ 1,

Υ11

x, p, f: Ak,k − f

 n

r1

p r x r



Example 1.11 We set

Then, α I k ,i ≥ 1 i  1, , n, hence 1.6 holds It is not hard to see that T k I k   I k−1 k 

2, , |I k |  n k k  1, , and for each l  2, , k,

H I

l



j1, , j l−1  n l , 

j1, , j l−1

... h−1is convex and g is decreasing or g ◦ h−1is concave and g is increasing.

Proof The proof is a consequence of< /i>Corollary 1.3

Example... γ

1.42

Proof The proof comes fromCorollary 1.2

AssumeH1 and H3, and suppose |H I I j1,... convex and g is decreasing or g ◦ h−1is concave and g is increasing.

Proof First, we can apply Theorem 1.1 to the function h ◦ g−1 and

Ngày đăng: 21/06/2014, 04:20

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm