Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ mỗi năm số tiền lãi được nhập vào số tiền gốc để tính lãi chonăm tiếp theo.. Hỏi sau ít nhất bao nhiêu năm người đó sẽ nhận được số
Trang 1S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
THPT LIÊN TRƯỜNG NGHỆ AN NĂM HỌC 2020 - 2021 MÔN: TOÁN
Thời gian làm bài: 90 phút, không kể thời gian phát đề
Họ và tên: ……… ………SBD:
………
ĐỀ BÀI Câu 1: Cho tập hợp A gồm n phần tử (n*,n3) Số tập con gồm 3 phần tử của tập hơp A bằng
n n
n n
n n
n n
Câu 6: Cho hàm số y=f x( ) có bảng biến thiên như sau
Số nghiệm của phương trình 2f x 3 0
là
Câu 7: Số đường tiệm cận của đồ thị hàm số 2
11
y x
bằng
Trang 2S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Câu 8: Cho ,x y là hai số thực dương và , m n là hai số thực tùy ý Đẳng thức nào sau đây là sai?
3
13
C V a3 D
3
12
D
5
;3
D
D
5
\3
Câu 20: Trong không gian Oxyz cho hai điểm A2; 1;3 , B5; 2; 1
Tọa độ của vectơ
AB
là
Trang 3S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Câu 25: Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 6.5% / năm Biết rằng nếu không
rút tiền ra khỏi ngân hàng thì cứ mỗi năm số tiền lãi được nhập vào số tiền gốc để tính lãi chonăm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ nhận được số tiền nhiều hơn 200 triệuđồng (bao gồm cả gốc lẫn lãi)? Giả định trong suốt thời gian gửi, lãi suất không đổi và người
đó không rút tiền ra
Câu 26: Phần thực của số phức z thỏa mãn phương trình 1 2 i z 7 i
Câu 27: Cho hàm số yf x( ) có đạo hàm f x'( )x2 17 x2 3x 4 4 x22021
Số điểm cực tiểucủa hàm số đã cho là
Câu 28: Cho hàm số f x( )ax4bx2c a b c R( , , ) có đồ thị cho bởi hình vẽ bên Chọn khẳng định
đúng:
A b a B ab c 0 C a c 0 D abc 0
Trang 4S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Câu 29: Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh 2a , SC 2a 3 Biết SAvuông
góc với mặt phẳng ABCD Thể tích khối chóp S ABCD. bằng
3
23
a
3
83
a
3
23
a
Câu 30: 111Equation Chapter 1 Section 1 Nếu f x cos2x sin2 x có nguyên hàm F x thoả
14
Câu 35: Cho hình chóp .S ABCD có đáy ABCD là hình vuông, SA vuông góc với ABCD và
SA AB a Tính bán kính mặt cầu ngoại tiếp hình chóp S ABCD
A
32
a
22
a
52
Trang 5S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Câu 37: Cho hàm số đa thức yf x
có đồ thị như hình vẽ bên dưới.
Câu 38: Người ta dùng 100 số nguyên dương đầu tiên để đánh số cho 100 tấm thẻ (mỗi thẻ đánh một
số) Chọn ngẫu nhiên bốn thẻ trong 100 thẻ đó Xác suất để chọn được bốn thẻ sao cho tích củacác số ghi trên bốn thẻ chia hết cho 9 gần nhất với kết quả nào sau đây?
A 0,536. B 0, 464 C 0, 489 D 0,511
Câu 39: Trong không gian Oxyz, cho mặt cầu S : x42y2z 32 16
Từ gốc toạ độ O kẻ tiếp tuyến OM bất kì ( M là tiếp điểm) với mặt cầu S
Khi đó điểm M luôn thuộc mặt phẳng có
phương trình nào sau đây?
A 4x 3z 9 0 B 4x3z 9 0 C 4x 3z 6 0 D 4x 3z15 0 Câu 40: Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu chuyển động với vận tốc được biểu thị bằng đồ
thị là đường cong Parabol Biết rằng sau 5 phút thì xe đạt đến vận tốc cao nhất 1000 m/phút vàbắt đầu giảm tốc, đi được 6 phút thì xe chuyển động đều (hình vẽ)
Hỏi quãng đường xe đã đi được trong 10 phút đầu tiên kể từ lúc bắt đầu là bao nhiêu mét?
Trang 6S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Câu 41: Trong mặt phẳng phức Oxy , cho các số phức z thỏa mãn z i 10 và w i 1z2z1
là số thuần ảo Biết rằng tồn tại số phức z a bi a b ; , được biểu diễn bởi điểm M sao cho MA ngắn nhất, với điểm A1; 4 Tính a b
Câu 42: Cho f x
là hàm đa thức bậc ba và có đồ thị như hình vẽ bên dưới
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 100;100
để đồ thị hàm số
2
1( )
mx y
Câu 43: Cho lăng trụ tam giác đều ABC DEF có tất cả các cạnh bằng a Xét (T) là hình trụ nội tiếp
lăng trụ Gọi M là tâm của mặt bên BCFE, mặt phẳng chứa AM và song song với BC cắt (T)
như hình vẽ bên dưới
Thể tích phần còn lại (như hình trên) của khối (T) bằng
a
Câu 44: Có bao nhiêu số tự nhiên m để phương trình 2 23 2 9 25 9 2
cónghiệm?
Trang 7S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Câu 48: Cho hình hộp ABCD A B C D. có đáy là hình thoi cạnh a , ADC 1200 Mặt bên DCC D là
hình chữ nhật và tạo với mặt đáy một góc 600 Gọi M N P K, , , lần lượt là trung điểm của các
cạnh AB A D CC BB, , , Tính thể tích khối đa diện MNPKA theo a biết AA 2a
A
3
316
a
3
916
a
3
932
a
3
332
Trang 8S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Câu 50: Có bao nhiêu cặp x y; thỏa mãn
11.A 12.D 13.A 14.A 15.A 16.A 17.C 18.B 19.B 20.A21.C 22.A 23.A 24.C 25.B 26.C 27.A 28.C 29.C 30.B31.B 32.B 33.C 34.B 35.A 36.C 37.B 38.A 39.A 40.A41.B 42.B 43.A 44.A 45.A 46.C 47.A 48.C 49.D 50.A
HƯỚNG DẪN GIẢI Câu 1: [Mức độ 1] Cho tập hợp A gồm n phần tử (n*,n3) Số tập con gồm 3 phần tử của tập
Fb tác giả: Lê Duy Lực
Số tập con có 3 phần tử của tập hợp có n phần tử là số cách chọn 3 trong n phần tử đó nên là
Fb tác giả: Lê Duy Lực
Xét phương trình hoành độ giao điểm
Trang 9S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Câu 3: [Mức độ 1] Cho cấp số nhân u n
có số hạng đầu u và công bội 1 q 1 Kí hiệu S là tổng n nsố
hạng đầu của cấp số nhân đó Chọn khẳng định đúng:
1.1
n n
n n
n n
Ta có bảng biến thiên như sau
Từ bảng biến thiên ta suy ra hàm số nghịch biến trên khoảng 0;1 .
Câu 5: [Mức độ 1] Cho hàm số đa thứcyf x( ) có đồ thị như hình vẽ bên dưới Hàm số yf x( )
có bao nhiêu điểm cực tiểu?
Lời giải
FB tác giả: Trần Đức Nội
Theo đồ thị đã cho thì hàm số yf x( ) có 1 điểm cực tiểu
Câu 6: [Mức độ 1] Cho hàm số y=f x( ) có bảng biến thiên như sau
Trang 10S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Số nghiệm của phương trình 2f x 3 0
cắt đường thẳng
32
y
tại 4 điểm phânbiệt Do đó phương trình 2f x 3 0
có 4 nghiệm phân biệt
Câu 7: [Mức độ 1] Số đường tiệm cận của đồ thị hàm số 2
11
y x
nên y là đường tiệm cận ngang của đồ thị hàm số.0
Phương trình x vô nghiệm nên đồ thị hàm số đã cho không có tiệm cận đứng.2 1 0
Câu 8: [Mức độ 1] Cho ,x y là hai số thực dương và , m n là hai số thực tùy ý Đẳng thức nào sau đây
Trang 11S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Vậy phương trình có 1 nghiệm
Câu 11: [ Mức độ 1] Cho hàm số y x33x2 Giả sử giá trị lớn nhất và giá trị nhỏ nhất của hàm1
số trên đoạn 1;3 lần lượt là M m, thì M m bằng
Lời giải
FB tác giả: Hung Le Thanh
Hàm số xác định và liên tục trên đoạn 1;3 .
2 1;3
x y
FB tác giả: Khánh Bùi Văn
Áp dụng công thức cosax b dx 1sinax b C
Trang 12S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Số cạnh của một hình bát diện đều là 12
Câu 17: [Mức độ 1] Thể tích khối lăng trụ có chiều cao bằng a và diện tích đáy bằng a là2
A
3
16
3
13
C V a3 D
3
12
Lời giải
Fb tác giả: Lê Duy Lực
Theo công thức tính thể tích khối lăng trụ có chiều cao h , diện tích kính đáy B :
Lời giải
Fb tác giả: Lê Duy Lực
Theo công thức tính thể tích khối nón có chiều cao h, bán kính đáy r:
Trang 13S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
A D 2; B
5
;3
D
5
;3
D
D
5
\3
Lời giải
FB tác giả: Trần Văn Trưởng
Câu 20: [ Mức độ 1] Trong không gian Oxyz cho hai điểm A2; 1;3 , B5;2; 1
Tọa độ của vectơ
là một véc tơ chỉ phương của đường thẳng AB ,
Phương trình tham số của đường thẳng AB là
Câu 23: [ Mức độ 1] Trong không gian Oxyzcho mặt phẳng P x y: 2z Vectơ nào sau đây1 0
là một vectơ pháp tuyến của mặt phẳng P
Trang 14S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Ta có vectơ pháp tuyến của mặt phẳng P
là n 1; 1; 2 Từ đó suy ra vectơ n 1;1; 2cũng là vectơ pháp tuyến của mặt phẳng P .
Câu 24: [ Mức độ 1] Trong không gian Oxyz cho mặt cầu có phương trình x -1 + y + 3 + z = 92 2 2
Tọa độ tâm I và bán kính R của mặt cầu đó là:
A I1;3;0; R3. B I1; 3;0 ; R9.
C I1; 3;0 ; R3. D I1;3;0; R9.
Lời giải
FB tác giả: Dương Hiền
Phương trình đường tròn x -1 + y + 3 + z = 92 2 2 có tâm I1; 3;0 ; R 3
Câu 25: [Mức độ 2] Một người gửi 100 triệu đồng vào một ngân hàng với lãi suất 6.5% / năm Biết
rằng nếu không rút tiền ra khỏi ngân hàng thì cứ mỗi năm số tiền lãi được nhập vào số tiền gốc
để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ nhận được số tiềnnhiều hơn 200 triệu đồng (bao gồm cả gốc lẫn lãi)? Giả định trong suốt thời gian gửi, lãi suấtkhông đổi và người đó không rút tiền ra
Lời giải
FB tác giả: Dương Vĩnh Lợi
Theo công thức lãi kép, ta có CA1rn 200
(Trong đó A là 100 triệu gửi ban đầu, r 6.5%)
Vậy ít nhất 12 năm, người đó nhận được số tiền nhiều hơn 200 triệu
Câu 26: [Mức độ 1] Phần thực của số phức z thỏa mãn phương trình 1 2 i z 7 i
Câu 27: [Mức độ 2] Cho hàm số yf x( ) có đạo hàm f x'( )x2 17 x2 3x 4 4 x22021
Sốđiểm cực tiểu của hàm số đã cho là
Lời giải
FB tác giả: Chu Quốc Hùng Edu
Trang 15S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Ta có:
22
03
x x
x x
Dựa vào bảng xét dấu suy ra số điểm cực tiểu của hàm số là 0
Câu 28: [Mức độ 2] Cho hàm số f x( )ax4bx2c a b c R( , , ) có đồ thị cho bởi hình vẽ bên Chọn
Câu 29: [Mức độ 1] Cho hình chóp S ABCD. có đáy ABCD là hình vuông cạnh 2a , SC2a 3 Biết
SAvuông góc với mặt phẳng ABCD Thể tích khối chóp S ABCD. bằng
3
23
a
3
83
a
3
23
Trang 16S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
+) ABCD là hình vuông cạnh 2a AC2 2a
+) Xét tam giác vuông SAC có SA SC2 AC2 12a2 8a2 2a
+) Thể tích khối chóp S ABCD. bằng
3 2
Trang 17S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Trang 18S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Theo giả thiết, thiết diện là hình vuông có cạnh là 4 a
Khi đó, chiều cao của hình trụ là h4a, bán kính đáy của hình trụ là r2a
a
22
a
52
a
Lời giải
Tác giả : Thông Đình Đình
Trang 19S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Gọi I là trung điểm của SC Vì SAC SBC SDC 90 IS IA IB IC ID
Nên mặt cầu ngoại tiếp hình chóp S ABCD có tâm I và bán kính
Trang 20S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Vậy hàm số h x f x 1
đồng biến trên khoảng 1;1
và 3; Cách 2 Ghép trục
Từ bảng biến thiên của hàm số h x f x 1
suy ra hàm số h x f x 1
đồng biến trênkhoảng 1;1
và 3; .
Câu 38: [Mức độ 3] Người ta dùng 100 số nguyên dương đầu tiên để đánh số cho 100 tấm thẻ (mỗi thẻ
đánh một số) Chọn ngẫu nhiên bốn thẻ trong 100 thẻ đó Xác suất để chọn được bốn thẻ saocho tích của các số ghi trên bốn thẻ chia hết cho 9 gần nhất với kết quả nào sau đây?
A 0,536. B 0, 464 C 0, 489 D 0,511
Lời giải
Trang 21S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
là biến cố: chọn được bốn thẻ sao cho tích của các số ghi trên bốn thẻ không chia hết cho
9” Để tích 4 số không chia hết cho 9 xảy ra hai trường hợp sau.
.( ) C C C
.( ) 1 ( ) 1 C C C 0,536
Câu 39: [Mức độ 3] Trong không gian Oxyz, cho mặt cầu S : x42y2z 32 16 Từ gốc toạ
độ O kẻ tiếp tuyến OM bất kì ( M là tiếp điểm) với mặt cầu S Khi đó điểm M luôn thuộc
mặt phẳng có phương trình nào sau đây?
Trang 22S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Câu 40: [ Mức độ 2] Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu chuyển động với vận tốc được biểu
thị bằng đồ thị là đường cong Parabol Biết rằng sau 5 phút thì xe đạt đến vận tốc cao nhất
1000 m/phút và bắt đầu giảm tốc, đi được 6 phút thì xe chuyển động đều (hình vẽ)
Hỏi quãng đường xe đã đi được trong 10 phút đầu tiên kể từ lúc bắt đầu là bao nhiêu mét?
A 8160 m . B 8610 m . C 10000 m . D 8320 m .
Lời giải
FB Tuấn Nguyễn: Nguyễn Văn Tuấn.
Giả sử trong 5 phút đầu vận tốc của ô tô được biểu diễn bởi phương trình v t at2bt c Theo giả thiết ta có:
w i z z là số thuần ảo Biết rằng tồn tại số phức z a bi a b ; , được biểu diễn
bởi điểm M sao cho MA ngắn nhất, với điểm A1; 4 Tính a b
Trang 23S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Dựa vào hình ta thấy MA nhỏ nhất khi M là giao điểm có hoành độ âm của đường thẳng
3x y 1 0 với đường tròn tâm I(0; 1), R 10
là hàm đa thức bậc ba và có đồ thị như hình vẽ bên dưới
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 100;100
để đồ thị hàm số
2
1( )
mx y
Yêu cầu bài toán f x( )m có nghiệm, trong đó có đúng hai nghiệm thoả mãn 1mx2 0
Mà mlà số nguyên nên dựa vào đồ thị ta chỉ cần xét m 2; 1 .
+ Với
2
1 22
Khi đó f x ( ) 2có hai nghiệm x10 ;x2 Nghiệm a 2 x2
không thoả mãn điều kiện 1 2 x2 0nên m 2 không thoả mãn
+ Với
2
11
Trang 24S n ph m c a Group FB: T 3 ản phẩm của Group FB: TỔ 3 ẩm của Group FB: TỔ 3 ủa Group FB: TỔ 3 Ổ 3 - STRONG TEAM TOÁN VD - VDC Đ T 20 ỢT 20
Yêu cầu bài toán f x( )mcó đúng một nghiệm x R m2
Vì mnguyên thuộc đoạn
Câu 43: [Mức độ 3] Cho lăng trụ tam giác đều ABC DEF có tất cả các cạnh bằng a Xét (T) là hình
trụ nội tiếp lăng trụ Gọi M là tâm của mặt bên BCFE, mặt phẳng chứa AM và song song với
BC cắt (T) như hình vẽ bên dưới.
Thể tích phần còn lại (như hình trên) của khối (T) bằng
a