Mot trong nhCfng yeu to trong yeu la doi ngu thay cd, he thong cac giao trinh va trang thiet bi day hoc.Gung vdi cac nganh cac cap trong toan quoc dang day nhanh tien do xay dqng va cung
Trang 2Nguyen Quoc Huy — Dinh Ngoc Thanh
Tran Thi Ngoc Tuyet
TRUONG DAI HOC DAN LAP CLTU LONG
TRIM DAlkot' DAN LAPC&
S^angky:
Trang 4Tru'dng Dai hoc Dan lap Ctfu Long muon khdng dinh la trung tam dao tao nguon nhan life cd trinh do cao cho khu vifc dong b^ng song Cufu Long de phuc vu cho edng cuoc edng nghiep hda, hien dai hda dat mid’c thi phai nang cao chat litong dao tao toan dien Mot trong nhCfng yeu to trong yeu la doi ngu thay cd, he thong cac giao trinh va trang thiet bi day hoc.Gung vdi cac nganh cac cap trong toan quoc dang day nhanh tien do xay dqng va cung co vi the trong xu the hoi nhap, trifdng Dai hoc Dan lap Cufu Long dan tiing birdc hoan thien de duPng dau vdi nhilng thach thde do, gdp phan diTa nen giao due dai hoc Viet Nam diing vCfng, ngang tam khu vifc va
An pham nay la giao trinh Toan Kinh Te phan Quy
Hoach Tuyen Tinh cua Khoa Khoa Hoc Co Ban, Tru'dng Dai hoc Dan lap Ctiu Long, do PGS TS Dinh Ngoc Thanh, ThS
Nguyen Qud'c Huy va ThS Tran Thi Ngoc Tuyet bien scan
Lanh dao trctdng Dai hoc Dan lap Cdu Long tran trong nhdng edng hien, dong gdp cua Quy thay cd mdi giang cung nhiT cac thay cd can bd - giang vien co hdu ciia nha tru’dng
Trang 5ThS Nguyen Cao Dat
Trang 6Chitorng 1
i = 1,2, ,m , ta tim x°
Ham diTOc goi la ham mac tieu Phan tu’ x e Rn duttc goi
la cac phicang an Phiiong an nao thoa (2) diioc goi la phitong
an chap nhan ditoc Phiiong an chap nhan diiqc nao thoa (1) difoc goi la phitong an tdi itu
Bai toan (1, 2) tong quat neu tren duPc khao sat tren co
so cua bai toan cOc tri co rang buoc va co the giai bang phoong phap nhan td Lagrange trong cac giao trinh Toan cao cap
Rd rang la neu he (2) vd nghiem, nghia la khong co phitong an chap nhan dope, thi bai toan quy hoach titong ilng khong co phitong an tbi itu Neu he (2) cd dung mot nghiem, nghia la cd dung mot phitong an chap nhan ditpc, thi hien nhien phitong an do chinh la phitong an tbi itu Neu he (2) cd nhieu hon mot nghiem, nghia la cd nhieu hon mot phitong an
sb f : 1R 1 -> R va gj : R
g Rn sao cho f(x°) dat gia tri nhd nhat (hay Idn nhat) trong sb cac gia tri f(x), vdi
x g Rn thoa dieu kien gj (x) = 0, i = 1,2, , m Khi do, ta ditpc
bai toan quy hoach :
Tim x g Rn sao cho
Trang 7tinh va qua do giup sinh vien cd the tiep can de dang phirong phap don hinh cho cac bai toan quy hoach tuyen tinh sau nay.
gi (x1,x2, ,xn
cj’
■n) = c l x l+c 2x2 +- + c n x :
bi b2
vdi moi i = 1,2, trong do
j = 1,2, , n , va c0 la cac hang so
Khi do, ta nhan dupe bai toan quy hoach tuyen tinh :
+ c 0
allxl + a12x2 + + alnxn
a21xl + a22x2 + ••• + a2nxn
a 1J5
bm
n^n
mn x n
) “ a ilX l + ai2 x2 + + ain x n “ bj ,
+ c0 -> min (hay max),
chap nhan dupe, thi bay gid ta can tim phuPng an tdi Ou trong
sb cac phoong an chap nhan dope (cac nghiem cua he 2) bbng each tim gia tri nhd nhat (hay Ion nhat) cua ham muc tieu tren tap cac phitong an chap nhan dope
Triidng hop dac biet cd nhieu Png dung xay ra khi cac ham so f va gj, i = 1,2, ,m, la cac ham bac nhat theo cac bien, nghia la
f (X) = f (x1,x2, ,x
bj, i= l,2, ,m,
Tim x e Rn sao cho
f(x) = cixi +c2x2 + + cnxn
Trang 8bi aii ai2
+
ta difc/c bang cac he sb
536
X2 a12
X 12x}
he sb cua cac an tifcmg dng trong phiicmg trinh do,
SHTDbi
X1 an
amnbm
Xn aln
Trang 9ta cd
5 -71
SHTD536
SHTD5-71
x2
-112
x3
2-3 -3
manh, ta them cot
ACS
X1
x2
-112
X3
2
1 1
X1
100
X1
121
x3
2
-3 -3
^2
-1 -1
Dung cac phep bien doi (2) := (2) - 2(1) va (3) := (3) - (1),
Chu y r^ng trong he phifcmg trinh nay, hai phiTcfng trinh cudi chi con lai hai an va neu ta giai diipc he hai phifcmg trinh nay, ta tfnh dupe x2, x3 va the vao phiTcfng trinh dau tien, ta nhan diipc xT An xx chi xuat hien trong phitong trinh dau va
cd he so tiiong ilng bang 1 va ta goi la an ca sd De nhan
an co so (ACS) vao bang cac he so'
1
0 0Tiep tuc dung lan loot cac phep bien doi (1) := (1) + (2) va (3) := (3) - 2(2), ta cd bang
Trang 10x 2
SHTD-2-715
SHTD123
x3
-1-33
X1
1
0 0
x3
0
0 1
ACS
X1 x2
X1
1
0 0
x2 010
x3Nhir vay, ta da giai diroc he (4) Can chu y them r^ng nghiem nay cd the nhan diTtfc td bang cac he sb bang each cho
cac an d cot an co so (ACS) bang vdi cac gia tri toong ring d cot
sb hang to do (SHTD)
Vi du nay minh hoa cho phiiong phap Gauss-Jordan de
giai he phifOng trinh tuyen tinh bang bang cac he so Tong quat, ta co
1.1 Giai thuat Gauss-Jordan tren bang cac hb sb.
Sau khi thanh lap bang cac he sb cho mot he phuOng trinh tuyen tinh gom cac cot : Cot an co sb (ACS), cot cac sb hang tu1 do (SHTD) va cac cot chtfa he sb cac an (cot Xj,
i = l,2, ,n), trong do cot ACS chu’a ten cac an co sb (an chi xuat hien trong mot dong vbi he sb tOOng ling la 1),
xi
^2
0
10
va dupe them an co sb x2 Tiep tuc dung (3):=^(3);(1) := (1) + (3) va (2) := (2) + 3(3), ta co
ACS
X1 x2 x3
va nhan dope he phdong trinh toong doong
123
Trang 11ta duyet qua cac dong chifa co an co sb Tren cac dong nay, chon mot an cd he sb titong Ong khac 0 de chuyen an nay thanh an co sb Vi tri cua he sb khac 0 do ditoc goi la phdn til
true xoay va de chuyen an difoc chon thanh an co sb, ta chu y
tbi cot chda phan th true xoay, chang han vbi dong thu" i va an
co sb la x2 (co he sb titong ling ai2 0 ),
(!)(1)- aiz (i); (2) := (2) - a12 (i); (m) := (m) - a12 (i), tadiiqc bang cac he sb co x2 lam an co sb (b hang thuf i),
am2 ••• amn
thanh an co sb bang each dung lan loot cac phep
Trang 12ain ai2
I?! - a
ain m2 a
Ta co cac kha nang sau :
Kha ndng 1 : Moi dong deu co an co sd, nghia la tren moi dong chifa cd an co so deu cd it nhat mot he so khac 0 Khi do, cac an con lai trd thanh an tif do va dope phep lay gia tri tuy y
va ta cd the tinh dope gia tri cua cac an co so theo cac an tp
do Ta cd hai triTdng hop :
Tritang hop 1 : Khdng cd an tp do He phifong trinh cd
duy nhat mot nghiem
Trildng hop 2 : Cd it nhat mot an
cd vd sb nghiem
Khd ndng 2 : Ton tai mot sb dong khdng cd an co so, nghia la
ton tai mot sb dong ma moi he sb tren dong do deu la sb 0 Ta
cd hai truPng hop :
Truong hop 1 : Cd mot dong (khdng cd an co so) ma sb hang tp do toong Png b * 0 Khi do, dong nay cho phoong trinh dang
0x1 + 0x2+ + 0xn = b PhuPng trinh nay vd nghiem nen he vd nghiem
Truong hop 2 : Moi dong (khdng cd an co sb) deu cd sb hang tp do toong Png bang 0 Cac dong nay cho phuOng trinh dang
bm"3!
X1
all“a12i7
xnaln-a12^
Trang 13SHTD
_5_
13 7_
132
X1
1
0 0
x2
-31313
X4
-122
x i4X1
2X1
x4
-1-20
x 4
"13 _2_
13
0
X3
2 -5
-5
x42X4
x3
11 13 5_
13
0
x3
2 3-1
true Xoay) lam ACS
3x2 + x2 +
7x2
-0X1 + 0X2 + + 0Xn = 0 Cac phitcmg trinh nay nhan moi gia tri cua an lam
nghiem nen ta co the bo cac dong do ma khong lam mat nghiem cua he Chuyen ve kha nang 1
Vi du 1 : Giai he phiTcmg trinh tuyen tfnh
2Xs X4 = 23X3 - 2X4 = 1
Tren dong 2, chon x2 (tefong ting vdi he so 13 lam phan til true Xoay) lam ACS Lan liipt bien doi (2):=^(2); (1) :=(!) +3(2); (3) := (3) -13(2), ta dtioc
Lap bang cac he so
2 1-1
Tren dong 1, chon X1 (tdong tfng vdi he sb 1 lam phan td
Lan lirpt bien doi (2) := (2) - 4(1);
Trang 14SHTD5-11-8-29-32
x212246
X4
2133-2
x214378
x i2xx
xi
3X!
2x:
x30-10-3-4
X4
25592
3x3
4x3
Tren dong 2, chon x2
true xoay) lam ACS Lan lurot bien doi (2) := |(2); (1) := (1)
Dong 3 khong cd an co so vi moi he sb deu la sb 0 (Kha nang 2) Dong do cd SHTD toong dng la 2 (TrOdng hop 1) toong ilng vdi philong trinh
OX} + 0x2 + 0x3 + 0x4 = 2
Phoong trinh nay vd nghiem nen he vd nghiem
Vi du 2 : Giai he phitong trinh tuyen tinh
-i
o
-3-4(tiiong ting vdi he sb 2 lam phan tuf
(2);
24
1
2132
Tren dong 1, chon (tifong dng vdi he sb 1 lam phan to true xoay) lam ACS Lan loot bien doi (2) := (2) - 2(1); (3) ;= (3) - (1); (4) := (4) - 3(1); (5) := (5) - 2(1), ta dope
+ x2+ 4x2
+ 3x2
+ 7x2
+ 8x2Lap bang cac he sb
ACS
Trang 1500
10
SHTD
29 3
-2
n3 3
0
SHTD
21 2
n
2
3-71
(3) := (3) - 2(2); (4) := (4) - 4(2); (5) := (5) - 6(2), ta ditoc
ACS
x41
2 3 2
23-3
x2
01000
x2
01000
x4 3 2
1
2
21-5
X1
10000
X1
1
x30
X4
0
X1
x2 x3
-4
3 -4 4
Tren dong 4, chon x4 (tiTOng dng vdi he sb 3 lam phan th true xoay) lam ACS Lan iPpt bien doi (4):=1(4);
(2):=(2)-f(4); (3) := (3) - 2(4);
(5) := (5) 4- 3(4), ta dilpc
ACS
Trang 161 -2
29
3
-2
17 3
4
SHTD51-9-10
51-9-10
x3-2-131
X11
x2 0
X44
2 -6
-2
xi
3x1 xi
12xt
x 30X1
Dong 5 khong co an co sd vi moi he so deu la so 0 (Kha nang 2) Dong do co SHTD tifOng Ong la 0 (TrOdng hop 2) tirong ilng vdi phtfong trinh
Ox! + 0x2 + 0x3 + 0x4 = 0 Phoong trinh nay nhan moi gia tri ciia an lam nghiem nen ta cd the bo di ma khong lam mat nghiem
ACS
x 4Chuyen ve Kha nang 1 Moi an deu la an co sd (Triidng hop 1) nen he cd duy nhat nghiem va nghiem nay nhan dope bdng each cho cac an co so lay gia tri cua so hang tp do toong Ong, X1 =^; x2 =-2; x3 =^; x4 =-|
Vi du 3 : Giai he phoong trinh tuyen tinh
Trang 17Tren dong 1, chon
true xoay) lam ACS
(3) := (3) - (1); (4) := (4) - 12(1), ta dnpc
ACS
X1 x2
-2-7
X1
1
0
0 0
x2-12210
SHTD5-14-14-70
x3-25525
x4
4 -10 -10 -50
X3 1
2 5
00
Tren dong 2, chon x2
true xoay) lam ACS Lan lifpt bien doi (2) := |(2); (1) := (l) + (2);
hop 2) tiTOng ilng vdi phirong trinh
0 (Kha nang 2) Cac dong nay cd SHTD toong ilng la 0 (TrOdng
Trang 18m(-ta nhan thay rang nghiem cua
duttc tif ba nghiem dac biet Nghiem thtf nhat
Trang 19ci
+ Ym+ i
ajiYj -aiiYi
++
a mi Xi CjXi
-amYi
-biYi
a b
a jnYj hjYj
co cac an co so la ym+1, ym+i, ■■■, ym+n> g, ya cac an tu do
la y15 yj, ym
Hai he nay dooc goi la doi ngau nhau difa vao cac yeu to sau :
Noi kliac di, vdi phitong phap Gauss-Jordan bang bang cac he sb, neu he cd vo sb nghiem thi nghiem tong quat nhan dope bang each lay tong cua nghiem co ban voi mot to hop
tuyen tinh bat ky cac nghiem rieng.
1.2 Giai thuat Gauss-Jordan vdri he phtfefng trinh dbi
Trang 20tif do cua he nay
He so cac an tn do trong pht/ong trinh thtf cua he (I) va
he so cua an ty do thu1 j cua he (II) (he so cua yj trong cac phirong trinh cua he (II)) thi doi nhau
So hang tp do cua he (I) va he so' cac an ty do cua phu’ong
trinh cudi he (II) thi doi nhau.
Sb hang ty do cua he (II) va he sb cac an ty do cua phu’ong trinh cubi he (I) thi bting nhau
Sb hang ty do phu’ong trinh cubi trong hai he thi doi
nhau.
Xn
y m+n
Khi do, ta co sy tiiong quan gitta cac an
vdi cac an co so cua he kia
theo nghia la he sb cua cac an ty do he (I) trong phu’ong trinh thd j (vdi an co sd xn+j) va cac he sb cua an ty do thuf j (yj) trong cac phirong trinh he (II) thi dbi nhau,
He sb ciia cac an ty do he (II) trong phirong trinh thir i (vdi an co sd ym+i) va cac he sb cua an ty do thtr i (Xj) trong cac phirong trinh he (I) thi doh nhau
Nhac lai rhng, sb hang ty do thd j ciia he (I) (vdi an co sd
n+j) va he sb cua an ty do thd (yj) cua phirong trinh cubi he (II) thi doi nhau
Sd hang ty do thd i ciia he (II) (vdi an co sb yin + i) va he
sb ciia an ty do thu- i ( Xj) ciia phu’ong trinh cubi he (I) thi bhng nhau
Bay gib, neu ta dbi vai trb cac an trong he (I) : Xj trd
j trd thanh an ty do (dieu kien a^ 0)
Trang 21Trong he thu’ nhat, ta doi x2 thanh an cn so, x6 thanh
an ter do va titong ring trong he thd nhi, ta doi y3 (tufefng dng vdi x6) thanh an co so, y5 (tirong hng vdi x2) thanh an to do
b^ng each bien doi :
Trong he thd nhat, dung (1) := (1) + (3); (2) := (2) + (3); (4) := (4) - 2(3) va trong he thd nhi, dimg (2):=-(2);
(1) := (1) - (2); (3) := (3) - (2); (4) := (4) + 6 (2), ta diioc hai he mdi
+ f
de nhan dooc he (F) Titong Ong, trong he (II), ta doi yj (dng vdi xn+j) thanh an co so, ym+i (ufng vdi xj thanh an td do de
nhan duoc he (IF) Ta diioc
Hai he (F) va (IF) cung doi ngau nhau.
Phan chdng minh ditoc trinh bay trong phan phu luc Sau
day ta minh hoa bang vf du cu the :
Xet hai he phiiong trinh
2x2x3 X3 3xs
-Yi - 2y2 - y3
Yi + Y2 - Ys
-2yi - y2 - y3
-5yi - 3y2 - 6y3
Ta cd sd tifong quan gida cac an
Trang 223y2
yz2y2
9y2
+
++
+++
211
20-73
1-154
-1-2110
119
6 -10
2x6
3x3
2x3 x3 x3
5 x4
22x4
2 x4 7x4
2x33x3
Giai cac he phitong trinh tuyen tlnh
phap Gauss-Jordan bang bang cac he sb
3x2
x 2 7x2
Ta thay hai he nhan difac nay cung ddi ngau ven nhau Nhan xet nay se giup ich nhieu trong phan sau khi ta khao sat cac bai toan ddi ngau bang thuat giai don hinh ddi ngau.
+ g
Trang 23+
0
+5)
1
+
2+
X4
2x 4
7x 4 + 8x4
Trang 24Chut&ng 2
Trong phan md dau, ta da de cap tdi bai toan quy hoach tuyen tmh khi xet bai toan cite tri co rang buoc trong do ca ham muc tieu lan cac ham rang buoc deu la ham bac nhat theo cac bien Trong chitong nay, chung ta lan liTOt khao sat mot sb bai toan cu the trong kinh te di/pc difa ve bai toan quy hoach tuyen tinh cung y tifdng hinh hoc de giai bai toan nay Sau do,
ta phan loai cac bai toan quy hoach tuyen tinh va gidi thieu mot cong cu manh, phiTOng phap don hinh, de giai cac dang cua
bai toan quy hoach tuyen tinh nhan dope
Noi dung trong chitong nay la noi dung chu yeu cua giao trinh nen trong tifng muc chinh, nhieu vi du minh hoa difpc gidi thieu de sinh vien ndm rd y tubng chinh Cudi moi muc la phan bai tap cua muc do de sinh vien thifc tap cac giai thuat
va phan cudi chifong la bai tap on cho ca chuong
Trade het, ta xet mot so bai toan trong kinh te dope mo hinh hda bang bai toan quy hoach tuyen tinh
1 VI DU CHO BAI TOAN QUY HOACH TUYEN TINH1.1 Bai toan van tai
Mot nha may gom ba phan xirdng ?!, P2 , P3 cung san xuat mot loai hang hda vdi san lapng hang thang la mp m2, m3 Hang hda se dope trpe tiep chuyen chd th cac phan xifdng
den hai dai ly Dj, D2 vdi nhu cau hang thang la , n2
Gia str code phi chuyen chd hang hda tuf phan xirdng den dai ly thi ti le thuan vdi so liipng hang hda van chuyen va chieu dai quang difdng Bai toan van tai dat ra la lap ke hoach van chuyen hang hda tif cac phan xubng den cac dai ly sao cho i-aVn- rhi nhf van chuven la than nhat
Trang 25bang nhau
(1.1)
(1.2)
Kha nang cung m2
Goi Xy la so laong hang hoa van chuyen til phan xudng
Pi den dai ly Dj va ky la chi phi van chuyen tren mot don vi hang hoa til P, den Dj, vdi i = 1,2,3 va j = 1,2
Chang han, x12 la so luong hang hoa van chuyen til ?!
den D2 vdi chi phi van chuyen tren m6t don vi hang hoa la k,, Khi do, chi phi van chuyen sb lupng hang hoa nay la
Trang 26(1.7)dirc/c gpi la mot phitong an.
Tu1 do, ta nhan difpc bai loan quy hoqch tuyen tinh tim ke
hoach tdi u'u (tot nhat) cho bai toan van tai : Tim nghiem (x11,x12,x21,x22,x31,x32) thoa (1.2), (1.3) va (1.4) sao cho gia tri f cua (1.1) la nhd nhat, f min
Ta viet lai he thong tren di/di dang
x 22
+ X31
+ x32
Xjj > 0, vdi i = 1,3 , j = 1,2
Mot bo gia tri cac an x^
Phitong an nao thoa (1.6) difpc goi la plulang an chap nhan
di/qc Mbi mot phifOng an chap nhan difpc cho ta mot chi phi van chuyen f ma ta con gpi la ham mac tieu Phitong an chap
nhan difpc nao cho gia tri ham muc tieu nhb nhat chinh la nghiem cua bai toan dang khao sat va difpc gpi la phitong an
tdi itu.
Vi du 1 Mot cong ty bach hoa co 4 cda hang B!, B2, B3,
co nhu cau ve mot loai hang tifpng dng la 40, 75, 60, 70 (tan) Cong ty da dat mua loai hang do d 3 xi nghiep Aj , A2,
+ x12 + x22 + x 32
Trang 27hang tren co sd yeu cau cua
828080
+ 79x14 ++ 79x
+ 82x
737577
748177
797982
B3 b4 b2
A3 vdi khoi krang Wang ling la 45, 90, 110 (tan) Gia cade van chuyen hang (ngan dong/tan) tir mot xi nghiep den m&t cda hang cho trong bang sau
Vi cd ng ty bach ho a dat mua
cac eda hang va
Tong phat = 45 + 90 + 110 = 245 (tan)
Tong thu = 40 + 75 + 60 + 70 = 245 (tan)
Do do, co sir can bang gitfa tong sb Itrong hang dat mua d
cac xi nghiep (tong phat) vdi tdng so' Wang hang ma cac eda hang yeu cau (tong thu)
Goi x^ la sb tan hang van chuyen tir A; den Bj, vdi
Trang 28= 45: xn + x12 + x13
+-> min
:xn
+ x 33 + X31
+ x24
+ X 21 + x 32
1.2 Bai toan vat tit
Mot xi nghiep san xuat hai mat hang , M2 th ba loai
vat th chu yeu V1, V2, V3
Goi a^ la sb don vi vat tn V; dung de san xuat mot don
vi san pham M3 va c, la loi nhuan thu dope tren mot don vi mat hang Mj, vdi i = 1,2,3 , j = 1,2
Trang 29(1-8)-> max
Vi du 2 Mot xi nghiep san xuat giay hien co so liftfng hot
go va chat ho keo tiiong ting la 5.580m3 va 90 tan Cac yeu to
san xuat khac cd so Mong Idn Xi nghiep co the san xuat ra ba
loai giay A, B, C Biet so lieu cac loai nguyen lieu de san xuat
ra 1 tan giay thanh pham dupe cho trong bang sau
Ngoai ra, Sb don vi vat tif Vj dung de
done qua sb loqng vat to ton kho bi, nghla la
<
<
<
allXl + a12X 2 ' a21 X l + a22x 2
nghiep dat loi nhuan cao nhat
Goi x15 x2 la sb don vi san pham MT va M2
xuat Hien nhien, ta co
>0,
Trang 301.624
l.Sxj + 1.8x2 + 1.6x3
20xt + 30x2 + 24x3
Ngoai ra, gia sO rang san pham san xuat ra deu co the
tieu thu dupe het vdi Ipi nhuan khi san xuat 1 tan giay A, B, C
tuong dng la 2.7; 3.6; 3 (trieu dong) Yeu cau lap ke hoach san xuat tdi Uu
Tong Ipi nhuan thu dupe la
Trang 31Tong ket : Xuat phat tif hai bai toan tren, ta co
Xet mot ham f (dang (1.5), (1.8)) va mot he phaong trinh hay bat phu’ong trinh tuyen tlnh (dang (1.6), (1.9) hay hon hop
ca hai)
Tim nghiem khong am (> 0) cua he phiiong trinh hay bat phiiong trinh sao cho f nho nhat (min) hay ficin nhat (max)
- Ham f dope goi la ham muc tieu.
- Cac phtfOng trinh hay bat phitong trinh goi la he rang buoc cua bai toan.
- Cac dieu kien (1.7) hay (1.10) ddoc goi la cac rang buoc
dan.
Cac bai toan co dang vda neu dope goi la cac bai toan quy
hoqch hay cac bai toan toi itu Mot bp gia tri cua cac an dope
goi la mot phicong an PhuPng an nao thoa tat ca cac rang buoc
dope goi la phitang an chap nhqn diloc PhOOng an chap nhan
dope nao cho gia tri ham muc tieu nho nhat (hay Idn nhat)
dope goi la phuang an toi i£u (hay con goi la nghiem toi itu).
Trong cac bai toan ma ta khao sat, bieu thefe cua ham muc tieu cung nho cua cac phOOng trinh va bat phoong trinh deu la bac nhat theo cac bien nen con dope goi la bai toan quy hoqch tuyen tinh va mon hoc khao sat no dope goi la quy hoach tuyen tinh
Qua bai toan van tai va vat to neu tren, ta co mot so nhan xet cho giai thuat thanh lap bai toan quy hoach tuyen tinh nho sau :
Bilac 1 : Xdc dinh phuang an.
Ch&ng han phoong an cua bai toan van tai la bp cac con
so Xy chi sb lopng h&ng hoa can van chuyen tO phan xodng P, den dai ly Dj (phoong an van chuyen hay lenh dieu xe)
Trang 32Phuong an trong bai toan vat tit la bo cac con sb Xj chi sb don vi san pham M; can san suat (phtfong an san xuat hay don dat hang).
Bildc 2 : Xdc dinh ham muc tieu.
Chang han ham muc tieu trong bai toan van tai la tong chi phi van chuyen (can it nhat) va trong bai toan vat to la tong Ipi nhuan thu dupe (can nhieu nhat)
Bude 3 : Xdc dinh cdc rang bu.oc.
Cac rang buoc d day co the hieu la cac dieu kien de mot phoong an trb thanh chap nhan dope (phirong an co the thpc hien dope) Chang han, trong bai toan van tai cac dieu kien nay la : sb hang lay or mot phan xobng bang (hay khong the vOpt qua) sb lopng co the san xuat cua phan xOOng do va sb
hang chuyen chb den mot dai ly bang (hay khong the it hon) nhu cau tieu thu ciia dai ly do
Trong bai toan vat to, cac dieu kien rang buoc la : tong sb vat to de san xuat cho mot phoong an san xuat khong dope vOpt qua sb lopng vat to nay dang ton kho
Ngoai ra, thong thodng cac bien trong mot phoong an kinh te thodng khong am nen ta thobng co them cac rang buoc
ve dau
1.3 Bai tap thiTc hanh
1 Nhan dip tet trung thu, xi nghiep san xuat banh "Trang"
muon san xuat 3 loai banh : dau xanh, thap cam va banh deo
nhan dau xanh De san xuat 3 loai banh nay, xi nghiep can dodng, dau, bot, trOng, mOt, lap xOOng, Gia sb sb dodng co the chuan bi dope la 500kg, dau la 300kg, cac nguyen lieu khac muon bao nhieu cuong cP Lopng doPng, dau can thiet va Ipi nhuan thu dope tren mot cai banh moi loai cho trong bang sau
Trang 33Banh deoBanh
—> max
3
c
BA
200100100
Banh dau xanh
60
80 2000
Banh thap cam
40
0 1700
Nguyen lieu _
Dufrng (g) _
Dau (g) _ _
Leri nhuan (dong)
Can lap ke hoach san xuat
100100200
dau xanh, banh thap cam va banh deo can san xuat Ta co bai toan quy hoach
Tim x = (x1,x2,x3) sao cho
f = 200X! + 1700x2 + 1800x3
J0.06X! + 0.04x2 +0.07x3
[0.08x2 + 0.04x:
Biet Ipi nhuan thu difpc khi san xuat mot met vai cac loai
A, B, C tuong ring la 350, 480, 250 (dong) San pham san xuat
Xj >0j = l,3
2 Mot xi nghiep det hien cd 3 loai spi : Cotton, Kate, Polyester vdi khoi lifpng tiiong ring la 3; 2.5; 4.2 (tan) Cac yeu to san xuat khac cd so lifpng Idn Xi nghiep cd the san xuat ra 3 loai vai A, B, C (vdi khd be rpng nhat dinh) vdi mdc tieu hao cac loai spi de san xuat ra mot met vai cac loai cho trong bang sau
Loai vai
Trang 341621557
7020800
Tim so bo moi loai can nuoi sao cho tong tien ldi la Idn nhat Biet rang so bo sera khong qua 18 con
Huong d&n Goi X1, x2 va x3 lan lupt la so la so bo stfa,
bo cay va bo thit can nuoi Ta co bai toan quy hoach
Tim x = (x1,x2,x3) sao cho
f(x) = 59X1 +49x2 +57x3
3 -> max
ra deu co the tieu thu dupe het vdi sb luqng khong han che, nhung ty le ve sb met vai ciia B va C phai la 1 : 2
Hay xay dung bai toan tim ke hoach san xuat tbi
Huong d&n Goi xx, x2 va x3 lan luqt la so met vai cac
loai A, B va C can san xuat Ta co bai toan quy hoach
Tim x = (x1,x2,x3) sao cho
f(x) = 350X! +480x2 + 250x
200X1 +200x2 +100x3100x] + 200x2 +100x3' 100X! + 100x2 + 200x3
2x2 - x3
Xj > 0, j = 1,3
3 Mot trai chan nuoi dinh nuoi 3 loai bo : bo sUa, bo cay va bo thit Sb lieu dieu tra dupe cho trong bang sau, veri don vi tinh la ngan dong / con
Loai bo
Trang 35Tai nguyen
3523
5063
3122
381828
310177
104128
376
de dvio’c
Ca chua 55
Khoai tay 26
Dit truf 1892
an phan phoi dat trdng cac loai rau
Xj > 0, j = 1,5.
5 De san xuat 3 loai san pham I, II, HI, ngPdi ta can diing 4
loai nguyen lieu Nj, N2 , N3, N4, vdi cac so lieu duoc cho trong bang sau
ldi nhieu nhat
Hildng d&n Goi X1, x2, x3, x4 va x5 lan lupt dien tich (sao) can phan phoi de trong cac loai bap cai, ca chua, dau, khoai tay, hanh Ta cd bai toan quy hoach
Tim x = (x1,x2,x3,x4,x5) sao cho
4 Mot dpi san xuat dit dinh dung 31 sao dat de trong bap cai,
ca chua, dau, khoai tay, hanh Cac so lieu cho trong bdng sau
Bap cai 79
Trang 36162118
San pham_ II31035
San pham III
1
0 _
3
4 6
Dif true (kg) San pham
mua hat’giong la 3200$ So ngay cong cham sdc cho cac loai cay A, B, C tren mot mau toong cfng la 1,2, 1 So ngay cong toi
da cd the cd la 160 Neu loi nhuan tren mot mau cua moi loai cay cho bdi : A la 100$, B la 300$, C la 200$, thi phai trong moi loai cay bao nhieu mau de thu Iqi nhuan tdi da
Hitting d&n Goi xT, x2 va x3 Jan loot la so mau dat dq dmh trong 3 loai cay A, B, C Ta cd bai toan quy hoach
Trang 37J
21.505
II
432_00.036
III1.521.5
3 0.078
So litong yen can
A >12
B = 8
C<6 D>7
I3
0 _ 1
_20.01
them d thi trildng Cac so lieu cho trong bang
Tim x = (x1,x2,x3) sao cho
Ta co bai toan quy hoach
Tim x = (x1,x2,x3,x4) sao cho
f(x) = 7X! + 6x2 + 8x3 + 5x4 min
Trang 3821 12 X]1 + x 12
+ x22
Xildng A
Xitong B
Dai ly I6$
4$
Dai ly II5$
8$
<
>
12867
xj > 0, j = 1,4
8 Mot hang san xuat may
X 21 + X 21
X 1
2X-L
+ x22
x 12 X11
Xij > 0 , i = 1,2 , j - 1,2
’ ' vi tinh cd hai phan xirdng lap rap A,
B va hai dai ly phan phd'i I, II Xadng A cd the rap tdi da 700 may/thang va xPdng B rap tdi da 900 may/thang Dai ly I tieu thu it nhat 500 may/thang va dai ly II tieu thu it nhat 1000 may/thang Cade phi van chuyen mot may tit cac xildng den cac dai ly cho trong bang sau
Sx! + 4x2 + 1.5x3
3x2 + 2x3 + 2x4 + 2x2 + 1.5x3 + 2x4
Tim x = (x11,x12,x21,x22) sao cho
f(x) = OX}! + 5xiq + 4x91 + 8x
Trang 39A
-> min
x
1012
1420
3017
Cung cap
_JL
II
10020075125100
X 21 + X22 + X 23 + X21
Muon chuyen chd khoai tay vdi tong ciidc phi nhd nhat Lap mo hinh bai toan
Htfdng dan Goi xi;
sb TP do xet y nghia hinh hoc cung nhif phiiPng phap giai bai toan quy hoach tuyen tfnh hai an bang do thi
9 Cd 2 ntfi cung cap khoai tay I va II theo khdi laong lan lP0t
la 100 tan va 200 tan Co 3 noi tieu thu khoai tay: A, B, C vdi yeu cau Wng ting la 75 tan, 125 tan va 100 tan Citfc phi van chuyen (ngan/tan) van chuyen tP cac noi cung cap den noi tieu
thu dope cho trong bang sau
Tieu thu
, i = 1,2 , j = 1,2,3, la sb tan khoai tay
dupe cho tif noi cung cap I, II den noi tieu thu A, B, C Ta co
bai toan quy hoach
Tim X = ( x 11,X12> x 13> x 21’X22’X23)
f(x) = 6xn + 5x12 + 4x21 + 8x22
X11 + x 12 + X13
Trang 40(1.11)min (max),
(1.12)
(1.13)
ajXj + a2x2 = m DtTdng thdng nay chia mat ph^ng ra
gom cac diem x = (x1,x2)gK2 sao cho
lam hai mien : miena^x-j + a2x2 > m va
X = (x1,x2) e R2
chinh la diidng thdng
2 Y NGHIA HINH HOC CUA BAI TOAN QUY HOACH TUYEN TINH
Xet mot bai toan quy hoach tuyen tmh theo hai an :
Tim x = (x1,x.2) g R2 sao cho
De cd the xac dinh mien “phdcmg an chap nhan ddpc” cung nhd “gia tri cua ham muc tieu” tai cac diem phdcmg an chap nhan ddge”, ta khao sat ham bac nhat
f(x) = f(x1,x2) = a1x1 +a2x2
Lfng vdi moi gia tri m g R , tap cac diem
sao cho f (x) = f (x1, x2) = a1x1 + a2x2 = m
trong mat phdng Ox1x2 cd phdcmg trinh