Jointly,HDOand zeolite crackingare referredtoas catalytic bio-oilupgradingandthesecouldbecomeroutesforproductionof secondgenerationbio-fuelsinthefuture,butbothroutesarestill farfromindus
Trang 1jo u r n al h om ep a g e :w w w e l s e v i e r c o m / l o c a t e / a p c a t a
Review
a Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800 Lyngby, Denmark
b Institute of Chemical Technology and Polymer Science, Karlsruhe Institute of Technology (KIT), Engesserstrasse 20, D-79131 Karlsruhe, Denmark
c Haldor Topsø A/S, Nymøllevej 55, DK-2800 Lyngby, Denmark
Article history:
Received 13 May 2011
Received in revised form 30 August 2011
Accepted 31 August 2011
Available online 7 September 2011
Keywords:
Bio-oil
Biocrudeoil
Biofuels
Catalyst
HDO
Hydrodeoxygenation
Pyrolysis oil
Synthetic fuels
Zeolite cracking
Astheoilreservesaredepletingtheneedofanalternativefuelsourceisbecomingincreasinglyapparent Oneprospectivemethodforproducingfuelsinthefutureisconversionofbiomassintobio-oilandthen upgradingthebio-oiloveracatalyst,thismethodisthefocusofthisreviewarticle.Bio-oilproductioncan
befacilitatedthroughflashpyrolysis,whichhasbeenidentifiedasoneofthemostfeasibleroutes.The bio-oilhasahighoxygencontentandthereforelowstabilityovertimeandalowheatingvalue.Upgrading
isdesirabletoremovetheoxygenandinthiswaymakeitresemblecrudeoil.Twogeneralroutesfor bio-oilupgradinghavebeenconsidered:hydrodeoxygenation(HDO)andzeolitecracking.HDOisahigh pressureoperationwherehydrogenisusedtoexcludeoxygenfromthebio-oil,givingahighgradeoil productequivalenttocrudeoil.Catalystsforthereactionaretraditionalhydrodesulphurization(HDS) catalysts,suchasCo–MoS2/Al2O3,ormetalcatalysts,asforexamplePd/C.However,catalystlifetimesof muchmorethan200hhavenotbeenachievedwithanycurrentcatalystduetocarbondeposition.Zeolite crackingisanalternativepath,wherezeolites,e.g.HZSM-5,areusedascatalystsforthedeoxygenation reaction.Inthesesystemshydrogenisnotarequirement,sooperationisperformedatatmospheric pressure.However,extensivecarbondepositionresultsinveryshortcatalystlifetimes.Furthermorea generalrestrictioninthehydrogencontentofthebio-oilresultsinalowH/Cratiooftheoilproductasno additionalhydrogenissupplied.Overall,oilfromzeolitecrackingisofalowgrade,withheatingvalues approximately25%lowerthanthatofcrudeoil.Ofthetwomentionedroutes,HDOappearstohavethe bestpotential,aszeolitecrackingcannotproducefuelsofacceptablegradeforthecurrentinfrastructure HDOisevaluatedasbeingapathtofuelsinagradeandatapriceequivalenttopresentfossilfuels, butseveraltasksstillhavetobeaddressedwithinthisprocess.Catalystdevelopment,understanding
ofthecarbonformingmechanisms,understandingofthekinetics,elucidationofsulphurasasourceof deactivation,evaluationoftherequirementforhighpressure,andsustainablesourcesforhydrogenare allareaswhichhavetobeelucidatedbeforecommercialisationoftheprocess
© 2011 Elsevier B.V All rights reserved
Contents
1 Introduction 2
2 Bio-oil 2
3 Bio-oilupgrading—generalconsiderations 3
4 Hydrodeoxygenation 4
4.1 Catalystsandreactionmechanisms 6
4.1.1 Sulphide/oxidecatalysts 6
4.1.2 Transitionmetalcatalysts 7
4.1.3 Supports 8
4.2 Kineticmodels 9
4.3 Deactivation 9
5 Zeolitecracking 10
5.1 Catalystsandreactionmechanisms 10
∗ Corresponding author Tel.: +45 4525 2841; fax: +45 4588 2258.
E-mail address: aj@kt.dtu.dk (A.D Jensen).
0926-860X/$ – see front matter © 2011 Elsevier B.V All rights reserved.
Trang 25.2 Kineticmodels 11
5.3 Deactivation 12
6 Generalaspects 13
7 Prospectofcatalyticbio-oilupgrading 14
8 Discussion 16
9 Conclusionandfuturetasks 17
Acknowledgements 17
References 17
1 Introduction
Energyconsumptionhasneverbeenhigherworldwidethanitis
today,duetoourwayoflivingandthegeneralfactthattheWorld’s
populationisincreasing[1,2].Oneofthemainfieldsofenergy
con-sumptionisthetransportationsector,constitutingaboutonefifth
ofthetotal[3].AstheWorld’spopulationgrowsandmeansof
trans-portationbecomesmorereadilyavailable,itisunavoidablethatthe
needforfuelswillbecomelargerinthefuture[4].Thisrequirement
constitutesoneofthemajorchallengesofthenearfuture,aspresent
fuelsprimarilyareproducedfromcrudeoilandthesereservesare
depleting[5]
Substantialresearch is being carried out within thefield of
energyinordertofindalternativefuelstoreplacegasoline and
diesel The optimal solution would be an alternative which is
equivalenttotheconventionalfuels,i.e.compatiblewiththe
infras-tructureasweknowit,butalsoafuelwhichissustainableandwill
decreasetheCO2emissionandtherebydecreasetheenvironmental
man-madefootprint[6]
Biomassderivedfuelscouldbetheprospectivefuelof
tomor-rowasthesecanbeproducedwithinarelativelyshortcycleand
areconsideredbenignfortheenvironment[4,7].Sofarfirst
gener-ationbio-fuels(bio-ethanolandbiodiesel)havebeenimplemented
indifferentpartsoftheWorld[8,9].However,thesetechnologies
relyonfoodgradebiomass;firstgenerationbio-ethanolisproduced
fromthefermentationofsugarorstarchandbiodieselisproduced
onthebasisoffats[10–12].Thisisaproblemastherequirement
forfoodaroundtheWorldisaconstraintandtheenergyefficiency
perunitlandoftherequiredcropsisrelativelylow(comparedto
energycrops)[13].Forthisreasonnewresearchfocuseson
devel-opingsecondgenerationbio-fuels, whichcanbeproducedfrom
otherbiomasssourcessuchasagriculturalwaste,wood,etc.Table1
summarizesdifferentpathsforproducingfuelsfrombiomassand
displaywhichtypeofbiomasssourceisrequired,showingthata
seriesofpathsexistswhichcanutiliseanysourceofbiomass
Of the second generation biofuel paths,a lot of efforts are
presentlyspentonthebiomasstoliquidrouteviasyngasto
opti-mizetheefficiency[14–17]andalsosynthesisofhigheralcohols
fromsyngasor hydrocarbonsfrommethanol [16,18–22] Asan
alternative,theestimatedproductionpricesshowninTable1
indi-catethatHDO constitutea feasible routefor theproduction of
syntheticfuels.Thecompetivenessofthisrouteisachieveddue
toagoodeconomywhenusingbio-oilasplatformchemical(lower
transportcostforlargescaleplants)andtheflexibilitywithrespect
tothebiomassfeed[10,23–25].Furthermorethisroutealso
consti-tuteapathtofuelsapplicableinthecurrentinfrastructure[10]
Jointly,HDOand zeolite crackingare referredtoas catalytic
bio-oilupgradingandthesecouldbecomeroutesforproductionof
secondgenerationbio-fuelsinthefuture,butbothroutesarestill
farfromindustrialapplication.Thisreviewwillgiveanoverview
onthepresentstatusofthetwoprocessesandalsodiscusswhich
aspectsneed furtherelucidation.Eachroute willbeconsidered
independently.Aspectsofoperatingconditions,choiceofcatalyst,
reactionmechanisms,anddeactivationmechanismswillbe
dis-cussed.Theseconsiderationswillbeusedtogiveanoverviewofthe
Table 1
Overview of potential routes for production of renewable fuels from biomass The prices are based on the lower heating value (LHV) Biomass as feed implies high flexibility with respect to feed source.
Technology Feed Platform chemical Price [$/toe a ]
a toe: tonne of oil equivalent, 1 toe = 42 GJ.
b Published price: 2.04$/gallon [167] , 1 gallon = 3.7854 l, = 719 kg/m 3 , LHV = 42.5 MJ/kg.
c Published price: 20–27$/GJ [197]
d Published price: 9–17$/GJ [197,21]
e Expenses for distribution and storage are not considered.
f Published price: 13–14$/GJ [197]
g Published price: 31–36$/GJ [197]
h Published price: 0.2–0.5$/l [193] , = 789 kg/m 3 , LHV = 28.87 MJ/kg.
i Published price: 0.6–0.8$/l [193]
j Published price: 0.8–1.1$/l [193]
k Published price: 0.5–1$/l [193] , = 832 kg/m 3 , LHV = 43.1 MJ/kg.
l Published price: 0.5–0.8$/l [193]
m Published price in USA April 2011: 2.88$/gallon excluding distribution, market-ing, and taxes [179] Crude oil price April 2011: 113.23$/barrel [196]
twoprocessescomparedtoeachother,butalsorelativetocrude oilasthebenchmark.Ultimately,anindustrialperspectivewillbe given,discussingtheprospectiveofproductionofbio-fuelsthrough catalyticbio-oilupgradinginindustrialscale
Otherreviews withinthe samefield are that by Elliott[26] from2007wherethedevelopmentwithinHDOsincethe1980s
isdiscussed,andareviewin2000byFurimsky[27]where reac-tionmechanismsandkineticsofHDOarediscussed.Moregeneral reviews of utilisation of bio-oil have beenpublished by Zhang
etal.[28],Bridgwater[29],andCzernikandBridgwater[30],and reviewsaboutbio-oilandproductionthereofhavebeenpublished
byVenderboschandPrins[31]andMohanetal.[32]
2 Bio-oil
AsseenfromTable1,bothHDOandzeolitecrackingarebased
onbio-oilasplatformchemical.Flashpyrolysisisthemostwidely appliedprocessforproductionofbio-oil, asthishasbeenfound
asafeasibleroute[16,26,33].Inthisreview,onlythisroutewillbe discussedandbio-oilwillinthefollowingrefertoflashpyrolysisoil Forinformationaboutotherroutesreferenceismadeto[16,34–37] Flash pyrolysis is a densification technique where both the mass-andenergy-densityisincreasedbytreatingtherawbiomass
atintermediatetemperatures(300–600◦C)withhighheatingrates (103–104K/s)andatshortresidencetimes(1–2s)[28,31,38].Inthis way,anincreaseintheenergydensitybyroughlyafactorof7–8
Trang 3Table 2
Bio-oil composition in wt% on the basis of different biomass sources and production methods.
canbeachieved[39,40].Virtuallyanytypeofbiomassiscompatible
withpyrolysis,rangingfrommoretraditionalsourcessuchascorn
andwoodtowasteproductssuchassewagesludgeandchicken
litter[38,41,42]
Morethan300differentcompoundshavebeenidentifiedin
bio-oil,wherethespecificcompositionoftheproductdependsonthe
feedand processconditionsused[28].In Table2arough
char-acterisationofbio-oilfromdifferentbiomasssourcesisseen.The
principlespeciesoftheproductiswater,constituting10–30wt%,
buttheoilalsocontains:hydroxyaldehydes,hydroxyketones,
sug-ars,carboxylicacids,esters,furans,guaiacols,andphenolics,where
manyofthephenolicsarepresentasoligomers[28,30,43,44]
Table3showsacomparisonbetweenbio-oilandcrudeoil.One
crucialdifferencebetweenthetwoistheelementalcomposition,
asbio-oilcontains10–40wt%oxygen[28,31,45].Thisaffectsthe
homogeneity,polarity,heatingvalue(HV),viscosity,andacidityof
theoil
Theoxygenatedmoleculesoflowermolecularweight,especially
alcoholsandaldehydes,ensurethehomogeneousappearanceof
theoil,astheseactasasortofsurfactantforthehigher
molecu-larweightcompounds,whichnormallyareconsideredapolarand
immisciblewithwater[166].Overallthismeansthatthebio-oil
hasapolarnatureduetothehighwatercontentandistherefore
immisciblewithcrudeoil.Thehighwatercontentandoxygen
con-tentfurtherresultinalowHVofthebio-oil,whichisabouthalf
thatofcrudeoil[28,31,30,46]
ThepHofbio-oilisusuallyintherangefrom2to4,which
pri-marilyisrelatedtothecontentofaceticacidandformicacid[47]
Theacidicnatureoftheoilconstitutesaproblem,asitwillentail
harshconditionsforequipmentusedforbothstorage,transport,
andprocessing Commonconstructionmaterialssuchascarbon
steelandaluminiumhaveprovenunsuitablewhenoperatingwith
bio-oil,duetocorrosion[28,46]
Apronouncedproblemwithbio-oilistheinstabilityduring
stor-age,whereviscosity,HV,anddensityallareaffected.Thisisdue
tothepresenceofhighlyreactiveorganiccompounds.Olefinsare
Table 3
Comparison between bio-oil and crude oil Data are from Refs [10,11,28]
Overalltheunfavourablecharacteristicsofthebio-oilare asso-ciatedwiththeoxygenatedcompounds.Carboxylicacids,ketones, and aldehydes constitutesome ofthe mostunfavourable com-pounds,bututilisationoftheoilrequiresageneraldecreaseinthe oxygencontentinordertoseparatetheorganicproductfromthe water,increasetheHV,andincreasethestability
3 Bio-oil upgrading—general considerations
Catalyticupgradingofbio-oilisacomplexreactionnetworkdue
tothehighdiversityofcompoundsinthefeed.Cracking, decar-bonylation,decarboxylation,hydrocracking,hydrodeoxygenation, hydrogenation, and polymerizationhave been reportedto take placeforbothzeolitecrackingandHDO[51–53].Examplesofthese reactionsaregiveninFig.1.Besidesthese,carbonformationisalso significantinbothprocesses
The high diversity in the bio-oil and the span of potential reactionsmakeevaluationofbio-oilupgradingdifficultandsuch evaluationoftenrestrictedtomodelcompounds.Togetageneral thermodynamicoverviewoftheprocess,wehaveevaluatedthe followingreactionsthroughthermodynamiccalculations(basedon datafromBarin[54]):
ThisreactionpathofphenolhasbeenproposedbybothMassoth
etal.[55]andYunquanetal.[56].Calculatingthethermodynamic equilibriumforthetworeactionsshowsthatcompleteconversion
ofphenolcanbeachievedattemperaturesuptoatleast600◦C
atatmosphericpressureandstoichiometricconditions.Increasing eitherthepressureortheexcessofhydrogenwillshiftthe ther-modynamicseven furthertowardscompleteconversion.Similar calculationshavealsobeenmadewithfurfural,givingequivalent results.Thus,thermodynamicsdoesnotappeartoconstitutea con-straintfortheprocesses,whenevaluatingthesimplestreactionsof Fig.1formodelcompounds
Inpracticeitisdifficulttoevaluatetheconversionofeach indi-vidualcomponentinthebio-oil.Insteadtwoimportantparameters aretheoilyieldandthedegreeofdeoxygenation:
Yoil=
moil
mfeed
Trang 4
Fig 1.Examples of reactions associated with catalytic bio-oil upgrading The figure is drawn on the basis of information from Refs [51,53]
DOD=
1−wt%wtOinproduct
O in feed
HereYoilistheyieldofoil,moilisthemassofproducedoil,mfeed
isthemassofthefeed,DODisthedegreeofdeoxygenation,and
wt%Oistheweightpercentofoxygenintheoil.Thetwo
parame-terstogethercangivearoughoverviewoftheextentofreaction,
astheoilyielddescribestheselectivitytowardanoilproductand
thedegreeofdeoxygenationdescribeshoweffectivetheoxygen
removalhasbeenandthereforeindicatesthequalityofthe
pro-ducedoil.However,separatelytheparametersarelessdescriptive,
foritcanbeseenthata100%yieldcanbeachievedinthecase
ofnoreaction.Furthermore,noneoftheparametersrelatetothe
removalofspecifictroublesomespeciesandthesewouldhaveto
beanalyzedforindetail
Table4summarizesoperatingparameters,productyield,degree
ofdeoxygenation,andproductgradeforsomeofthework con-ductedwithinthefieldofbio-oilupgrading.Thereadercangetan ideaofhowthechoiceofcatalystandoperatingconditionsaffect theprocess.Itisseenthatawidevarietyofcatalystshavebeen tested.HDOandzeolitecrackingaresplitinseparatesectionsin thetable,whereitcanbeconcludedthattheprocessconditionsof HDOrelativetozeolitecrackingaresignificantlydifferent, partic-ularlywithrespecttooperatingpressure.Thetwoprocesseswill thereforebediscussedseparatelyinthefollowing
4 Hydrodeoxygenation
HDOiscloselyrelatedtothehydrodesulphurization(HDS) pro-cessfromtherefineryindustry,usedintheeliminationofsulphur fromorganiccompounds[43,57].BothHDOandHDSusehydrogen
Table 4
Overview of catalysts investigated for catalytic upgrading of bio-oil.
Hydrodeoxygenation
Zeolite cracking
a Calculated as the inverse of the WHSV.
b
Trang 5H2S
AllthereactionsshowninFig.1arerelevantforHDO,butthe
principal reactionis hydrodeoxygenation, as thename implies,
andthereforetheoverallreactioncanbegenerallywrittenas(the
reactionisinspiredbyBridgwater[43,58]andcombinedwiththe
elementalcompositionofbio-oilspecifiedinTable3normalizedto
carbon):
CH1.4O0.4+0.7H2→1”CH2+0.4H2O (5)
Here “CH2” represent anunspecified hydrocarbon product.The
overallthermochemistryofthisreactionisexothermicandsimple
calculationshaveshownanaverageoverallheatofreactioninthe
orderof2.4MJ/kgwhenusingbio-oil[59]
Waterisformedintheconceptualreaction,so(atleast)two
liquidphaseswillbeobservedasproduct:oneorganicandone
aqueous The appearance of two organic phases has alsobeen
reported,which isduetotheproduction oforganiccompounds
withdensitieslessthanwater.Inthiscasealightoilphasewill
separateontopofthewaterandaheavyonebelow.The
forma-tionoftwoorganicphasesisusuallyobservedininstanceswith
highdegreesofdeoxygenation,whichwillresultinahighdegree
offractionationinthefeed[11]
InthecaseofcompletedeoxygenationthestoichiometryofEq
(5)predictsamaximumoilyieldof56–58wt%[43].However,the
completedeoxygenationindicatedbyEq.(5)israrelyachieveddue
tothespanofreactionstakingplace;insteadaproductwithresidual
oxygenwilloftenbeformed.Venderboschetal.[11]describedthe
stoichiometryofaspecificexperimentnormalizedwithrespectto
thefeedcarbonas(excludingthegasphase):
CH1.47O0.56 +0.39H2→0.74CH1.47O0.11+0.19CH3.02O1.09
HereCH1.47O0.11istheorganicphaseoftheproductandCH3.02O1.09
istheaqueousphaseoftheproduct.Someoxygenisincorporated
inthehydrocarbonsoftheorganicphase,buttheO/Cratiois
sig-nificantlylowerinthehydrotreatedorganicphase(0.11)compared
tothepyrolysisoil(0.56).IntheaqueousphaseahigherO/Cratio
thanintheparentoilisseen[11]
Regardingoperating conditions, a highpressure is generally
used,whichhasbeenreportedintherange from75to300bar
intheliterature[31,60,61].Patentliteraturedescribesoperating
pressuresintherangeof10–120bar[62,63].Thehighpressurehas
beendescribedasensuringahighersolubilityofhydrogeninthe
oilandtherebyahigheravailabilityofhydrogeninthevicinityof
thecatalyst.Thisincreasesthereactionrateandfurtherdecreases
cokinginthereactor[11,64].Elliottetal.[61]usedhydrogeninan
excessof35–420molH2perkgbio-oil,comparedtoarequirement
ofaround25mol/kgforcompletedeoxygenation[11]
Highdegreesofdeoxygenationarefavouredbyhighresidence
times[31].Inacontinuousflowreactor,Elliottetal.[61]showed
thattheoxygencontentoftheupgradedoildecreasedfrom21wt%
to10wt%whendecreasingtheLHSVfrom0.70h−1to0.25h−1over
aPd/Ccatalystat140barand340◦C.IngeneralLHSVshouldbein
theorderof0.1–1.5h−1[63].Thisresidencetimeisinanalogyto
batchreactortests,whichusuallyarecarriedoutovertimeframes
of3–4h[53,65,66]
HDOisnormallycarriedoutattemperaturesbetween250and
450◦C[11,57].Asthereactionisexothermicandcalculationsof
theequilibriumpredictspotentialfullconversionofrepresentative
modelcompoundsuptoatleast600◦C,itappearsthatthechoiceof
operatingtemperatureshouldmainlybebasedonkineticaspects
TheeffectoftemperaturewasinvestigatedbyElliottandHart[61]
forHDOofwoodbasedbio-oiloveraPd/Ccatalystinafixedbed
Table 5
Activation energy (E A ), iso-reactive temperature (T iso ), and hydrogen consump-tion for the deoxygenation of different functional groups or molecules over a Co–MoS 2 /Al 2 O 3 catalyst Data are obtained from Grange et al [23]
Molecule/group E A [kJ/mol] T Iso [ ◦ C] Hydrogen consumption
Carboxylic acid 109 283 3 H 2 /group Methoxy phenol 113 301 ≈6 H 2 /molecule 4-Methylphenol 141 340 ≈4 H 2 /molecule 2-Ethylphenol 150 367 ≈4 H 2 /molecule Dibenzofuran 143 417 ≈8 H 2 /molecule
thedifferenttypesoffunctionalgroupsinthebio-oil[23,67].Table5 summarizesactivationenergies,iso-reactivitytemperatures(the temperaturerequiredforareactiontotakeplace),andhydrogen consumptionfordifferentfunctionalgroupsandmoleculesovera Co–MoS2/Al2O3catalyst.Onthiscatalysttheactivationenergyfor deoxygenationofketonesisrelativelylow,sothesemoleculescan
bedeoxygenatedattemperaturescloseto200◦C.However,forthe morecomplexboundorstericallyhinderedoxygen,asinfurans
ororthosubstitutedphenols,asignificantlyhighertemperatureis requiredforthereactiontoproceed.On thisbasistheapparent reactivityofdifferentcompoundshasbeensummarizedas[27]: alcohol >ketone>alkylether>carboxylicacid
≈M-/p-phenol≈naphtol>phenol>diarylether
≈O-phenol≈alkylfuran>benzofuran>dibenzofuran
(7)
An important aspect of the HDO reaction is the consump-tionofhydrogen.Venderboschetal.[11]investigatedhydrogen consumption for bio-oilupgradingas a function of deoxygena-tionrateover aRu/Ccatalystinafixedbedreactor.Theresults are summarized in Fig.2 The hydrogenconsumption becomes increasinglysteepasa functionofthedegreeofdeoxygenation
Fig 2. Consumption of hydrogen for HDO as a function of degree of deoxygenation compared to the stoichiometric requirement 100% deoxygenation has been extrap-olated on the basis of the other points The stoichiometric requirement has been calculated on the basis of an organic bound oxygen content of 31 wt% in the bio-oil and a hydrogen consumption of 1 mol H 2 per mol oxygen Experiments were per-formed with a Ru/C catalyst at 175–400◦C and 200–250 bar in a fixed bed reactor fed with bio-oil The high temperatures were used in order to achieve high degrees
Trang 6Fig 3. Yields of oil, water, and gas from a HDO process as a function of the degree
of deoxygenation Experiments were performed with eucalyptus bio-oil over a
Co–MoS 2 /Al 2 O 3 catalyst in a fixed bed reactor Data are from Samolada et al [81]
Thisdevelopmentwaspresumedtobeduetothedifferent
reac-tivity values of the compounds in the bio-oil Highly reactive
oxygenates,likeketones,areeasilyconvertedwithlowhydrogen
consumption,butsomeoxygenisboundinthemorestable
com-pounds.Thus,themorecomplexmoleculesareaccompaniedbyan
initialhydrogenation/saturationofthemoleculeandthereforethe
hydrogenconsumption exceedsthestoichiometricpredictionat
thehighdegreesofdeoxygenation[27].Thesetendenciesarealso
illustratedin Table5.Obviously, thehydrogenrequirement for
HDOofaketoneissignificantlylowerthanthatforafuran.Overall
thismeansthatinordertoachieve50%deoxygenation(ca.25wt%
oxygenin theupgradedoil)8molH2 perkgbio-oilis required
according to Fig 2 In contrast, complete deoxygenation (and
accompaniedsaturation)hasapredictedhydrogenrequirementof
ca.25mol/kg,i.e.anincreasebyafactorofca.3
Thediscussionaboveshowsthattheuseofhydrogenfor
upgrad-ingbio-oilhastwoeffectswithrespecttothemechanism:removing
oxygenand saturatingdouble bounds.Thisresultsindecreased
O/CratiosandincreasedH/Cratios,bothofwhichincreasethefuel
gradeoftheoilbyincreasingtheheatingvalue(HV).Mercaderetal
[60]foundthatthehigherheatingvalue(HHV)ofthefinalproduct
wasapproximatelyproportionaltothehydrogenconsumedinthe process,withanincrease intheHHVof 1MJ/kgpermol/kg H2
consumed
InFig.3theproductionofoil,water,andgasfromaHDOprocess usingaCo–MoS2/Al2O3catalystisseenasafunctionofthedegreeof deoxygenation.Theoilyielddecreasesasafunctionofthedegreeof deoxygenation,whichisduetoincreasedwaterandgasyields.This showsthatwhenharshconditionsareusedtoremovetheoxygen,a significantdecreaseintheoilyieldoccurs;itdropsfrom55%to30% whenincreasingthedegreeofdeoxygenationfrom78%to100%.It
isthereforeanimportantaspecttoevaluatetowhichextentthe oxygenshouldberemoved[68]
4.1 Catalystsandreactionmechanisms
AsseenfromTable4,avarietyofdifferentcatalystshasbeen testedfortheHDOprocess.Inthefollowing,thesewillbediscussed
aseithersulphide/oxidetypecatalystsortransitionmetalcatalysts,
asitappearsthatthemechanismsforthesetwogroupsofcatalysts aredifferent
4.1.1 Sulphide/oxidecatalysts Co–MoS2andNi–MoS2havebeensomeofthemostfrequently testedcatalystsfortheHDOreaction,asthesearealsousedinthe traditionalhydrotreatingprocess[26,27,64,67,69–83]
Inthesecatalysts,CoorNiservesaspromoters,donating elec-tronstothemolybdenumatoms.Thisweakensthebondbetween molybdenumandsulphurandtherebygeneratesasulphurvacancy site.ThesesitesaretheactivesitesinbothHDSandHDOreactions [55,80,84–86]
Romeroetal.[85]studiedHDOof2-ethylphenolonMoS2-based catalystsandproposedthereactionmechanismdepictedinFig.4 Theoxygenofthemoleculeisbelievedtoadsorbonavacancysiteof
aMoS2slabedge,activatingthecompound.S–Hspecieswillalsobe presentalongtheedgeofthecatalystasthesearegeneratedfrom theH2inthefeed.Thisenablesprotondonationfromthesulphurto theattachedmolecule,whichformsacarbocation.Thiscanundergo directC–Obondcleavage,formingthedeoxygenatedcompound, andoxygenishereafterremovedintheformationofwater
Fig 4. Proposed mechanism of HDO of 2-ethylphenol over a Co–MoS 2 catalyst The dotted circle indicates the catalytically active vacancy site The figure is drawn on the
Trang 7For the mechanism towork, it is a necessity that the
oxy-gengroupformedonthemetalsitefromthedeoxygenationstep
is eliminatedaswater During prolongedoperationithasbeen
observedthatadecreaseinactivitycanoccurdueto
transforma-tionofthecatalystfromasulphideformtowardanoxideform.In
ordertoavoidthis,ithasbeenfoundthatco-feedingH2Stothe
systemwillregeneratethesulphidesitesandstabilizethecatalyst
[79,84,87,88].However,thestudyofSenoletal.[87,88]showedthat
traceamountsofthiolsandsulphideswasformedduringtheHDO
of3wt%methylheptanoateinm-xyleneat15barand250◦Cina
fixedbedreactorwithCo–MoS2/Al2O3co-fedwithupto1000ppm
H2S.Thus,thesestudiesindicatethatsulphurcontaminationofthe
otherwisesulphurfreeoilcanoccurwhenusingsulphidetype
cat-alysts.AninterestingperspectiveinthisisthatCo–MoS2/Al2O3is
usedasindustrialHDScatalystwhereitremovessulphurfromoils
downtoalevelofafewppm[89].Ontheotherhand,Christensen
etal.[19]showedthat,whensynthesizinghigheralcoholsfrom
synthesisgaswithCo–MoS2/Cco-fedwithH2S,thiolsandsulfides
wereproducedaswell.Thus,theinfluenceofthesulphuronthis
catalystisdifficulttoevaluateandneedsfurtherattention
On thebasis of densityfunctional theory(DFT) calculations,
Mobergetal.[90]proposedMoO3ascatalystforHDO.These
cal-culationsshowedthatthedeoxygenationonMoO3 occursimilar
tothepathinFig.4,i.e.chemisorptiononacoordinatevely
unsat-uratedmetalsite,protondonation,anddesorption.Forbothoxide
and sulphide type catalysts the activityrelies onthe presence
ofacidsites.Theinitialchemisorptionstepisa Lewisacid/base
interaction,wheretheoxygenlonepairofthetargetmoleculeis
attractedtotheunsaturatedmetalsite.Forthisreasonitcanbe
speculatedthat thereactivityofthesystemmust partlyrelyon
theavailabilityandstrengthoftheLewisacidsitesonthecatalyst
GervasiniandAuroux[91]reportedthattherelativeLewisacidsite
surfaceconcentrationondifferentoxidesare:
Cr2O3>WO3>Nb2O5>Ta2O5>V2O5≈MoO3 (8)
Thisshould be matched against therelative Lewisacid site
strengthofthedifferentoxides.ThiswasinvestigatedbyLiand
Dixon[92],wheretherelativestrengthswerefoundas:
The subsequent step of the mechanism is proton donation
Thisreliesonhydrogenavailableonthecatalyst,which forthe
oxideswillbepresentashydroxylgroups.Tohaveprotondonating
capabilities,Brønstedacidhydroxylgroupsmustbepresentonthe
catalystsurface.InthiscontexttheworkofBuscashowedthatthe
relativeBrønstedhydroxylacidityofdifferentoxidesis[90]:
ThetrendsofEqs.(8)–(10)incomparisontothereactionpath
ofdeoxygenationrevealsthatMoO3functionsasacatalystdueto
thepresenceofbothstrongLewisacidsitesandstrongBrønsted
acidhydroxylsites.However,WhiffenandSmith[93]investigated
HDOof4-methylphenolover unsupportedMoO3 and MoS2 ina
batchreactorat41–48barand325–375◦C,andfoundthatthe
activ-ityofMoO3waslowerthanthatforMoS2andthattheactivation
energywashigheronMoO3thanonMoS2forthisreaction.Thus,
MoO3 mightnotbethebestchoiceofanoxidetypecatalyst,but
onthebasisofEqs.(8)–(10)otheroxidesseeminterestingforHDO
SpecificallyWO3isindicatedtohaveahighavailabilityofacidsites
Echeandiaetal.[94]investigatedoxidesofWandNi–Wonactive
carbonforHDOof1wt%phenolinn-octaneinafixedbedreactor
at150–300◦Cand15bar.Thesecatalystswereallprovenactivefor
HDOandespeciallytheNi–Wsystemhadpotentialforcomplete
conversionofthemodelcompound Furthermore,a lowaffinity
forcarbonwasobservedduringthe6hofexperiments.Thislow
Fig 5.HDO mechanism over transition metal catalysts The mechanism drawn on the basis of information from Refs [95,96]
valuewasascribedtoabeneficialeffectfromthenon-acidiccarbon support(cf.Section4.1.3)
4.1.2 Transitionmetalcatalysts Selectivecatalytichydrogenationcanalsobecarriedoutwith transitionmetalcatalysts.Mechanisticspeculationsforthese sys-temshaveindicatedthatthecatalystsshouldbebifunctional,which canbeachievedinotherwaysthanthesystemdiscussedinSection 4.1.1.Thebifunctionalityofthecatalystimpliestwoaspects.On onethehand,activationofoxy-compoundsisneeded,whichlikely couldbeachievedthroughthevalenceofanoxideformofa tran-sitionmetalor onan exposedcation, oftenassociatedwiththe catalystsupport.Thisshouldbecombinedwithapossibilityfor hydrogendonationtotheoxy-compound,whichcouldtakeplace
ontransition metals, as theyhave thepotential toactivate H2 [95–98].ThecombinedmechanismisexemplifiedinFig.5,where theadsorptionandactivationoftheoxy-compoundareillustrated
totakeplaceonthesupport
Themechanismofhydrogenationoversupportednoblemetal systems is still debated Generally it is acknowledgedthat the metalsconstitutethehydrogendonatingsites,butoxy-compound activationhasbeenproposedtoeitherbefacilitatedonthemetal sites[99–101]oratthemetal-supportinterface(asillustratedin Fig 5)[102,99,103].This indicatesthat these catalytic systems potentiallycouldhavetheaffinityfortwodifferentreactionpaths, sincemanyofthenoblemetalcatalystsareactiveforHDO
AstudybyGutierrezetal.[66]investigatedtheactivityofRh,
Pd,andPtsupportedonZrO2forHDOof3wt%guaiacolin hexade-caneinabatchreactorat80barand100◦C.Theyreportedthatthe apparentactivityofthethreewas:
Rh/ZrO2>Co–MoS2/Al2O3>Pd/ZrO2>Pt/ZrO2 (11) Fig.6showstheresultsfromanotherstudyofnoblemetal cat-alystsbyWildschutetal.[53,104].HereRu/C,Pd/C,andPt/Cwere investigatedforHDOofbeechbio-oilinabatchreactorat350◦C and200barover4h.Ru/CandPd/Cappearedtobegoodcatalysts fortheprocessastheydisplayedhighdegreesofdeoxygenation andhighoilyields,relativetoCo–MoS2/Al2O3andNi–MoS2/Al2O3
asbenchmarks
Throughexperimentsinabatchreactorsetupwithsynthetic bio-oil(mixtureofcompoundsrepresentativeoftherealbio-oil)at
350◦Candca.10barofnitrogen,Fisketal.[105]foundthatPt/Al2O3 displayedcatalyticactivityforbothHDOandsteamreformingand thereforecouldproduceH2insitu.Thisapproachisattractiveasthe expenseforhydrogensupplyisconsideredasoneofthe disadvan-tagesoftheHDOtechnology.However,thecatalystwasreported
tosufferfromsignificantdeactivationduetocarbonformation
Trang 8Fig 6. Comparison of Ru/C, Pd/C, Pt/C, Co–MoS 2 /Al 2 O 3 and Ni–MoS 2 /Al 2 O 3 as
cat-alysts for HDO, evaluated on the basis of the degree of deoxygenation and oil yield.
Experiments were performed with beech bio-oil in a batch reactor at 350◦C and
200 bar over 4 h Data are from Wildschut et al [53,104]
Tosummarize,thenoblemetalcatalystsRu,Rh,Pd,andpossibly
alsoPtappeartobepotentialcatalystsfortheHDOsynthesis,but
thehighpriceofthemetalsmakethemunattractive
Asalternativestothenoblemetalcatalystsaseriesof
inves-tigations of base metal catalysts have been performed, as the
pricesofthesemetalsaresignificantlylower[106].Yakovlevetal
[98] investigated nickel based catalysts for HDO of anisole in
a fixed bed reactor at temperaturesin the range from 250 to
400◦C andpressuresintherangefrom5to20bar.InFig.7the
resultsoftheseexperimentsareshown,whereitcanbeseenthat
specificallyNi–Cuhadthepotentialtocompletelyeliminatethe
oxygencontentin anisole Unfortunately, this comparison only
givesavagueideaabouthowthenickelbasedcatalystscompare
toothercatalysts.Quantificationof theactivityand affinity for
carbonformation ofthesecatalystsrelative tonoble metal
cat-alystssuchasRu/C and Pd/C orrelative to Co–MoS2 would be
interesting
Zhaoetal.[107]measuredtheactivityforHDOinafixedbed
reactorwhereahydrogen/nitrogengaswassaturatedwithgaseous
guaiacol(H2/guaiacolmolarratioof33)overphosphidecatalysts
supportedonSiO2atatmosphericpressureand300◦C.Onthisbasis
thefollowingrelativeactivitywasfound:
Ni2P/SiO2>Co2P/SiO2>Fe2P/SiO2>WP/SiO2>MoP/SiO2
(12) AllthecatalystswerefoundlessactivethanPd/Al2O3,butmore
stablethanCo–MoS2/Al2O3.Thus,theattractivenessofthese
cat-Fig 7.Performance of nickel based catalysts for HDO HDO degree is the ratio
between the concentrations of oxygen free product relative to all products
Experi-ments performed with anisole in a fixed bed reactor at 300 ◦ C and 10 bar Data from
alystsisintheirhigheravailabilityandlowerprice,comparedto noblemetalcatalysts
AdifferentapproachforHDOwithtransitionmetalcatalysts waspublishedbyZhaoet al.[108–110].Inthesestudiesit was reportedthatphenolscouldbehydrogenatedbyusinga hetero-geneousaqueoussystemofametalcatalystmixedwithamineral acidinaphenol/water(0.01mol/4.4mol)solutionat200–300◦C and40baroveraperiodof2h.Inthesesystemshydrogen dona-tionproceedsfromthemetal,followedbywaterextractionwith themineralacid,wherebydeoxygenationcanbeachieved[109] BothPd/CandRaney®Ni(nickel-aluminaalloy)werefoundtobe effectivecatalystswhencombinedwithNafion/SiO2asmineralacid [110].However,thisconcepthassofaronlybeenshowninbatch experiments.Furthermoretheinfluenceofusingahigherphenol concentrationshouldbetestedtoevaluatethepotentialofthe sys-tem
Overallitisapparentthatalternativestoboththesulphur con-tainingtypecatalystsandnoblemetaltypecatalystsexist,butthese systemsstillneedadditionaldevelopmentinordertoevaluatetheir fullpotential
4.1.3 Supports Thechoiceofcarriermaterialisanimportantaspectofcatalyst formulationforHDO[98]
Al2O3hasbeenshowntobeanunsuitablesupport,asitinthe presenceof largeramounts ofwater it willconverttoboemite (AlO(OH)) [11,26,111] Aninvestigationof Laurent and Delmon [111]onNi–MoS2/␥-Al2O3showedthattheformationofboemite resultedin theoxidationof nickelonthecatalyst.These nickel oxideswereinactivewithrespecttoHDOandcouldfurtherblock otherMoorNisitesonthecatalyst.Bytreatingthecatalystina mixtureofdodecaneandwaterfor60h,adecreasebytwothirdsof theactivitywasseenrelativetoacasewherethecatalysthadbeen treatedindodecanealone[26,111]
Additionally,Popovetal.[112]foundthat2/3ofaluminawas coveredwithphenolicspecies whensaturating itat400◦Cin a phenol/argonflow.Theobservedsurfacespecieswerebelievedto
bepotentialcarbonprecursors,indicatingthatahighaffinityfor carbonformationexistsonthistypeofsupport.Thehighsurface coveragewaslinkedtotherelativehighacidityofAl2O3
AsanalternativetoAl2O3,carbonhasbeenfoundtobeamore promisingsupport[53,94,113–115].Theneutralnatureofcarbon
isadvantageous,asthisgivesalowertendencyforcarbon forma-tioncomparedtoAl2O3[94,114].AlsoSiO2hasbeenindicatedasa prospectivesupportforHDOasit,likecarbon,hasageneral neu-tralnatureandthereforehasarelativelylowaffinityforcarbon formation[107].Popovetal.[112]showedthattheconcentration
ofadsorbedphenolspeciesonSiO2wasonly12%relativetothe concentrationfoundonAl2O3at400◦C.SiO2onlyinteractedwith phenolthroughhydrogenbonds,butonAl2O3dissociationof phe-noltomorestronglyadsorbedsurfacespeciesontheacidsiteswas observed[116]
ZrO2 and CeO2 have alsobeenidentifiedaspotentialcarrier materialsforthesynthesis.ZrO2hassomeacidiccharacter,but sig-nificantlylessthanAl2O3[117].ZrO2andCeO2arethoughttohave thepotentialtoactivateoxy-compoundsontheirsurface,asshown
inFig.5,andtherebyincreaseactivity.Thus,theyseemattractive
intheformulationofnewcatalysts,seealsoFig.7[66,98,117,118] Overalltwoaspectsshouldbeconsideredinthechoiceof sup-port On one hand the affinityfor carbon formation shouldbe low, which to some extent is correlated tothe acidity (which shouldbelow).Secondly,itshouldhavetheabilitytoactivate oxy-compoundstofacilitatesufficientactivity.Thelatterisespecially importantwhendealingwithbasemetalcatalysts,asdiscussedin Section4.1.2
Trang 94.2 Kineticmodels
Athoroughreviewof severalmodel compoundkinetic
stud-ieshasbeenmadebyFurimsky[27].However,sparseinformation
onthekineticsofHDOofbio-oilisavailable;heremainlylumped
kineticexpressionshavebeendeveloped,duetothediversityof
thefeed
Sheuetal.[119]investigatedthekineticsofHDOofpine
bio-oilbetweenca.300–400◦C over Pt/Al2O3/SiO2, Co–MoS2/Al2O3,
andNi–MoS2/Al2O3catalystsinapackedbedreactor.Thesewere
evaluatedonthebasisofakineticexpressionofthetype:
−dwoxy
dZ =k· wm
Herewoxyisthemassofoxygenintheproductrelativetothe
oxy-genintherawpyrolysisoil,Zistheaxialpositioninthereactor,k
istherateconstantgivenbyanArrheniusexpression,Pisthetotal
pressure(mainlyH2),misthereactionorderfortheoxygen,and
nisthereactionorderforthetotalpressure.Inthestudyitwas
assumedthatallthreetypesofcatalystcouldbedescribedbya
firstorderdependencywithrespecttotheoxygeninthepyrolysis
oil(i.e.m=1).Onthisbasisthepressuredependencyandactivation
energycouldbefound,whicharesummarizedinTable6.Generally
apositiveeffectofanincreasedpressurewasreportedasnwasin
therangefrom0.3to1.Theactivationenergieswerefoundinthe
rangefrom45.5to71.4kJ/mol,withPt/Al2O3/SiO2havingthe
low-estactivationenergy.TheloweractivationenergyforthePtcatalyst
wasinagreementwithanobservedhigherdegreeofdeoxygenation
comparedtothetwoother.Theresultsofthisstudyare
interest-ing,however,theratetermofEq.(13)hasanon-fundamentalform
astheuseofmassrelatedconcentrationsandespeciallyusingthe
axialpositioninthereactorastimedependencymakestheterm
veryspecificforthesystemused.Thus,correlatingtheresultsto
othersystemscouldbedifficult.Furthermore,theassumptionofa
generalfirstorderdependencyforwoxyisaveryroughassumption
whendevelopingakineticmodel
AsimilarapproachtothatofSheuetal.[119]wasmadeby
Su-Pingetal.[67],whereCo–MoS2/Al2O3wasinvestigatedforHDOof
bio-oilinabatchreactorbetween360and390◦C.Hereageneral
lowdependencyonthehydrogenpartialpressurewasfoundover
apressureintervalfrom15barto30bar,soitwaschosentoomit
thepressuredependency.Thisledtotheexpression:
−dCoxy
HereCoxy isthetotalconcentrationofalloxygenatedmolecules
Ahigherreactionorderof2.3wasfoundinthiscase,compared
totheassumptionofSheu etal.[119].Thequitehighapparent
reactionordermaybecorrelatedwiththeactivityofthedifferent
oxygen-containingspecies;theveryreactivespecieswillentaila
highreactionrate,butasthesedisappeararapiddecreaseintherate
willbeobserved(cf.discussioninSection4).Theactivationenergy
wasinthisstudyfoundtobe91.4kJ/mol,whichissomewhathigher
thanthatfoundbySheuetal.[119]
Table 6
Kinetic parameters for the kinetic model in Eq (13) of different catalysts
Experi-ments performed in a packed bed reactor between ca 300–400◦C and 45–105 bar.
Data are from Sheu et al [119]
oftheHDOofphenolonCo–MoS2/Al2O3inapackedbedreactor basedonaLangmuir–Hinshelwoodtypeexpression:
−dCPhe
d =k1·KAds·CPhe+k2·KAds·CPhe
(1+CPhe,0·KAds·CPhe)2 (15) HereCPheisthephenolconcentration,CPhe,0theinitialphenol con-centration,KAdstheequilibriumconstantforadsorptionofphenol
onthecatalyst,theresidencetime,andk1andk2rateconstantsfor respectivelyadirectdeoxygenationpath(cf.Eq.(1))anda hydro-genationpath(cf.Eq.(2)).Itisapparentthatinordertodescribe HDOindetailallcontributingreactionpathshavetoberegarded Thisispossiblewhenasinglemoleculeisinvestigated.However, expandingthisanalysistoabio-oilreactantwillbetoo compre-hensive,asallreactionpathswillhavetobeconsidered
OverallitcanbeconcludedthatdescribingthekineticsofHDO
iscomplexduetothenatureofarealbio-oilfeed
4.3 Deactivation
ApronouncedprobleminHDOisdeactivation.Thiscanoccur throughpoisoningbynitrogenspeciesorwater,sinteringofthe catalyst,metaldeposition(specificallyalkalimetals),orcoking[59] Theextentofthesephenomenaisdependentonthecatalyst,but carbondepositionhasproventobeageneralproblemandthemain pathofcatalystdeactivation[120]
Carbon is principally formed through polymerization and polycondensationreactionsonthecatalyticsurface,forming pol-yaromaticspecies.Thisresultsintheblockageoftheactivesites
onthecatalysts[120].SpecificallyforCo–MoS2/Al2O3,ithasbeen shownthatcarbonbuildsupquicklyduetostrongadsorptionof polyaromaticspecies.Thesefilluptheporevolumeofthe cata-lystduringthestartupofthesystem.InastudyofFonsecaetal [121,122],itwasreportedthataboutonethirdofthetotalpore vol-umeofaCo–MoS2/Al2O3catalystwasoccupiedwithcarbonduring thisinitialcarbondepositionstageandhereafterasteadystatewas observedwherefurthercarbondepositionwaslimited[120] Theratesofthecarbonformingreactionsaretoalargeextent controlledbythefeedtothesystem,butprocessconditionsalso playanimportantrole.Withrespecttohydrocarbonfeeds,alkenes and aromaticshavebeenreportedashavingthelargestaffinity forcarbon formation,due toa significantlystronger interaction withthecatalyticsurfacerelativetosaturatedhydrocarbons.The strongerbindingtothesurfacewillentailthattheconversionof thehydrocarbonstocarbonismorelikely.Foroxygencontaining hydrocarbonsithasbeenidentifiedthatcompounds withmore thanoneoxygenatomappearstohaveahigheraffinityfor car-bonformationbypolymerizationreactionsonthecatalystssurfaces [120]
Cokingincreaseswithincreasingacidityofthecatalyst; influ-encedbybothLewisandBrønstedacidsites.Theprinciplefunction
ofLewisacidsitesistobindspeciestothecatalystsurface.Brønsted sitesfunctionbydonatingprotonstothecompoundsofrelevance, formingcarbocationswhicharebelievedtoberesponsiblefor cok-ing[120].Thisconstituteaproblemasacidsitesarealsorequired
in themechanism ofHDO (cf.Fig.4).Furthermore,it hasbeen foundthatthepresenceoforganicacids(asaceticacid)inthefeed willincreasetheaffinityforcarbonformation,asthiscatalysesthe thermaldegradationpath[104]
Inordertominimizecarbonformation,measurescanbetakenin thechoiceofoperatingparameters.Hydrogenhasbeenidentifiedas efficientlydecreasingthecarbonformationonCo–MoS2/Al2O3asit willconvertcarbonprecursorsintostablemoleculesbysaturating surfaceadsorbedspecies,asforexamplealkenes[120,123]
Trang 10Fig 8. Yields of oil and gas compared to the elemental oxygen content in the oil from
a zeolite cracking process as a function of temperature Experiments were performed
with a HZSM-5 catalyst in a fixed bed reactor for bio-oil treatment Yields are given
relative to the initial biomass feed Data are from Williams and Horne [127]
Temperaturealsoaffectstheformationofcarbon.Atelevated
temperaturestherateofdehydrogenationincreases,whichgives
anincreaseintherateofpolycondensation.Generallyanincrease
inthereactiontemperaturewillleadtoincreasedcarbonformation
[120]
ThelossofactivityduetodepositionofcarbononCo–MoS2/
Al2O3hasbeencorrelatedwiththesimplemodel[124]:
Herekistheapparentrateconstant,k0istherateconstantofan
unpoisonedcatalyst,andCisthefractionalcoverageofcarbon
onthecatalyst’sactivesites.Thisexpressiondescribesthedirect
correlationbetweentheextentofcarbonblockingofthesurface
andtheextentofcatalystdeactivationandindicatesanapparent
proportionaleffect[120]
5 Zeolite cracking
Catalyticupgradingbyzeolitecrackingisrelatedtofluid
cat-alyticcracking(FCC),wherezeolitesarealsoused[57].Compared
toHDO,zeolitecrackingisnotaswelldevelopedatpresent,partly
becausethedevelopmentofHDOtoalargeextenthasbeen
extrap-olatedfromHDS.Itisnotpossibletoextrapolatezeolitecracking
fromFCCinthesamedegree[43,58,125]
Inzeolitecracking,allthereactionsofFig.1takeplacein
princi-ple,butthecrackingreactionsaretheprimaryones.Theconceptual
completedeoxygenationreactionforthesystemcanbe
character-izedas(thereactionisinspiredbyBridgwater[43,58]andcombined
withtheelementalcompositionofbio-oilspecifiedinTable3
nor-malizedtocarbon):
CH1.4O0.4→0.9“CH1.2+0.1CO2+0.2H2O (17)
With“CH1.2”beinganunspecifiedhydrocarbonproduct.Asfor
HDO,thebio-oilisconvertedintoatleastthreephasesinthe
pro-cess:oil,aqueous,andgas
Typically,reactiontemperaturesintherangefrom300to600◦C
areusedfortheprocess[51,126].Williamsetal.[127]investigated
theeffect oftemperatureonHZSM-5catalystsforupgradingof
bio-oilinafixedbedreactorinthetemperaturerangefrom400
to550◦C,illustratedinFig.8.Anincreasedtemperatureresulted
in a decrease in theoilyield and an increase in thegas yield
Thisisdue toan increasedrateof crackingreactionsat higher
temperatures,resultingintheproductionofthesmallervolatile
compounds.However,inordertodecreasetheoxygencontenttoa
significantdegreethehightemperatureswererequired.In
conclu-sion,itiscrucialtocontrolthedegreeofcracking.Acertainamount
ofcrackingisneededtoremoveoxygen,butiftherateofcracking becomestoohigh,atincreasedtemperatures,degradationofthe bio-oiltolightgasesandcarbonwilloccurinstead
IncontrasttotheHDOprocess,zeolitecrackingdoesnotrequire co-feedingofhydrogenandcanthereforebeoperatedat atmo-sphericpressure.Theprocessshouldbecarriedoutwitharelatively highresidencetimetoensureasatisfyingdegreeofdeoxygenation, i.e.LHSVaround2h−1[16].However,Vitoloetal.[128]observed thatbyincreasingtheresidencetime,theextentofcarbon for-mationalsoincreased.Onceagainthebestcompromisebetween deoxygenationandlimitedcarbonformationneedstobefound
InthecaseofcompletedeoxygenationthestoichiometryofEq (17)predicts a maximum oilyield of 42wt%, which is roughly
15wt%lowerthantheequivalentproductpredictedforHDO[43] ThereasonforthisloweryieldisbecausethelowH/Cratioofthe bio-oilimposesageneralrestrictioninthehydrocarbonyield[30] ThelowH/Cratioofthebio-oilalsoaffectsthequalityofthe prod-uct,astheeffectiveH/Cratio((H/C)eff)oftheproductfromaFCC unitcanbecalculatedas[57,129]:
Heretheelementalfractionsaregiven inmol%.Calculatingthis ratioonthebasisofarepresentativebio-oil(35mol%C,50mol%H, and15mol%O,cf.Table3)givesaratioof0.55.Thisvalueindicates thatahighaffinityforcarbonexistintheprocess,asanH/Cratio toward0impliesacarbonaceousproduct
Thecalculated(H/C)eff valuesshouldbecomparedtotheH/C ratioof1.47obtainedforHDOoilinEq.(6)andtheH/Cratioof1.5–2 forcrudeoil[10,11].Somezeolitecrackingstudieshaveobtained H/Cratiosof1.2,butthishasbeenaccompaniedwithoxygen con-tentsof20wt%[127,130]
ThelowH/Cratioofthezeolitecrackingoilimpliesthat hydro-carbonproductsfromthesereactionstypicallyarearomaticsand furtherhaveagenerallylowHVrelativetocrudeoil[28,43] Experimentalzeolitecrackingofbio-oilhasshownyieldsofoil
inthe14–23wt%range[131].Thisissignificantlylowerthanthe yieldspredictedfromEq.(17),thisdifferenceisduetopronounced carbon formation in the system during operation, constituting 26–39wt%oftheproduct[131]
5.1 Catalystsandreactionmechanisms Zeolites are three-dimensional porous structures Extensive workhasbeenconductedinelucidatingtheirstructureand cat-alyticproperties[132–137]
Themechanismforzeolitecrackingisbasedonaseriesof reac-tions.Hydrocarbonsareconvertedtosmallerfragmentsthrough generalcrackingreactions.Theactualoxygeneliminationis associ-atedwithdehydration,decarboxylation,anddecarbonylation,with dehydrationbeingthemainroute[138]
Themechanismforzeolitedehydrationofethanolwas inves-tigatedbyChiangandBhan[139]andisillustratedinFig.9.The reactionisinitiatedbyadsorptiononanacidsite.Afteradsorption, twodifferentpathswereevaluated,eitheradecompositionroute
orabimolecularmonomerdehydration(bothroutesareshownin Fig.9).Oxygeneliminationthroughdecompositionwasconcluded
tooccurwithacarbeniumionactingasatransitionstate.Onthis basisasurfaceethoxideisformed,whichcandesorbtoform ethy-leneandregeneratetheacidsite.Forthebimolecularmonomer dehydration,twoethanolmoleculesshouldbepresentonthe cat-alyst,wherebydiethylethercanbeformed.Preferenceforwhichof thetworoutesisfavouredwasconcludedbyChiangandBhan[139]
tobecontrolledbytheporestructureofthezeolite,withsmallpore structuresfavouringthelessbulkyethyleneproduct.Thus, prod-uctdistributionisalsoseentobecontrolledbytheporesize,where