Ta nói số thập phân thu được là số thập phân vô hạn tuần hoàn và nhóm chữ số lặp đi lặp lại trong phần thập phân là chu kì của nó.. + Nếu mẫu có một trong các ước nguyên tố 2 và 5 thì vi
Trang 1ĐS6 CHUYÊN ĐỀ 10 – SỐ THẬP PHÂN
CHỦ ĐỀ 2: SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN
PHẦN I TÓM TẮT LÝ THUYẾT
1 KHÁI NIỆM
a) Khái niệm:
Khi viết phân số
a
b dưới dạng số thập phân ta thực hiện phép chia a cho b , nếu phép chia a cho b
không bao giờ chấm dứt
Ví dụ:
2 0,6666
17 1,5454
11
; …
Tuy phép chia không chấm dứt nhưng phần thập phân của kết quả phép chia có một nhóm chữ số lặp
đi lặp lại vô hạn lần Ta nói số thập phân thu được là số thập phân vô hạn tuần hoàn và nhóm chữ số
lặp đi lặp lại trong phần thập phân là chu kì của nó.
b) Cách viết:
Để viết số thập phân vô hạn tuần hoàn, người ta đặt chu kì trong dấu ngoặc Chẳng hạn:
2 0,6666 0, 6
17 1,5454 1, 54 11
; …
7
0, 2121 0, 21 ;
7 0,31818 0,3 18
Chú ý: Số thập phân vô hạn tuần hoàn chia thành hai dạng
- Số thập phân vô hạn tuần hoàn đơn nếu chu kì bắt đầu ngay sau dấu phẩy.
VD: 0, 6
;0, 21 ;1, 54
- Số thập phân vô hạn tuần hoàn tạp nếu chu kì không bắt đầu ngay sau dấu phảy, phần thập phân đứng trước chu kì gọi là phần bất thường,
VD: 0,3 18 có chu kì là 18 và phần bất thường là 3.
2 NHẬN BIẾT MỘT PHÂN SỐ VIẾT ĐƯỢC DƯỚI DẠNG SỐ THẬP PHÂN VÔ HẠN TUẦN
Trang 2- Nếu một phân số tối giản mà mẫu có ước nguyên tố khác 2 và 5 thì phân số đó viết thành số thập
phân vô hạn tuần hoàn Đặc biệt
+) Nếu mẫu không có ước nguyên tố 2 và 5 thì viết được thành số thập phân vô hạn tuần hoàn
đơn.
+) Nếu mẫu có một trong các ước nguyên tố 2 và 5 thì viết được thành số thập phân vô hạn tuần
hoàn tạp.
+) Ví dụ: khi chia 7 cho 33 được số thập phân vô hạn, Ta có:
7
33 0, 212121 0, 21
Số
7
33 cũng có thể viết dưới dạng 0, 2121 hoặc 0, 2 12 So với cách viết 0, 21 có chu kì 21 thì cách viết thứ hai có chu kì lớn hơn, cách viết thứ ba có chữ số thập phân liền trước chu kì và chữ số cuối cùng của chu kì bằng nhau, ta không chọn những cách viết này
+) Số thập phân vô hạn tuần hoàn gọi là đơn nếu chu kì bắt đầu ngay sau dấu phẩy, ví dụ 0, 21 ;
gọi là tạp nếu chu kì không bắt đầu ngay sau dấu phảy, phần thập phân đứng trước chu kì gọi là phần
bất thường, ví dụ 0,3 18 có chu kì là 18 và phần bất thường là 3.
3 VIẾT SỐ THẬP PHÂN VÔ HẠN TUẦN HOÀN DƯỚI DẠNG PHÂN SỐ:
- Quy tắc viết số thập phân vô hạn tuần hoàn dưới dạng phân số:
+ Muốn viết phần thập phân của số thập phân vô hạn tuần hoàn đơn dưới dạng phân số, ta lấy chu
kì làm tử, còn mẫu là một số gồm các chữ số 9, số chữ số 9 bằng số chữ số của chu kì Ví dụ:
0, 6 ; 0, 21
+ Muốn viết phần thập phân của số thập phân vô hạn tuần hoàn tạp dưới dạng phân số, ta lấy số gồm phần bất thường và chu kì trừ đi phần bất thường làm tử, còn mẫu là một số gồm các chữ số 9 kèm theo các chữ số 0, số chữ số 9 bằng số chữ số của chu kì, số chữ số 0 bằng số chữ số của phần bất thường Chẳng hạn:
5,1 6 5 5 ;
90 6
318 3 315 7
0,3 18
990 990 22
- Tổng quát:
1 2
0,
99 9
n n
n
a a a
a a a
Trang 3
0,b b b a a a k n
1 2 1 2 1 2
99 9 00 0
b b b a a a b b b
PHẦN II CÁC DẠNG BÀI
Dạng 1: Viết phân số dưới dạng số thập phân vô hạn tuần hoàn
I.Phương pháp giải:
Để viết một tỉ số hoặc một phân số
a
b dưới dạng số thập phân ta làm phép chia : a b
II.Bài toán:
Bài 1:
Các phân số sau viết được dưới dạng số thập phân hữu hạn hay vô hạn tuần hoàn? Tại sao? Hãy viết các phân số dưới dạng đó
10
15;
5
11;
2
13;
13
22;
5
24.
Lời giải:
a) Xét phân số
10 15
5 3
mẫu của phân số có ước nguyên tố là 3 nên
10
15viết được dưới dạng số thập phân vô hạn tuần hoàn. Vậy:
10
15 0,666 0,(6)
b) Xét phân số
5 11
mẫu của phân số có ước nguyên tố là 11 nên
5
11viết được dưới dạng số thập phân vô hạn tuần hoàn. Vậy:
5
11 0, 454545 0,(45)
c) Xét phân số
2 13
mẫu của phân số có ước nguyên tố là 13 nên
2
13viết được dưới dạng số thập phân vô hạn tuần hoàn. Vậy:
2
13 0,153846153846 0, (153846)
Trang 4 mẫu của phân số có ước nguyên tố là 11 nên
13
22viết được dưới dạng số thập phân vô hạn tuần hoàn.
Vậy:
13
22 0,590909 0,5(90)
e) Xét phân số 3
24 2 3
mẫu của phân số có ước nguyên tố là 3 nên
5
24viết được dưới dạng số thập phân vô hạn tuần hoàn. Vậy:
5
24 = 0, 208333 0, 208(3)
Bài 2:
a) Khi viết phân số
5
7 dưới dạng số thập phân, hỏi chữ số thứ 2021 sau dấu phẩy là chữ số nào? b) Tìm chữ số thập phân thứ 100 sau dấu phẩy của phân số
17
900 (viết dưới dạng số thập phân).
c) Tìm chữ số thập phân thứ 210 sau dấu phẩy của phân số
24
27 (viết dưới dạng số thập phân).
Lời giải:
a) Ta có:
5
7 0, 714258 714258 0, 714258
Số thập phân 0, 714258 là số thập phân vô hạn tuần hoàn có chu kì gồm 6 chữ số
Mà: 20216.336 5 , như vậy 2021 chia cho 6dư 5nên chữ số thập phân thứ 2021 sau dấu phẩy của 0, 714258 là chữ số 5.
b) Ta có:
17
0, 018888
900 0,01(8)
Số thập phân 0, 01(8)là số thập phân vô hạn tuần hoàn tạp mà phần bất thường có hai chữ số và chu kì
có 1 chữ số là 8
Ta lại có: 100 2 nên chữ số thập phân thứ 100 sau dấu phẩy của số 0, 01(8) là chữ số 8
c) Ta có:
24
27 1,(4117647058823529) là số thập phân vô hạn tuần hoàn đơn mà chu kì gồm 16 chữ số
Mà: 2101024 64.16 , suy ra 210 chia 16 dư 0 nên chữ số thập phân thứ 210 sau dấu phẩy là chữ số 9.
Trang 5Dạng 2: Viết số thập phân vô hạn tuần hoàn dưới dạng phân số
I.Phương pháp giải:
- Muốn viết phần thập phân của số thập phân vô hạn tuần hoàn đơn dưới dạng phân số với
+ Tử: là chu kì
+ Mẫu: là một số gồm các chữ số 9, số chữ số 9 bằng số chữ số của chu kì
0, 6 ; 0, 21
Tổng quát:
1 2
0,
99 9
n n
n
a a a
a a a
- Muốn viết phần thập phân của số thập phân vô hạn tuần hoàn tạp dưới dạng phân số với
+ Tử: phần bất thường và chu kì trừ đi phần bất thường
+ Mẫu: một số gồm các chữ số 9 kèm theo các chữ số 0, số chữ số 9 bằng số chữ số của chu kì,
số chữ số 0 bằng số chữ số của phần bất thường
5,1 6 5 5 ;
90 6
318 3 315 7 0,3 18
990 990 22
- Tổng quát:
0,b b b a a a k n
1 2 1 2 1 2
99 900 0
b b b a a a b b b
II.Bài toán:
Bài 3:
Viết các số thập phân vô hạn tuần hoàn sau dưới dạng phân số:
0, 27 ; 0, 703 ; 0, 571428 ; 2, 01 6 ; 0,1 63 ; 2, 41 3 ; 0,88 63
Lời giải:
a) 0, 27 9927 113
b) 0, 703 999703 1927
c) 0, 571428 571428999999 47
Trang 6d) 2, 01 6 216 1900 290015 2601
e) 0,1 63 163 1990 559
f) 2, 41 3 2413 41900 23175
g) 0,88 63 8863 889900 3944
Bài 4:
Các số thập phân vô hạn tuần hoàn sau có bằng nhau không ?
1 2
0,(a a ); 0,(a a a a1 2 1 2); 0, (a a a1 2 1)
Lời giải:
Ta có: 0, (a a1 2) a a991 2
1 2 1 2
0,(a a a a ) 1 2 1 29999
a a a a 101 1 2
101.99
a a 1 2
99
a a
0, (a a a ) 1 2 1990 1
990
a a 1 2.10
99.10
a a 1 2
99
a a
Vậy 0,(a a1 2) = 0,(a a a a1 2 1 2) = 0, (a a a1 2 1)
Nhận xét: Như vậy từ phân số
1 2
99
a a
ta có thể viết được các dạng nhiều số thập phân vô hạn tuần hoàn khác nhau như 0, (a a1 2); 0,(a a a a1 2 1 2); 0, (a a a1 2 1);…nhưng cách viết 0,(a a1 2) thuận tiện hơn, do đó người ta chọn cách viết này
Dạng 3: Tính giá trị biểu thức số
I.Phương pháp giải:
Để thực hiện các phép tính về số thập phân vô hạn tuần hoàn trước hết ta viết chúng dưới dạng phân số tối giản rồi thực hiện các phép toán trên phân số
II.Bài toán:
Bài 5: Tính:
a) 0,1 6 1, 3
b) 1, 3 0,1 2 2 8
11
Trang 7c) 10, 3 0, 4 8, 6
d) 12, 1 2,3 6 : 4, 21
Lời giải:
a) 0,1 6 1, 3
16 1 3
1
90 9
15 12
90 9
6 6
9 6
2
b) 1, 3 0,1 2 2 8
11
9 90 11
12 11 30
9 90 11
12 3
9 9
9
3
c) 10, 3 0, 4 8, 6
9 9 9
93 4 78
19 9
d) 12, 1 2,3 6 : 4, 21
12 2 : 4
67 21
9 : 4
90 99
877 99
90 417
4170
Bài 6:
Tìm x, biết:
a) 0, 37 0, 62 x10
b) 0, 12 :1, 6 x: 0, 4
Trang 8c)
3
0, 3 0, 384615 50
13
0, 0 3 13 85
x
Lời giải:
a) 0, 37 0, 62 x10
37 62
10
99 99 x
99
10
99x
10
x
Vậy x10.
b) 0, 12 :1, 6 x: 0, 4
12 6 4
:1 :
99 9 x 9
4 12 9
9 99 15
x
4 4
:
9 55
x
4 4
55 9
x
16 496
x
Vậy
16 496
x
c)
3
0, 3 0, 384615 50
13
0, 0 3 13 85
x
3 384615 3
50
9 999999 13
13 90
x
1 5 3
10
3 13 13
391 17 30
x
Trang 928 3 10 391
39 13x 17 30
28 3 10 391
39 13x 17 30
3 23 28
13x 3 39
3 271
13x 39
271 3 :
39 13
x
271 13
39 3
x
271 301
x
Vậy
271 9
x
Bài 7:
Thay các chữ cái bởi các chữ số thích hợp: 0,x y 0,y x 8.0, 0 1 , biết rằng x y 9
Lời giải:
Ta có: 0,x y 0,y x 8.0, 0
8
xy x yx y
xy x yx y 8
10x y x 10y x y 8
10x y x 10y x y 8
8x 8y 8
x y 1
Mà x y 9
Do đó: x5,y4
Vậy 0,5 4 0, 4 5 8.0, 0 1
Bài 8:
Trang 10Cho
1
1,00 01
A
(số chia cĩ 99 chữ số 0 sau dấu phảy) Tính A với 300 chữ số thập phân
Lời giải:
Ta cĩ:
1 1,00 01
1
1, 0 0 1
chữsố
1 0 0
1 0 0 1
chữsố
chữsố
Nhân cả tử và mẫu với100 9
99 9
chữ số , ta được: A
9 90 0 9 99 9
Theo quy tắc viết số thập phân vơ hạn tuần hồn đơn thành phân số thì số 0,
9 9 0 0
viết thành phân số trên
Vậy 100 100 100
0,9 90 09 9
A
Bài 9:
Cho số x 0,12345 998999 trong đĩ ở bên phải dấu phảy ta viết các số từ 1 đến 999 liên tiếp nhau Chữ số thứ 2003 ở bên phải dấu phảy là chữ số mấy? Vì sao?
Lời giải:
Xét dãy 2003 chữ số đầu tiên sau dấu phẩy của x Gọi chữ số thứ 2003là a
Chia dãy số trên thành ba nhĩm:
1234567891011 99100101 x
Nhĩm I cĩ 9 chữ số, nhĩm II cĩ 180 chữ số, nhĩm III cĩ:
2003 9 180 1814 (chữ số)
Ta thấy 1814 chia 3 được 604 dư 2
Số thứ 604 kể từ 100 là: 100 604 1 703
Hai chữ số tiếp theo số 703 là chữ số 7 và chữ số 0 (thuộc số 704 )
Vậy a0.
Chữ số thứ 2003 ở bên phải dấu phảy là chữ số 0
Bài 10:
Thay các dấu * bởi các chữ số thích hợp:
Trang 11Lời giải:
Xét phép trừ thứ hai, ta có: *** ** *
số bị trừ có dạng 10*
số bị trừ *** 100 (vì chữ số đơn vị của số bị trừ là chữ số 0 thêm vào để tìm các chữ số thập phân của thương)
Đặt số chia, thương và tích riêng thứ nhất theo thứ tự là ab;c deg, ;mn
Ta thấy 10 :ab0,deg nên 10000ab deg. (Với d 0 (vì nếu d 0 thì ab eg 10 000), g 0 (vì nếu d 0 thì thương đã dừng lại ở e ))
deg là ước của 10000 và có ba chữ số
Suy ra deg bằng 53 125 hoặc 54 625 Tương ứng ab bằng 80 hoặc 16
+ Trường hợp ab80 thì mn80, trái với 80 10 *** (số bị chia), loại
+ Trường hợp ab16 thì c6,mn96, số bị chia là 96 10 106
Vậy ta có 106 :16 6, 625
Trang 12Dạng 4: Kiểm tra một biểu thức phân số viết dưới dạng số thập phân vô hạn tuần hoàn (đơn hay tạp).
I.Phương pháp giải:
Đối với các phân số đó, nếu mẫu không có ước nguyên tố 2 và 5 thì viết được thành số thập phân vô hạn tuần hoàn đơn, nếu mẫu có một trong các ước nguyên tố 2 và 5 thì viết được thành số thập phân vô hạn tuần hoàn tạp
II.Bài toán
Bài 11:
Chứng tỏ rằng: các phân số sau viết được dưới dạng số thập phân vô hạn tuần hoàn.
22 5 143
n
n ;
21 4 7
n n
;
79! 79 5609
n n
Lời giải:
a)
Ta có:
22 11.2 11
5
11
22n 5 11, mà 143n11.13 11n , do đó
22 5 143
n
n rút gọn đến khi tối giản
thì mẫu số vẫn chứa thừa số là 11
22 5
143
n
n n khi viết thành số thập phân thì ở dạng số thập phân vô hạn tuần hoàn
b)
Ta có:
21 7
4
n
7
21n 4 7, mà 7 7n , do đó
21 4 7
n n
rút gọn đến khi tối giản thì mẫu số vẫn chứa thừa số là 7
Trang 1321 4
7
n
n
n khi viết thành số thập phân thì ở dạng số thập phân vô hạn tuần hoàn
c)
Ta có:
79! 79
5609
n
1.2.3 79 79 71.79
n
1.2.3 78 1 71
n
Ta có:
1.2.3 78 71
1
71
1.2.3 78 1 71, mà 71n71, do đó
21 4 7
n n
rút gọn đến khi tối giản thì mẫu số vẫn chứa thừa số là số nguyên tố 71
79! 79
5609
n n khi viết thành số thập phân thì ở dạng số thập phân vô hạn tuần hoàn.
Bài 12:
Với mọi số tự nhiên n , khi viết các phân số sau dưới dạng số thập phân, ta được số thập phân hữu0
hạn hay vô hạn ? Nếu là số thập phân vô hạn thì số đó là số thập phân vô hạn tuần hoàn đơn hay tạp?
a)
2
12
n
; b)
6 1
12
n
n
Lời giải:
a) Ta có:
n n
Vì mẫu của phân số là 4 2 2 nên
2
12
n đổi ra số thập phân hữu hạn.
b) Xét phân số:
6 1 12
n n
Ta có:
6 3
1
n
3
6n 1 3
mà 12n3.4n3
phân số
6 1
12
n n
rút gọn đến khi phân số tối giản, mẫu vẫn có ước là 3
6n1
Trang 14Mặt khác:
Ta có:
6 2
1
n
2
6n 1 2
mà 12n2.6n2
phân số
6 1
12
n n
rút gọn đến khi phân số tối giản, mẫu vẫn có ước là 2
phân số
6 1
12
n n
đổi thành số thập phân vô hạn tuần hoàn tạp
Bài 13:
Khi viết các phân số sau dưới dạng số thập phân, ta được số thập phân hữu hạn, hay vô hạn tuần hoàn đơn, hay vô hạn tuần hoàn tạp:
a) 35 3
70
n
n
;
b)
10987654321
?
Lời giải:
a) Ta có:
35 7
3
n
7
35n 3
7, mà 70 7 ,
do đó
35 3
70
n
rút gọn đến khi tối giản thì mẫu số vẫn chứa thừa số là 7
70
n
n
viết thành số thập phân thì ở dạng số thập phân vô hạn tuần hoàn
Mặt khác:
35 5
3
n
5
35n 3
5, mà 70 5 ,
do đó phân số
35 3 70
n
rút gọn đến khi tối giản thì mẫu số vẫn chứa thừa số là 5 Vậy 35 3
70
n
n
viết thành số thập phân thì ở dạng số thập phân vô hạn tuần hoàn tạp
Trang 15b) Xét phân số
10987654321
Tổng các chữ số của tử số là: 1 0 9 8 7 6 5 4 3 2 1 46
tử số 109876543213
Mà mẫu số n1 n2 n3
là tích của ba số tự nhiên liên tiếp
n1 n2 n3 3
Do đó phân số
10987654321
n n n rút gọn đến khi tối giản thì mẫu số vẫn chứa thừa số là 3
70
n
n
khi viết thành số thập phân thì ở dạng số thập phân vô hạn tuần hoàn
Mặt khác: 109876543212; n1 n2 n3 2
phân số
10987654321
n n n rút gọn đến khi tối giản thì mẫu số vẫn chứa thừa số là 2
Vậy
10987654321
khi viết thành số thập phân thì ở dạng số thập phân vô hạn tuần hoàn tạp
Bài 14:
Cho phân số:
( 1)( 2) 6
C
a) Chứng tỏ C là phân số tối giản
b) Phân số C được viết dưới dạng số thập phân hữu hạn hay số thập phân vô hạn tuần hoàn
Lời giải:
a) Xét phân số:
( 1)( 2) 6
C
Gọi ƯCLN của tử số và mẫu của phân số C là d d,d 1
Ta có:
( 1)( 2) 6
Trang 16 1 d
d 1
ƯCLN của tử số và mẫu của phân số C là 1
Vậy C là phân số tối giản
b) Vì m m;( 1);(m2) là ba số tự nhiên liên tiếp nên trong ba số m m;( 1);(m2)có một số chia hết cho 2, và một số chia hết cho 3
m m( 1)(m2) 6
Mà 6 6
m m m
m m m
Phân số
( 1)( 2) 6
C
tối giản khi phân tích mẫu có chứa thừa số là 3 nên C khi viết
thành số thập phân thì ở dạng số thập phân vô hạn tuần hoàn
Dạng 5: Chứng minh
I.Phương pháp giải:
Sử dụng các phép biến đổi của số thập phân vô hạn tuần hoàn và tính chất chia hết, để chứng minh một số bài toán
II.Bài toán:
Bài 15:
Cho A là số lẻ không tận cùng bằng 5 Chứng minh rằng tồn tại một bội của A gồm toàn chữ số 9
Lời giải:
Xét phân số
1
A , mẫu A không chứa thừa số nguyên tố 2 và 5 nên
1
A viết dưới dạng số thập phân vô
hạn tuần hoàn đơn
1 2
1 99 9
n n
a a a
A
9 9 n
n
A a a a
99 9
n A
Vậy tồn tại một bội của A gồm toàn chữ số 9
Bài 16: