Pe ˇcari ´c2, 4 1 Department of Mathematics, University of Pannonia, University Street 10, 8200 Veszpr´em, Hungary 2 Abdus Salam School of Mathematical Sciences, GC University, 68-B, New
Trang 1Volume 2011, Article ID 350973, 19 pages
doi:10.1155/2011/350973
Research Article
Refinements of Results about Weighted Mixed
Symmetric Means and Related Cauchy Means
L ´aszl ´o Horv ´ath,1 Khuram Ali Khan,2, 3 and J Pe ˇcari ´c2, 4
1 Department of Mathematics, University of Pannonia, University Street 10,
8200 Veszpr´em, Hungary
2 Abdus Salam School of Mathematical Sciences, GC University, 68-B, New Muslim Town,
Lahore 54600, Pakistan
3 Department of Mathematics, University of Sargodha, Sargodha 40100, Pakistan
4 Faculty of Textile Technology, University of Zagreb, 10000 Zagreb, Croatia
Received 26 November 2010; Accepted 23 February 2011
Academic Editor: Michel Chipot
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
A recent refinement of the classical discrete Jensen inequality is given by Horv´ath and Peˇcari´c
In this paper, the corresponding weighted mixed symmetric means and Cauchy-type means are defined We investigate the exponential convexity of some functions, study mean value theorems, and prove the monotonicity of the introduced means
1 Introduction and Preliminary Results
A new refinement of the discrete Jensen inequality is given in1 The following notations are also introduced in1
Let X be a set, P X its power set, and |X| denotes the number of elements in X Let
u ≥ 1 and v ≥ 2 be fixed integers Define the functions
S v,w:{1, , u} v −→ {1, , u} v−1, 1≤ w ≤ v,
S v :{1, , u} v −→ P{1, , u} v−1
,
T v : P
{1, , u} v
−→ P{1, , u} v−1
1.1
Trang 2S v,w i1, , i v : i1, , i w−1, i w1, , i v , 1 ≤ w ≤ v,
S v i1, , i v v
w1
{S v,w i1, , i v },
T v I
⎧
⎪
⎪
i1, ,i v ∈I
S v i1, , i v , I / φ,
1.2
Further, introduce the function
via
α v,i i1, , i v : Number of occurrences of i in the sequence i1, , i v . 1.4
For each I ∈ P{1, , u} v, let
α I,i:
i1, ,i v ∈I
α v,i i1, , i v , 1 ≤ i ≤ u. 1.5
It is easy to observe from the construction of the functions S v , S v,w , T v and α v,ithat they do
not depend essentially on u, so we can write for short S v for S u, and so on
H1 The following considerations concern a subset I kof{1, , n} ksatisfying
where n ≥ 1 and k ≥ 2 are fixed integers.
Next, we proceed inductively to define the sets I l ⊂ {1, , n} l k − 1 ≥ l ≥ 1 by
By1.6, I1 {1, , n} and this implies that α I1,i 1 for 1 ≤ i ≤ n From 1.6, again, we have
α I l ,i ≥ 1 k − 1 ≥ l ≥ 1, 1 ≤ i ≤ n.
For every k ≥ l ≥ 2 and for any j1, , j l−1 ∈ I l−1, let
H I l
j1, , j l−1
:i1, , i l , m ∈ I l × {1, , l} | S l,m i1, , i l j1, , j l−1 . 1.8
Trang 3Using these sets we define the functions t I k ,l : I l → N k ≥ l ≥ 1 inductively by
t I k ,k i1, , i k : 1, i1, , i k ∈ I k ,
t I k ,l−1
j1, , j l−1
i1, ,i l ,m∈H Ilj1, ,j l−1
t I k ,l i1, , i l . 1.9
Let J be an interval in R, let x : x1, , x n ∈ J n, let p : p1, , p n such that
p i > 0 1 ≤ i ≤ n andn
i1p i 1, and let f : J → R be a convex function For any k ≥ l ≥ 1,
set
A l,l A l,l I k;x; p :
i1, ,i l ∈I l
l
s1
p i s
α I l ,i s
f
l
s1
p i s /α I l ,i s
x i s
l
s1p i s /α I l ,i s
and associate to each k − 1 ≥ l ≥ 1 the number
A k,l A k,l I k;x; p
: k − 11
i1, ,i l ∈I l
t I k ,l i1, , i l
l
s1
p i s
α I k ,i s
f
l
s1
p i s /α I k ,i s
x i s
l
s1p i s /α I k ,i s
We need the following hypotheses
H2 Let x : x1, , x n and p : p1, , p n be positive n-tuples such thatn
i1p i 1
H3 Let J ⊂ R be an interval, let x : x1, , x n ∈ J n, letp : p1, , p n be a positive
n-tuples such that n
i1p i 1, and let h, g : J → R be continuous and strictly
monotone functions
H4 Let J ⊂ R be an interval, let x : x1, , x n ∈ J n, and letp : p1, , p2 be positive
n-tuples such thatn
p i p i 1 Further, let f : J → R be a convex function.
Assume H1 and H2 The power means of order r ∈ R corresponding to i l :
i1, , i n ∈ I1 l 1, , k are given as
M r
I k ,il :
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎛
⎝
l
s1p i s /α I k ,i s x r
i s
l
s1p i s /α I k ,i s
⎞
⎠
1/r
, r / 0,
l
s1
x p i is /α Ik,is
s
1/l
s1p is /α Ik,is
, r 0.
1.12
We also use the means
M r :
⎧
⎪
⎪
⎪
⎪
n
i1
p i x r i
1/r
, r / 0, n
i1
x p i
i , r 0.
1.13
Trang 4For γ, η ∈ R, we introduce the mixed symmetric means with positive weights as follows:
M η,γ1 I k , k :
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎡
ik i1, ,i k ∈I k
k
s1
p i s
α I k ,i s
M γ I k ,ikη
⎤
⎦
1/η , η / 0,
ik i1, ,i k ∈I k
M γ I k ,ikk1p is /α Ik,is
, η 0,
1.14
and, for k − 1 ≥ l ≥ 1,
M1η,γ I k , l :
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩
⎡
k − 1 l
il i1, ,i l ∈I l
t I k ,lil
l
s1
p i s
α I k ,i s
M γ I k ,ilη
⎤
⎦
1/η
, η / 0,
⎡
il i1, ,i l ∈I l
M γ
I k ,ilt Ik,lill
s1p is /α Ik,is
⎤
⎦
1/k−1 l
, η 0.
1.15
We deduce the monotonicity of these means from the following refinement of the discrete Jensen inequality in1
Theorem 1.1 Assume (H1) and (H4) Then,
f
n
i1
p i x i
≤ A k,k ≤ A k,k−1≤ · · · ≤ A k,2 ≤ A k,1n
i1
p i f x i , 1.16
where the numbers A k,l k ≥ l ≥ 1 are defined in 1.10 and 1.11 If f is a concave function, then
the inequalities in1.16 are reversed.
Under the conditions of the previous theorem,
Υ1
x, p, f: Ak,m − A k,l ≥ 0, k ≥ l > m ≥ 1,
Υ2
x, p, f: Ak,l − f
n
i1
p i x i
Corollary 1.2 Assume (H1) and (H2) Let η, γ ∈ R such that η ≤ γ, then
M γ M1
γ,η I k , 1 ≥ · · · ≥ M1
M η M1
η,γ I k , 1 ≤ · · · ≤ M1
Trang 5Proof Assume η, γ / 0 To obtain 1.18, we can apply Theorem 1.1to the function fx
x γ/η x > 0 and the n-tuples x η
1, , x η n to get the analogue of 1.16 and to raise the
power 1/γ Equation1.19 can be proved in a similar way by using fx x η/γ x > 0
andx γ
1, , x γ n and raising the power 1/η.
When η 0 or γ 0, we get the required results by taking limit.
AssumeH1 and H3 Then, we define the quasiarithmetic means with respect to
1.10 and 1.11 as follows:
M1h,g I k , k : h−1
⎛
i1, ,i k ∈I k
k
s1
p i s
α I k ,i s
h ◦ g−1
k
s1
p i s /α I k ,i s
g x i s
k
s1p i s /α I k ,i s
⎞
and, for k − 1 ≥ l ≥ 1,
M1h,g I k , l h−1
⎛
k − 1 l
il i1, ,i l ∈I l
t I k ,l
ill
s1
p i s
α I k ,i s
h ◦ g−1
l
s1
p i s /α I k ,i s
g x i s
l
s1p i s /α I k ,i s
⎞
⎠.
1.21 The monotonicity of these generalized means is obtained in the next corollary
Corollary 1.3 Assume (H1) and (H3) For a continuous and strictly monotone function q : J → R,
one defines
M q: q−1
n
i1
p i q x i
Then,
M h M1
h,g I k , 1 ≥ · · · ≥ M1
if either h ◦ g−1is convex and h is increasing or h ◦ g−1is concave and h is decreasing,
M g M1
g,h I k , 1 ≤ · · · ≤ M1
if either g ◦ h−1is convex and g is decreasing or g ◦ h−1is concave and g is increasing.
Proof First, we can apply Theorem 1.1 to the function h ◦ g−1 and the n-tuples
gx1, , gx n , then we can apply h−1 to the inequality coming from 1.16 This gives
1.23 A similar argument gives 1.24: g ◦ h−1, hx1, , hx n and g−1can be used Throughout Examples 1.4-1.5, 1.9–1.12, which are based on examples in 1, the conditionsH2, in the mixed symmetric means, and H3, in the quasiarithmetic means, will
be assumed
Trang 6Example 1.4 Suppose
I2:i1, i2 ∈ {1, , n}2| i1|i2
where i1|i2means that i1divides i2 Since i|i i 1, , n, therefore 1.6 holds We note that
α I2,in
i
wheren/i is the largest positive integer not greater than n/i, and di means the number of positive divisors of i Then,1.14 gives for η, γ ∈ R
M η,γ1 I2, 2
⎧
⎪
⎪
⎨
⎪
⎪
⎩
⎡
i2i1,i2∈I2
2
s1
p is
n/i s di s
M γ
I2,ikn
⎤
⎦
1/n
, η / 0,
i2i1,i2∈I2
M γ
I2,i2 2
1p is / n/i s di s
η / 0,
1.27
while1.20 gives
M1h,g I2, 2 h−1
⎛
i1,i2∈I2
2
s1
p i s
n/i s di s
h ◦ g−1
2
s1
p i s / n/i s di sg x i s
2
s1
p i s / n/i s di s
⎞
⎠.
1.28
AssumeH4 holds, and consider the set I2inExample 1.4 Then,Theorem 1.1implies that
f
n
r1
p r x r
i1,i2∈I2
2
s1
p i s
n/i s di s
f
2
s1
p i s / n/i s di sx i s
2
s1
p i s / n/i s di s
≤n
r1
p r f x r ,
1.29 and thus
Υ3
x, p, f:
i1,i2∈I2
2
s1
p i s
n/i s di s
f
2
s1
p i s / n/i s di sx i s
2
s1
p i s / n/i s di s
−f
n
r1
p r x r
≥0,
Υ4
x, p, f:n
r1
p r f x r −
i1,i2∈I2
2
s1
p i s
n/i s di s
f
2
s1
p i s / n/i s di sx i s
2
s1
p i s / n/i s di s
≥ 0.
1.30
Trang 7Example 1.5 Let c i ≥ 1 be an integer i 1, , n, let k : n
i1c i , and also let I k P c1, ,c n
k
consist of all sequences i1, , i k in which the number of occurrences of i ∈ {1, , n} is
c i i 1, , n Obviously, 1.6 holds, and, by simple calculations, we have
I k−1n
i1
P c1, ,c i−1,c i −1,c i1, ,c n
k−1 , α I k ,i k!
c1!· · · c n!c i , i 1, , n. 1.31
Moreover, t I k ,k−1i1, , i k−1 k for
i1, , i k−1 ∈ P c1, ,c i−1,c i −1,c i1, ,c n
Under the above settings,1.15 can be written as
M1η,γ I k , k− 1
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎡
⎣ 1
k− 1
n
i1
c i − p i
n
r1p r x γ r −p i /c i
x γ i
1−p i /c i
η/γ⎤
⎦
1/η
, η / 0, γ / 0,
⎛
⎝n
i1
n
r1p r x γ r −p i /c i
x γ i
1−p i /c i
c i −p i /γ⎞
⎠
1/k−1
, γ / 0, η 0,
n
i1
x i −p i
n
i1
x r p r
1.33 while1.21 becomes
M h,g1 I k , k − 1 h−1
1
k− 1
n
i1
c i − p i
h ◦ g−1
n
r1p r g x r −p i /c i
g x i
1−p i /c i
. 1.34
AssumeH4 holds, and consider the set I kinExample 1.5 Then,Theorem 1.1yields that
A k,k−1 1
k− 1
n
i1
c i − p i
f
n
r1p r x r−p i /c i
x i
1−p i /c i
,
f
n
r1
p r x r
≤ A k,k−1≤n
r1
p r f x r .
1.35
This shows that
Υ5
x, p, f: Ak,k−1− f
n
r1
p r x r
≥ 0,
Υ6
x, p, f:n
r1
p r f x r − A k,k−1≥ 0.
1.36
Trang 8The following result is also given in1.
Theorem 1.6 Assume (H1) and (H4), and suppose |H I I j1, , j l−1| β l−1for any j1, , j l−1 ∈
I l−1 k ≥ l ≥ 2 Then,
A k,l A l,l n
l |I l|
i1, ,i l ∈I l
l
s1
p i s
f
l
s1p i s x i s
l
s1p i s
and thus
f
n
r1
p r x r
≤ A k,k ≤ A k −1,k−1 ≤ · · · ≤ A 2,2 ≤ A 1,1n
r1
p r f x r . 1.38
If f is a concave function then the inequalities1.38 are reversed.
Under the conditions of the previous theorem, we have, from1.38, that
Υ7
x, p, f: Am,m − A l,l ≥ 0, k ≥ l > m ≥ 1,
Υ8
x, p, f: Al,l − f
n
r1
p r x r
AssumeH1 and H2, and suppose |H I I j1, , j l−1| β l−1for anyj1, , j l−1 ∈ I l−1k ≥
l ≥ 2 In this case, the power means of order r ∈ R corresponding to i l : i1, , i l ∈ I l l
1, , k has the form
M r
I l ,il
M r
I k ,il
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎛
⎝
l
s1p i s x r
i s
l
s1p i s
⎞
⎠
1/r
, r / 0,
l
s1
x i s p is
1/l
s1p is
, r 0.
1.40
Now, for γ, η ∈ R and k ≥ l ≥ 1, we introduce the mixed symmetric means with positive
weights related to1.37 as follows:
M2
η,γ I l :
⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎡
⎣ n
l |I l|
il i1, ,i l ∈I l
l
s1
p i s
M γ
I l ,ilη
⎤
⎦
1/η
, η / 0,
⎡
il i1, ,i l ∈I l
M γ
I l ,ill
s1p is
⎤
⎦
n/l |I l|
, η 0.
1.41
Trang 9Corollary 1.7 Assume (H1) and (H2), and suppose |H I I j1, , j l−1| β l−1for any j1, , j l−1 ∈
I l−1k ≥ l ≥ 2 Let η, γ ∈ R such that η ≤ γ Then,
M γ M2
γ,η I1 ≥ · · · ≥ M2
γ,η I k ≥ M η ,
M η M2
η,γ I1 ≤ · · · ≤ M2
η,γ I k ≤ M γ
1.42
Proof The proof comes fromCorollary 1.2
AssumeH1 and H3, and suppose |H I I j1, , j l−1| β l−1 for any j1, , j l−1 ∈
I l−1 k ≥ l ≥ 2 We define for k ≥ l ≥ 1 the quasiarithmetic means with respect to 1.37 as follows:
M2h,g I l : h−1
⎛
⎝ n
l |I l|
i1, ,i l ∈I l
l
s1
p i s
h ◦ g−1l
s1p i s g x i s
l
s1p i s
⎞
Corollary 1.8 Assume (H1) and (H3), and suppose |H I I j1, , j l−1| β l−1for any j1, , j l−1 ∈
I l−1 k ≥ l ≥ 2 Then,
M h M2
h,g I1 ≥ · · · ≥ M2
where either h ◦ g−1is convex and h is increasing or h ◦ g−1is concave and h is decreasing,
M g M2
g,h I1 ≤ · · · ≤ M2
where either g ◦ h−1is convex and g is decreasing or g ◦ h−1is concave and g is increasing.
Proof The proof is a consequence ofCorollary 1.3
Example 1.9 If we set
I k:i1, , i k ∈ {1, , n} k | i1< · · · < i k
then α I n ,i 1 i 1, , n, that is, 1.6 is satisfied for k n It comes easily that T k I k
I k−1k 2, , n, |I k| n
k k 1, , n, and for each k 2, , n
H I
k
j1, , j k−1 n − k − 1, j1, , j k−1
Trang 10In this case,1.41 becomes for n ≥ k ≥ 1
M2
η,γ I k
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩
⎡
n−1
k−1
1≤i 1< ···<i k ≤n
k
s1
p i s
M γ I k ,ikη
⎤
⎥
1/η
, η / 0,
!
1≤i 1< ···<i k ≤n
M γ I k ,ikk1p is
"1/#n−1
k−1
$
, η 0,
1.48
and1.43 has the form
M2
h,g I k h−1
1
n−1
k−1
1≤i 1< ···<i k ≤n
k
s1
p i s
h ◦ g−1k
s1p i s g x i s
k
s1p i s
Equation1.48 is a weighted mixed symmetric mean and 1.49 is a generalized mean, as given in2 Therefore, Corollaries1.7and1.8are more general than the Corollaries 1.2 and 1.3 given in2
AssumeH4 holds, and consider the set I kinExample 1.9 Then,Theorem 1.6shows that
A k,k n1−1
k−1
1≤i 1< ···<i k ≤n
k
s1
p i s
f
k
s1p i s x i s
k
s1p i s
, k 1, , n,
f
n
r1
p r x r
A n,n ≤ A n −1,n−1 ≤ · · · ≤ A 1,1n
r1
p r f x r .
1.50
Thus, we have
Υ9
x, p, f: Am,m − A l,l ≥ 0, n ≥ l > m ≥ 1. 1.51
Example 1.10 If we set
I k:i1, , i k ∈ {1, , n} k | i1≤ · · · ≤ i k
then α I k ,i ≥ 1 i 1, , n and thus 1.6 is satisfied It is easy to see that T k I k I k−1 k
2, , |I k| n k−1
k
k 1, , and for each l 2, , k
H I
l
j1, , j l−1 n, j1, , j l−1
Trang 11Under these settings1.41 becomes
M2η,γ I k
⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩
⎡
n k−1
k−1
1≤i 1≤···≤i k ≤n
k
s1
p i s
M γ I k ,ikη
⎤
⎥
1/η
, η / 0,
1≤i 1≤···≤i k ≤n
M γ
I k ,ikk
1p is"1/
#n k−1
k−1
$
, η 0,
1.54
and1.43 has the form
M2h,g I k h−1
1
n k−1
k−1
1≤i 1≤···≤i k ≤n
k
s1
p i s
h ◦ g−1k
s1p i s g x i s
k
s1p i s
Equation1.54 represents weighted mixed symmetric means, and 1.55 defines generalized means, as given in 2 Therefore, Corollaries 1.7 and 1.8 are more general than the Corollaries 1.9 and 1.10 given in2
AssumeH4 holds, and consider the set I k in Example 1.10 Then, it follows from
f
n
r1
p r x r
≤ · · · ≤ A k,k ≤ · · · ≤ A 1,1n
r1
where
A k,k n k−11
k−1
1≤i 1≤···≤i k ≤n
k
s1
p i s
f
k
s1p i s x i s
k
s1p i s
This yields that
Υ10
x, p, f A k,k − A l,l ≥ 0, l > k ≥ 1,
Υ11
x, p, f: Ak,k − f
n
r1
p r x r
Example 1.11 We set
Then, α I k ,i ≥ 1 i 1, , n, hence 1.6 holds It is not hard to see that T k I k I k−1 k
2, , |I k | n k k 1, , and for each l 2, , k,
H I
l
j1, , j l−1 n l ,
j1, , j l−1
... h−1is convex and g is decreasing or g ◦ h−1is concave and g is increasing.Proof The proof is a consequence of< /i>Corollary 1.3
Example... γ
1.42
Proof The proof comes fromCorollary 1.2
AssumeH1 and H3, and suppose |H I I j1,... convex and g is decreasing or g ◦ h−1is concave and g is increasing.
Proof First, we can apply Theorem 1.1 to the function h ◦ g−1 and