1. Trang chủ
  2. » Giáo án - Bài giảng

Đề giữa kì 1 môn toán lớp 9 năm học 2022 2023

124 3 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề Giữa Kỳ 1 Môn Toán Lớp 9 Năm Học 2022-2023
Trường học Trường THCS Mai Dịch
Chuyên ngành Toán
Thể loại Đề kiểm tra
Năm xuất bản 2022-2023
Thành phố Cầu Giấy
Định dạng
Số trang 124
Dung lượng 3,22 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

2,0 điểm Cho hai biểu thức: và 1 Tính chiều cao của một cột đèn, biết bóng của của cột đèn được chiếu bởi ánh sáng mặt trời xuống đất dài 4m và góc tạo bởi tia sáng với mặt... tan = AB

Trang 1

Tailieumontoan.com



Điện thoại (Zalo) 039.373.2038

BỘ ĐỀ THI GIỮA KÌ 1 MÔN TOÁN LỚP 9 NĂM 2022-2023

(Liệu hệ tài liệu word môn toán SĐT (zalo) : 039.373.2038)

Tài liệu sưu tầm, ngày 15 tháng 8 năm 2023

Trang 2

Liên hệ tài liệu word toán SĐT (zalo): 039.373.2038 1

UBND QUẬN CẦU GIẤY

I TRẮC NGHIỆM: (2,0 điểm) Viết vào bài làm chữ cái trước phương án mà em chọn

A sin 390 =sin 520 B tan 360 =cot 360

C cot350 =cot 550 D cos270 =sin 630

tròn đến chữ số thập phân thứ nhất là

II TỰ LUẬN: (8,0 điểm)

Trang 3

Bài 3 (2,0 điểm) Cho hai biểu thức:

1) Tính chiều cao của một cột đèn, biết

bóng của của cột đèn được chiếu

bởi ánh sáng mặt trời xuống đất dài

4m và góc tạo bởi tia sáng với mặt

Trang 4

Liên hệ tài liệu word toán SĐT (zalo): 039.373.2038 3

BIỂU ĐIỂM, HƯỚNG DẪN CHẤM KTGK I MÔN TOÁN

Trang 5

A A

=

=

0,25 0,25 b)

0, 5

0,25 0,25

Trang 6

1) 1) Gọi AB là chiều cao của cột đèn Bóng cột đèn là đoạnAC ACBlà

góc tạo bởi tia nắng mặt trời với mặt đất Xét ∆ABCvuông tại Acó:

tan

=

AB AC C (Hệ thức giữa cạnh và góc trong tam giác vuông) Thay số: AB= 4 tan 60 ° = 4 3 ≈ 7( )m

Vậy độ dài của cột đèn trên mặt đất đó là 7(m)

( nếu HS tính được kết quả 6,9m cũng cho điểm tối đa)

0,25

0,25

2a)

4m 60°

C

B

A

Trang 7

b) Chứng minh:AH EF= và chứng minh: 2

- C/m: Tứ giác AEHF là hình chữ nhật từ đó suy ra EF = AH 0,25

- Xét ∆AHB vuông tại H, đường cao HE, có AE AB = AH2 (1) 0,25

- Xét ∆AHC vuông tại H, đường cao HF, có AF AC = AH2 (1) 0,25

Cộng vế với vế của (1) và ( 2) ta có AE.AH + AF AC= 2AH2 ,

mà AH = EF

0,25 0,25

Từ đó suy ra AE.AH + AF AC = 2EF2

C B

A

Trang 9

đặt một cái thang đạt độ cao đó, biết chiếc thang dài 6,7m Khi đó góc của thang

tạo với mặt đất là bao nhiêu (làm tròn đến độ)

a) Cho biết AB = 3cm, AC = 4cm Tính độ dài các đoạn BC, HB, HC, AH

b) Kẻ HE vuông góc với AB, HF vuông góc với AC (E ∈ AB, F ∈ AC) Chứng

minh AE.EB + AF.FC = AH2

Trang 10

HƯỚNG DẪN CHẤM ĐỀ KIỂM TRA GIỮA KÌ 1

Năm học : 2022 – 2023 MÔN: TOÁN 9

1 (2đ) 1.a x 1 − có nghĩa khi x – 1 ≥ 0 ⇔ x ≥ 1

b 1

2 − 3x có nghĩa khi 2 – 3x > 0 ⇔ x < 2/3

2 a) 81 − 8 2 = 9 – 4 = 5 b) 9a − 144a+ 49a (với a>0) = … = -2 a

0,5 đ 0,5đ

0,5đ 0,5đ

2 (2đ) a) 16x + 48 + x + 3 = 15; ĐK x ≥ - 3

⇔ 4 x + + x 3 3 + = 15

⇔ x 3 + = 3

⇔ x = 6 (TMĐK) b) 2

0,25đ 0,25đ 0,5đ

x

x = 1 + 3

2 +

x

Để M ∈ Z thì x + 2 ∈ Ư(3) = {-1; 1; -3; 3}

Vì x > 0, x ≠ 1 nên x + 2 ≥ 2 ∀x>0, x ≠1 ⇒ x + 2 = 3

⇒ x = 1(loại) Vậy không có giá trị nào của x để M nguyên

Trang 11

∆AHB vuông t ại H có HE là đường cao nên: AE AB = AH 2

∆AHC vuông t ại H có HF là đường cao nên: AF AC = AH 2

Do đó: AE.EB + AF.FC = AE (AB – AE) + AF (AC – AF)

Vậy GTNN của A là 2022 khi x = 2

Trang 12

TRƯỜNG THCS & THPT LƯƠNG THẾ VINH

ĐỀ KIỂM TRA GIỮA HỌC KÌ I

Môn Toán L ớp 9

Năm học 2022 – 2023

Th ời gian làm bài: 90 phút

PHẦN I: TRẮC NGHIỆM (2 điểm) Ghi lại chữ cái đứng trước đáp án đúng vào bài làm

Câu 1 Căn bậc hai của 25 là:

PH ẦN II: TỰ LUẬN (8 điểm)

Bài 1 (1,5 điểm) Giải các phương trình sau:

= + và

1

1 1

x B

b) Rút g ọn biểu thức B

c) Đặt P= A B Tìm x để P nh ận giá trị nguyên

Bài 3 (3,5 điểm)

1) M ột máy bay phản lực cất cánh từ vị trí A, bay lên theo đường AB

t ạo với phương nằm ngang một góc α = 30ο, sau m ột khoảng thời gian

30 giây máy bay đạt được cao độ là BH = 2,8 km Tính vận tốc trung bình của máy bay (km/h)

2) Cho tam giác ABC nh ọn nội tiếp đường tròn (O R; ), dây BC c ố định, điểm A di động trên cung

l ớn BC G ọi AD BE CF, , là các đường cao (DBC,EAC,FAB) và H là tr ực tâm của tam

giác ABC, I là trung điểm của BCK là trung điểm của AH

a) Ch ứng minh 4 điểm B C E F, , , cùng thu ộc một đường tròn

b) Ch ứng minh AB AF = AC AEIEKE

c) Tìm điều kiện của tam giác ABC để tam giác AEHcó di ện tích lớn nhất

Bài 4 (0,5 điểm) Cho x y, là các s ố dương và ( x+ 1)( y+ ≥ 1) 4

Tìm giá tr ị nhỏ nhất của biểu thức M x3 y3

B

Trang 13

(H ọc sinh được sử dụng máy tính bỏ túi Cán bộ trông kiểm tra không giải thích gì thêm)

ĐÁP ÁN VÀ THANG ĐIỂM ĐỀ THI GIỮA HỌC KÌ I TOÁN 9 NĂM HỌC 2022 -2023

PH ẦN I: TRẮC NGHIỆM (mỗi câu trả lời đúng được 0,5 điểm)

Tìm được 1

4

x= (TMĐK).

0,2 5 đ 0,25 đ

1

1 1

x B

+

= + , đánh giá được 1 < ≤P 6 và P∈ ⇒ ∈Z P {2;3; 4;5; 6}

Bài 3

1 Tính được AB= 5, 6 km

Tính được vận tốc trung bình của máy bay 672 km/h.

0,25 đ 0,25 đ 2a)

Trang 14

- Ch ứng minh được ∆BFC nội tiếp đường tròn đường kính BC

- Ch ứng minh được ∆BEC nội tiếp đường tròn đường kính BC

- Ch ỉ ra được 4 điểm , , ,B C E F cùng thuộc đường tròn đường kính BC.

0,25 đ 0,25 đ 0,5 đ

0,5 đ c)

K

I D

E

F H

O

A

Trang 15

Th ời gian làm bài: 90 phút Bài I (2,0 điểm) Rút gọn các biểu thức sau:

Bài IV (3,5 điểm)

1) Một người đứng ở trên đỉnh một ngọn hải đăng cao 150m so

v ới mực nước biển và quan sát thấy một chiếc thuyền ở xa với một

góc nghiêng 40 so với phương nằm ngang Hỏi chiếc thuyền đang 0

ở cách chân ngọn hải đăng bao nhiêu m ? (Kết quả làm tròn đến

2) Cho hình chữ nhật ABCD Gọi H là hình chiếu của điểm D trên đường thẳng AC .

a) Gi ả sử AD = 9cm AB, = 12cm Tính độ dài đoạn thẳng DH; s ố đo DAC (số đo góc làm tròn đến phút)

Trang 16

+) Điểm toàn bài để lẻ đến 0,25, trong cùng một bài có 2 lỗi trừ 1/8 thì trừ 1/4

+) Bài III gi ải phương trình, HS có thể không tìm ĐK mà thử lại thấy x thỏa mãn phương trình thì vẫn

cho điểm tối đa

+) Các cách làm khác n ếu đúng vẫn cho điểm tương ứng với biểu điểm của hướng dẫn chấm

+) Bài hình v ẽ hình sai thì không cho điểm

Trang 17

2 0

a) Tính giá trị của biểu thức A khi x = 25 0,5

Thay x = 25 (TMĐK) vào biểu thức A ta có: 25 2

Trang 18

0,25

0,25

Bài IV

3,0 điểm

1) M ột người đứng ở trên đỉnh một ngọn hải đăng cao 150m so v ới mực

nước biển và quan sát thấy một chiếc thuyền ở xa với một góc nghiêng

0

40 so v ới phương nằm ngang Hỏi chiếc thuyền đang ở cách chân ngọn

hải đăng bao nhiêu m? (Kết quả làm tròn đến chữ số hàng đơn vị)

DAC (số đo góc làm tròn đến phút)

Trang 19

Áp d ụng HTL trong ∆ADC vuông tại D đường cao DH ta có:

Trang 20

+) Chứng minh được: DMN∽ DCA∽ BAC

2

2

BAC DMN

D ấu bằng xảy ra khi x= =y 1

V ậy Pmin = −2020 khi x= =y 1

Trang 21

KI ỂM TRA ĐÁNH GIÁ GIỮA KÌ I

Trang 22

Câu 11: Cho tam giác ABC vuông tại A, đường cao AH Khi đó hệ thức nào sai:

II Phần tự luận ( 7 điểm)

Câu 1: (1,5 điểm) Tính giá trị của biểu thức

x

+

=+

2

A B>

Câu 4: (0,5 điểm) H ải đăng Trường Sa Lớn nằm trên đảo Trường Sa Lớn - “thủ phủ” quần

đảo Trường Sa - có chiều cao bao nhiêu? Biết rằng tia nắng mặt trời chiếu qua đỉnh của

ng ọn hải đăng hợp với mặt đất 1 góc 35 độ và bóng của ngọn hải đăng trên mặt đất dài

Trang 23

Câu 5: (2,0 điểm) Cho tam giác ABC vuông tại A có đường cao

Trang 24

Vẽ hình minh họa và giải thích độ dài các đoạn thẳng

 Xét ∆ABC vuông tại A, Áp dụng hệ thức giữa cạnh và góc ta có:

c) Chứng minh được AB.AE=AH 2

Chứng minh được AC.AF=AH 2 Từ đó suy ra AB.AE=AC.AF

0,25 0,25 0,5

0,25 0.25

C

cm BC

AB

6 3

2

E H C

B A

35 0

B

C

A

Trang 25

PHÒNG GD ĐT HUYỆN THANH OAI

TRƯỜNG THCS CAO DƯƠNG ĐỀ KIỂM TRA GIỮA HỌC KỲ I – TOÁN 9

NĂM HỌC: 2022 – 2023

(Không k ể thời gian phát đề)

Hỏi muốn đạt độ cao 2000m thì máy bay phải bay một đoạn đường là bao nhiêu mét?

Trang 26

Vậy phương trình có nghiệm duy nhất x = 24

8 3 2 5(loai)

Vậy không tìm được x thỏa điều kiện đề bài cho

x

+

= ⇔ = (ĐK: x > 0 ; x ≠ 1) ⇔3( x +2)=5 x

⇔2 x = ⇔6 x = ⇔ =3 x 9(TMĐK)

0,25đ 0,25đ 0,25đ

Trang 27

AH2 = BH HC = 1,8 3.2 = 5,76 ⇒ AH = 5, 76 = 2, 4 (cm)

∆AHB vuông tại H theo định lí py ta go :

0,25đ 0,25đ

c Tính BD

Theo hệ thức về cạnh và góc trong tam giác vuông ta có: 0,25đ

0,25đ

Trang 28

d ∆ABD vuông tại A ta có : tan = AD

AB (1)( định nghĩa tỉ số lượng giác

Ta lại có: BD là phân giác trong của ∆ABC Nên AD AB

DC BC= (Tính chất đường phân giác)

2x− = 1 2 x+ 3 ⇔ 2x− = 1 4x+ 12 ⇔ 2x= − 13 13

2

⇔ = (ktm) +) Nếu 2

Trang 29

x

⇔ = (thỏa mãn điều kiện)

Vậy phương trình có tập nghiệm S ={ }1

Lưu ý:

- Trên đây là các bước giải cơ bản cho từng bài, từng ý và biểu điểm tương ứng,

học sinh phải có lời giải chặt chẽ chính xác mới công nhận cho điểm

- Học sinh có cách giải khác đúng đến đâu cho điểm thành phần đến đó

- Điểm toàn bài là tổng điểm thành phần không làm tròn

Hết!

Trang 30

TRƯỜNG THCS SƠN TÂY ĐỀ KIỂM TRA GIỮA KỲ I TOÁN 9(2022-2023)

(Thời gian làm bài 90 phút)

cách chân tường một khoảng cách là bao nhiêu để nó tạo với mặt đất một góc an

toàn là 650 (tức là đảm bảo thang không bị đổ khi sử dụng) ( kết quả làm tròn đến

chữ số thập phân thứ hai)?

và HC = 6cm

a Tính độ dài các đoạn AH, AB, AC

b Gọi M là trung điểm của AC Tính số do góc AMB (làm tròn đến độ)

c Kẻ AK vuông góc với BM (K ∈ BM).Chứng minh ΔBKC đồng dạng với ΔBHM

1 1

− +

x + 2 x− 1 = 2- x

- Hết -

Trang 31

ĐÁP ÁN BÀI KIỂM TRA GIỮA KÌ I TOÁN 9 (2022-2023)

Bài 1 a) 125 - 4 45 + 3 20 - 80

= 5 5 - 12 5 + 6 5 − 4 5 = - 5 5b) 2

)3 x a - 2= 7 ĐK x≥ 0

3 x = 9 ↔ x = 3 ↔ x=9 (T/mđk) Vậy x = 9

x

1 3 + = − ↔

Trang 32

4 2

− +

x x

Vậy A

( ) 2

=

x x

(voi x ≥ 0, x≠ 4)

3 3

x

Để P nguyên thì 9

3 +

Trang 33

Bài 4

Xét tam giác ABC vuông tại A ta có

0,25

0,25

0,5

2

a ΔABC vuông tại A, có đường cao AH

Áp dụng hệ thức lượng trong tam giác vuông:

b Do M là trung điểm của AC nên

0,25

0,25 0,25 0,25

Trang 34

Xét ABM vuông tại A: TanAMB = AB

c +) Xét ΔABM vuông tại A, có AK là đường cao

AB2 = BK.BM (1) (Hệ thức lượng trong tam giác vuông)

ΔABC vuông tại A, có đường cao AH

AB2 = BH.BC (2) (Hệ thức lượng trong tam giác vuông)

Pt là y3 + y2 -2 = 0

Trang 35

0,5đ

Trang 36

Liên hệ tài liệu word toán SĐT (zalo): 039.373.2038 1

A TRẮC NGHIỆM (5 điểm) Chọn ý trả lời đúng trong các câu sau và ghi vào giấy làm bài

(Ví d ụ: Nếu câu 1 chọn ý đúng là ý A thì ghi ở giấy làm bài là 1- A, )

Câu 1 Căn bậc hai số học của 4 là

3

*Xem hình 1 và tr ả lời các câu hỏi 8, 9, 10 Biết ∆ABC vuông tại A, đường cao AH

Câu 8 Trong các hệ thức dưới đây, hệ thức nào sai?

Thời gian: 60 phút (không kể thời gian phát đề)

A

Trang 37

Câu 14 Cho α, β là các góc nhọn Khẳng định nào sau đây là đúng?

A sin2α + cos2β = 1 B tan cos

sin

αα

α

cos

αα

α

= D tan cotα α = 1

Câu 15 Sắp xếp các tỉ số lượng giác sin 40 o , sin 70 o , cos 30 o theo th ứ tự giảm dần ta được

A sin 40o > sin 70o> cos 30o B cos 30o > sin 70o > sin 40o

C sin 40 o > cos 30 o > sin 70 o D sin 70 o > cos 30 o > sin 40 o

x

Hãy rút g ọn biểu thức B

Câu 3 (1,0 điểm) Một cái cây có bóng in trên mặt đất dài 9m khi các tia sáng mặt trời tạo với mặt

đất một góc 50 0 Tính chi ều cao của cây (kết quả làm tròn đến mét)

Câu 4 (1,0 điểm) Cho tam giác ABC cân tại A, đường cao BK Chứng minh 2

H ết

Trang 38

Liên hệ tài liệu word toán SĐT (zalo): 039.373.2038 3

ĐÁP ÁN VÀ BIỂU ĐIỂM

ĐỀ KIỂM TRA GIỮA HK I - TOÁN 9- NĂM HỌC 2022-2023

A TRẮC NGHIỆM (5 điểm) Mỗi câu đúng ghi 1/3 điểm

0,5 0,25 0,25

1 2

A

Trang 39

V ậy chiều cao của cây khoảng 11m

Suy ra E trung điểm của CK và HEAC

Tam giác AHC vuông t ại H, đường cao HE có:

0,5

Lưu ý: Nếu học sinh có cách giải khác đúng cho mỗi câu thì cho điểm tối đa cho câu đó

E H

K

C B

A

Trang 40

Ngày kiểm tra: 07 tháng 11 năm 2022

Thời gian làm bài: 90 phút (không kể thời gian giao đề)

(Đề kiểm tra gồm có 01 trang)

Một cái cây có bóng in trên mặt đất dài 8 m khi các tia sáng mặt trời tạo với mặt

đất một góc 48° Tính chiều cao của cây (Kết quả làm tròn số thập phân thứ nhất).

a) Cho AB= 5cm, BC = 13cm Tính BH , số đo góc B, góc C? (Lưu ý: Số đo góc làm

tròn đến độ, độ dài đoạn thẳng làm tròn đến chữ số thập phân thứ ba)

b) Kẻ HDAB, HEAC Chứng minh: AD AB = AE AC.

c) Nếu  45ACB< ° và ACB=α Chứng minh: 2 cos 2 α − = 1 cos 2 α

Câu 7: (0,5 điểm) Giải phương trình: 3 x = −x 7(x−2)+7

ĐỀ CHÍNH THỨC

Trang 41

2

(1,0 điểm)

a) x− 3có nghĩa khi x− ≥ ⇔ ≥ 3 0 x 3 0,5 b) 1

2 7

b) Với x≥0; x≠1 ta có:

:1

Trang 42

−Vậy B= x với x≥0; x≠1

0,5 0,25

Giả sử chiều cao cây làAB, bóng của nó trên mặt đất là AC

Áp dụng hệ thức về cạnh và góc trong tam giác

0,25 0,25

48°

8m

B

Trang 43

b) ∆AHB vuông tại HHDAB ⇒ 2

.

=

AH AD AB AHC

c) Lấy M là trung điểm của BC

=

⇔  − = ⇔ =Vậy phương trình có nghiệm: x= 9

0,25 0,25

Trang 44

( Thời gian làm bài 90 phút)

I.TRẮC NGHIỆM: (2,0 điểm)

Hãy chọn phương án đúng và viết vào bài làm chữ cái đứng trước của phương án được lựa

Câu 8 :

Một con thuyền di chuyển với vận tốc 0,5 m/s vượt

sang bờ bên kia của một khúc sông nước chảy

mạnh, đường đi của thuyền tạo với bờ sông một góc

600 Biết chiều rộng của khúc sông là 250 m Tính

thời gian chiếc thuyền đến được bờ bên kia của

Trang 45

II.TỰ LUẬN (8,0 điểm)

a) 4 20 15 10 1

5 3

b) Gọi M và N lần lượt là hình chiếu của H trên AB, AC Chứng minh hai tam

giác ABC và ANM là hai tam giác đồng dạng

c) Trên tia đối của tia CA lấy điểm D sao cho 0

Trang 46

Liên hệ tài liệu word toán SĐT (zalo): 039.373.2038 3

( Thời gian làm bài 120 phút)

I.Trắc nghiệm ( 2 điểm )

Mỗi câu đúng 0,25 điểm

0,25 0,25

Trang 48

minh hai tam giác ABC và ANM là hai tam giác đồng dạng

+ Chứng minh được AM.AB = AN.AC

+ Chứng minh ∆ABC ∆ANM (c.g.c)

0,5 0,5

c) Lấy điểm K đối xứng với C qua A

+ Chứng minh ∆BKD vuông tại B , BK = BC

+ Xét ∆BKD vuông tại B, đường cao AB

x x x x x

K

Trang 49

4 2

0,25

0,25

0,25 - Hết -

Trang 50

ĐỀ CHÍNH THỨC

Trang 51

A AB = AC.sin C B AB = BC.sin C C AB = BC tan C D AB = BC.cos C

Câu 11 : Cho hình vẽ, số đo ACB xấp xỉ bằng :

Câu 3 : (1,0 điểm) Cho biểu thức :

b) Tìm GTNN của P với x = + y 3

Câu 4 : (2,5 điểm) Cho ∆ ABC vuông tại A , có AB = 6cm , BC 10cm =

a) Tính AC , ABC,ACB ( góc làm tròn đến độ)

C B

A

8cm 6cm

C B

A

B

A

Trang 52

Liên hệ tài liệu word toán SĐT (zalo): 039.373.2038 3

- HẾT -

Họ và tên thí sinh: ……… Số báo danh ……… …

Họ và tên, chữ kí giám thị 1: ………

Trang 54

yêu cầu thì vẫn đạt điểm tối đa./

Trang 55

ĐỀ KIỂM TRA GIỮA KÌ 1 TOÁN 9 THCS BẠCH THƯỢNG (2022-2023)

Trang 56

Liên hệ tài liệu word toán SĐT (zalo): 039.373.2038 2

A Sin 300 = cos600 B Cot 250 = tan 650

C Cos 700 = sin( 900 – 700) D tan 420 = cot 380

Trang 59

2 3

b) Trong AHC vuông t ại H v ới đường cao HE, ta có:

Trang 60

Liên hệ tài liệu word toán SĐT (zalo): 039.373.2038 6

c) Trong AFH vuông t ại F, ta có: AF =HF cot HAF. =HF tanB (3)

Mà t ứ giác AEHF có ba góc vuông nên t ứ giác AEHF là hình ch ữ nhật

HF = AE

thay vào (3) ta cóAF = AE.tanB

0,25

0,25 0,25 0,25

Trang 61

ĐỀ GIỮA KÌ 1 MÔN TOÁN LỚP 9 THCS CẤN HỮU – QUỐC OAI

a) Tìm giá tr ị của m để đường thẳng ( )d đi qua điểm M(− − Vẽ đường thẳng 1; 1) ( )d ứngvới

giá tr ị m vừa tìm được

b) V ới giá trị nào m thì ( )d song song với đường thẳng( )d1 : y= 2x+ 3

c) Tìm t ất cả các giá trị của m để ba đường thẳng ( )d ; ( )d và 1 ( )d2 : y= − đồng quy x 2

Bài 4: (3,5 điểm)

1) Hãy tính chi ều cao của tháp Eiffel mà không cần lên tận đỉnh tháp

khi bi ết góc tạo bởi tia nắng mặt trời với mặt đất là 62 và bóng của 0

tháp trên m ặt đất khi đó là 172 m (làm tròn kết quả tới chữ số thập

phân th ứ nhất)

2) Cho đường tròn (O R ; ) và dây AB khác đường kính Kẻ OI vuông

góc v ới AB tại I, tiếp tuyến của đường tròn tại A cắt đường thẳng OI tại M

c) K ẻ đường kính AD của đường tròn ( )O , tiếp tuyến của đường tròn ( )O tại D cắt đường thẳng

AB tại điểm N Chứng minh MD ON

Bài 4: (0,5 điểm)

Ngày đăng: 02/10/2023, 21:13

HÌNH ẢNH LIÊN QUAN

Hình vẽ đúng đến hết câu a) - Đề giữa kì 1 môn toán lớp 9 năm học 2022 2023
Hình v ẽ đúng đến hết câu a) (Trang 19)

TỪ KHÓA LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm

w