1. Trang chủ
  2. » Luận Văn - Báo Cáo

Giải bài tập vật lý tương đối hẹp

70 2 0
Tài liệu được quét OCR, nội dung có thể không chính xác

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Giải bài tập vật lý tương đối hẹp
Người hướng dẫn Thầy Hoàng Lan
Trường học Trường Đại Học Sư Phạm TP.HCM
Chuyên ngành Vật Lý
Thể loại Luận văn tốt nghiệp
Năm xuất bản 2001
Thành phố TP.HCM
Định dạng
Số trang 70
Dung lượng 3,73 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Không những không tìm ra được hệ qui chiếu tuyệt đối mà còn khẳng định lại luận điểm của Maxwell về vận tốc ánh sáng: vận tốc ánh sáng trong chân không là hằng số c=3.10m/⁄s nó không phụ

Trang 1

BỘ GIÁO DỤC VÀ ĐÀO TẠO

TRƯỜNG ĐẠI HỌC SƯ PHAM TP.HCM

Trang 2

Thuget tuang déi la mat thuyel quan trang trong cdc ngank vat ly hin dac Nhan there dure

aay dé lam ludn tit nghiép

Trang Cudu udu tat nghiifs cia thi chia lam hai phan:

Phan 9: Phan ly thuyét chia lim ba chuwng chummg 7 add ué ” Thuyét tummg débé hep

cáa Einstein” Can cheung 77 :ndi vd phumng thie tian hac mẻ tả (ý thuyét tumng ddd ( Khdng gian bin chiéu, hhing oan Hinkowshe)

Churng 999 > chink la ting dung cha Thuyét tương đốc hep vdeo trong co hoc

chung : cÁ¿ ybu gam cac bad tap dure chon thes thi tu ti phips bidn dbi Lonents dén bad tap

Treating didn ti

Vi thik 9:an vd hién thie ch han nin ludn vdn nay bhing thé tidnh bhai sai s6f mang gui

Vhdy C4 đướng dấu thim ua gitip em ssn chute whiing sai sit, dé em hadn chink hitu that

Mat lin nia em rin chin think chm an Thdy HOANG LAN da gisipp dé em trang sust gud

7?“ Wé Chi Wink Voay 25 thing OS mam 200]

SUTH : Lit Thank Tung

Trang 4

MUC LUC:

PHAN I: LY TUGNG DOI CUA EINSTEIN

CHUGNG I: THUYET TƯƠNG ĐỐI HẸP của EINSTEIN

I.Mối quan hệ giữa hai tiên để của thuyết tương đối hẹp Tính tương đối của sự đồngthời v02 62 |

II Phần biến đổi LH De eSennieeeeesieseskeeseiesessi 3

IV Không thời gian mang tính tương đối qua phép biến

đổi Lorentz ¬ "H

V Cong thức hợp toc Finstein ss si ‘cel CHUGNG II: KHÔNG THỜI GIAN BON CHIEU _ KHÔNG

GIAN

I Không gian bốn chiều 2.22.22222SS2S S2222257272277 T

II.Khoảng bốn chiều + wid

II Tính bất biến bốn chiều o qua nên biến đổi Kong cap 7

IV Phép quay MinkoWskl seeeesesesesesee 8

CHƯƠNG III: CƠ HỌC TƯƠNG ĐỐI TÍNH rican AD

I Xây dựng vecteur vận tốc, vecteur gia tốc biển chiều HO II II.Đông lượng tương đối tính - Khối lượng tương đối tín I2

II Chuyển động của hạt tự do - Các định luật bảo toàn12

PHẦN II: BÀI TÂP

CHƯƠNG II: BONG HỌC - ĐỘNG LUC HOC TUONG ĐỐI 37 CHƯƠNG III: THUYẾT TƯƠNG ĐỐI và LÝ THUYẾT

TRUONGBIREN TẾ cccci6CcogkeeaasevssSS

Trang 5

Cuối thế ky XIX đầu thế kỷ 3 XX khoa học bước vào shone linh vực

nghiên cứu mới và bắt đầu xuất hiện những mâu thuẫn kịch liệt giữa

dữ kiện thực nghiệm với những luận điểm của cơ học Newton Một số nỗi bật là kết quả của thí nghiệm Michelson-Morley: mục đích chủ yếu

của thí nghiệm này là tim ra hé qui chiếu tuyệt đối, vận tốc gió éther nhưng kết quả lại hoàn toàn bất ngờ Không những không tìm ra

được hệ qui chiếu tuyệt đối mà còn khẳng định lại luận điểm của Maxwell về vận tốc ánh sáng: vận tốc ánh sáng trong chân không là hằng số (c=3.10m/⁄s) nó không phụ thuộc vào nguồn phát sáng hay

Mãi đến 1905 thì mới có một thuyết mới ra đời đó là " thuyết tương đối hẹp của Einstein *, Nội dung của thuyết chủ yếu tập trung vào hai tiên

để cơ bản mà mối quan hệ giữa hai tiên để này nói lên sự vận động

của không gian, thời gian và sự liên quan chặt chẽ giữa chúng

L.HAI TIÊN ĐỀ CƠ BẢN CỦA THUYẾT:

Tiên để I : Nguyên lý tương đổi Einstein: các định luật vật lý( tự nhiên) điều được phát biểu như nhau trong mọi hệ qui chiếu quán tính, hay về

mặt toán học, các phương trình của định luật tự nhiên điều có dạng như

nhau trong mọi hệ qui chiếu quản tính

Tiên để 2 : Tấc độ ánh sáng trong chân không là hằng số trong tất cả

các hệ qui chiếu quán tính, hay phát biểu rõ hơn, tốc độ ánh sáng về mọi hướng bằng nhau không phụ thuộc vào vận tốc của nguồn phát sáng hay máy thu

I MỐI QUAN HỆ GIỮA HAI TIÊN ĐỀ CỦA THUYẾT TƯƠNG

ĐỐI TÍNH TƯƠNG ĐỐI CỦA SƯ ĐỒNG THỜI:

Từ các tiên để trên suy ra một loạt kết luận quan trọng dé cập đến tính

chất của không gian và thời gian Trong cơ học Newton không gian và

thời gian được coi là cô lập nhau và tôn tại không gian tuyệt đối và thời

Trang 6

LUAN VAN 707 4H? OG

gian tuyệt đối, Trong Prinecipia, Newton đã định nghĩa không gian tuyệt

đối và thời gian tuyệt đối như sau:

“Absolute, true and mathematical time, of ttself and from tts own nature,

flows equably without relation to anything external”

“Absotute space, in its own nature, without relation to anything external, remains always similar and immovable”

Theo đó ông coi một cách rõ ràng hai sự kiện là đồng thời trong một hệ qui chiếu nào đó thì nó sẽ đồng thời trong tất cả các hệ qui chiếu quán

tính khác Tuy nhiên điều này lại mâu thuẫn với tiên để thứ hai: về sự

bất biến của vận tốc ánh sáng

Như vậy rõ ràng khi nói đến thời gian và không gian , Newton đã căn

cứ vào tính chất hình học của chúng, tính chất hình học của không gian

Euclide 3 chiều

Như vậy ta cần phải xây dựng một không thời gian khác thỏa tính bất biến của vận tốc ánh sáng hay nói cách khác là một không thời gian

mô tả hiện tượng vật lý thỏa hai tiên để Einstein

Ta xét hai vật K và K' lập thành với các đồng hồ thích hợp tạo nên hệ

Ta có hệ K' chuyển động so với hệ K với vận tốc ý hướng dọc theo đường thắng nối tâm của hai vật (hình 1) Trên đường thẳng đó ta đặt hai vật M, N cách đều K' và liên kết chặt với K' Đối với K hai vật M,

N cùng chuyển động với vận tốc ÿ, còn đối với K' thì chúng đứng yên

Trong cả hai hệ ta chỉ xét một quá trình là quá trình truyền ánh sáng

Khi tín hiệu ánh sáng phát ra từ K" và tín hiệu này đạt tới các điểm M,

N

Trong hệ K': vận tốc của ánh sáng theo mọi phương là như nhau và bằng c Vì vậy trong hệ K' ánh sáng sẽ đến M, N là đồng thời ( trong cùng thời điểm L)

Trong hệ K vận tốc của ánh sáng là như nhau theo mọi phương và

bằng c Nhưng trong hệ này vật M tiến về phía tín hiệu, N rời xa tín

hiệu sáng nên thời gian ánh sáng đến M nhỏ hơn thời gian ánh sáng

đến N hay tụ < ty.Từ đây rút ra kết luận sau: hai biến cố gọi là đồng

Trang 7

‘eer

oa

thời trong hệ K' thì nó lại không đồng thời trong hệ K Như vậy có

nghĩa là thời gian trôi không như nhau trong các hệ qui chiếu quán tính

khác nhau Cho nên thời gian mang tính tương đối, Như thế khi mô tả một biến cố trong hệ qui chiếu quán tính nào đó cần phải chỉ ra nó ở điểm nào trong không gian đó và thời điểm ở điểm đó Vấn để quan trọng nếu không gian thành lập bởi các toạ độ cách đều nhau và gắn với những điểm ấy bởi các đồng hồ có thể xác định biến cố xảy ra tại điểm đã cho được xác lập như thế nào?

Ta có thể dễ dàng vạch các dấu toa độ bằng cách đời chỗ các đơn vị không gian Nhưng làm thế nào có thể đồng bộ hóa các đồng

hồ trên 2

Phương phá r bộ hoá:

Ta cứ tưởng rằng có thể thực hiện sự đồng bộ hoá bằng cách: trước tiên đặt các đồng hồ thành một day và sau đó kiểm tra sự chỉ của chúng rồi người ta mang nó tới các điểm tương ứng của không gian Tuy nhiên

cần phải loại bỏ phương pháp trên vì ta không biết sự chuyển vận của

các đồng hồ từ chỗ này đến chỗ khác sẽ ảnh hưởng đến sự chỉ của đồng hồ như thế nào Vì vậy ta chỉ có thể tiến hành đồng bộ hoá như

sau : trước tiên đặt các đồng hồ ở những điểm của không gian và sau

đó kiểm tra lại sự chỉ của chúng bằng tín hiệu ánh sáng

Giả sử đồng hồ đất tại A chỉ t¡ ta phát tín hiệu sáng đến B rỗi quay về

A tại thời điểm t; như vậy thời điểm để đồng hồ tại B chỉ đồng bộ với

A là t= “*“ tương tự như vậy ta có thể đổng bộ hoá tất cả các đổng

hồ trong hệ qui chiếu đó

III.PHÉP BIẾN ĐÔI LORENTZ

Khoảng những năm 1881-1887, Michelson( 1852-1931) mét nha vat ly học người Mỹ đã nghiên cứu đo vận tốc của ánh sáng Ông đã làm thực nghiệm đo vận tốc của ánh sáng theo những chiều khác nhau so

với phương chuyển động của Trái đất trong Thái dương hệ Tuy mục đích của thí nghiệm là tìm ra hệ qui chiếu tuyệt đối nhưng kết quả thí nghiệm khẳng định điều ngược lại là không tổn tại hệ qui chiếu như vậy và vận tốc cúa ánh sáng là tuyệt đối đối với mọi hệ qui chiếu quán

tính

Trang 8

Diu nim 1893 Lorentz đã tìm cách giải thích hiện tượng đó bằng

thuyết éther (vật thể co lại trong hệ qui chiếu quán tính chuyển động

sơ với éther : éther là một môi trường kì dị =

gắn liên với một hệ qui chiếu tuyệt đối nào

chiếu ta có: y`= e.y.Từ đó suy ra rằng z”=l hay ¢ =+1 Vay y=y’ tương tự Z=z`

Bây giờ ta tìm mối liên hệ x, t với x', U: ta thấy y và z không phụ thuộc vào x" và U' từ đó suy ra rằng các giá trị x', t` cũng không phụ

thuộc vào y và z, nên ta có mối quan hệ sau:

X= X(X", t)

t= t(x`, U)

Chọn tọa độ O của hệ K có toa độ x = 0 trong hệ K và x'= -v.t' trong

hệ K' do đó biểu thức x`+v.U phải triệt tiêu đồng thời với toạ dé x Muốn thế phép biến đổi tuyến tính phải có dạng:

x=y (x’+v.t') -Trong đó z là một hằng số nào đó.Tương tự gốc tọa độ

O' của hệ K" có tọa độ x'= () trong hệ K` và x=v.t trong hệ K nên ta có: X'=y.(Xx-v.t)

Xét với tín hiệu ánh sáng x=c.t: x'=c.U,Như vậy :

Trang 9

IV KHÔNG THỜI GIAN MANG TÍNH TƯƠNG ĐỐI QUA PHÉP

BIEN DOI LORENTZ

Từ công thức biến déi Lorentz ta được khoảng cách ,khoảng thời gian

giữa hai sự kiện trong K và K' :

Nếu trong hệ K ta có an vận tốc liên hệ giửa hai sự kiện thì từ (1)

và (2) ta có: Al°=x›`-x;`=y(a-v)Ât; At'=t' — t;=z At(1 — 8 a) p

Từ (I) ta thấyrằng AI, AI' có thể mang dấu tùy ý, AI'=0 khi v=a tức là

hệ K' chuyển đông đúng bằng vận tốc liên lạc giữa hai sự kiện thì hai

sự kiện đó sẽ cùng diễn ra tại một điểm trong không gian K' Đó là

tính tương đối của không gian

SUTH: LU THANH TRUNG hang 5

Trang 10

ludt nay cé tinh nhan-qua trong hé K’, Còn trường hợp a > — lúc đó 3

At trai dau Av do đó ta nói quy luật nhân-quả không đúng cho hé K’

Từ dây suy ra thời gian mang tính tương đối

V CONG THUC HOP TOC EINSTEIN

Trong hệ K giả sử vật chuyển đông ø

Trong hệ K' vật sẽ chuyển động với vận tốc #', biết K' chuyển động

so với K với vận tốc ý dọc theo trục Ox Theo phép biến đổi Lorentz ta

Trang 11

| KHONG GIAN 4 CHIEU (KHONG GIAN BIEN CO) :

Giả sử nếu có một biến vật lý xảy ra tại một địa điểm có tọa độ xác dinh nao dé trong toa d6 Descartes do bang ba số v` với ¡ = 1,2,3 :tọa

độ này gọi là tọa độ không gian Ngoài ra để xác định biến cố trên cẩn

phải có một đồng hồ để biết thời điểm xảy ra biến cố đó: tọa độ thời

gian

Như vậy đối với một biến cố xảy ra ta cần biết bốn đại lượng y`, t hay

x,y,z,t như vậy ta có thể xây dựng một hình học bốn chiều để biểu thị

biến cố vật lý, Trong không gian bốn chiều đó một điểm được xác định bởi 4 tọu độ trên gọi là điểm thế giới và đường cong trong nó gọi là

đường thế giới Một không gian như vậy gọi là không gian giả Euclide

Muốn xác định khoảng cách giữa hai điểm trong không gian đó ta cẩn

đưa ra một metric của không gian đó

Il KHOANG 4 CHIEU:

Xét một biến cố truyền ánh sáng từ gốc tọa độ O của hệ quán K đến một điểm trong không gian có tọa độ 7, t ta được phương trình mặt cầu

sóng có dạng “=cˆ từ đó SUY ra x+y" wer

Dat s\ = x°+y> +z - ct? dude goi khodng biến cố từ đó suy ra

ds* = dx*+dy*+dz*- cÌ.dt như vậy ta chọn không gian bốn chiểu tưởng tượng có bốn trục tọa độ x, y,z,iet thì ta có ds” = dx”+dy°+dz?+(icd0? gọi là metric của không gian

Không gian Minkowski: là một không gian bốn chiều trên trường phức

dùng để xác định một biến cố vật lý và được metric hóa như sau: ds”= dx°+dy?+dzỶ- cŸ.dU = gị.dx'.dX! với xÌ= x, x’ =y, x° =z, x*=ict va gy

la tensor cd SỞ ( của không gian Minkowski

Trong hệ K' chuyển động thẳng đều so với hệ K với vận tốc v Qua

phép biến đổi Lorentz ta được:

dx`=zy(dx+v.dÙ; dy'=dy; dz’=dz; dt'=y (dt - B ax);

Trang 12

- elle os

Từ đó ta có ds” = dso dx*4dy*4dz*- dt’ = dx’*+dy"*4dz"* ¢7.dt*, suy ra:đs” =ds`”,

Như vậy phép biến đổi Lorentz làm bất biến khoảng

Xét một không gian 4 chiều có các vecteur có dạng:

hi cay Pa

Không gian vecteur trên thỏa tích vô hướng sau:

<A,,A2>= 4?.A,, = A„.A4) = g„.A.47

Gọi vecteur | X) là một vecteur thuộc không gian trên nên ta có L|.Y) =

Ly’) vậy ta có (X|IX) =(LY|LY)=(X'|X') như vậy phép biến đổi Lorent

tạo thành một nhóm LL có L'.L =e

IV PHEP QUAY MINKOWSKI(M):

Như ta đã biết ở phần trên không gian M được xây dựng từ khoảng : dsỶ = gụ dx;dx, như vậy trong không gian M vecteur 4, =(A.iA, )

Xét phép quay trong không gian

M trong đó hai trục Oy và Ôz giữ

nguyên còn hai truc Ox va Ot

quay một góc ø trong mặt phẳng

Oxt chuyển từ H sang H`tương tự

như trong không gian 3 chiều ta

Nhu vay ta c6 x77 $x EXT ENG = XY FY + Ky XY?

Nén phép quay chuyén H thanh H' vin bao toan khodng 4 chiéu Ti phép chuyển trên ta thấy dạng ma trận của phép quay giống như dạng

ma trận của phép biến đổi Lorentz Cho nên phép biến đổi Lorentz

tương đương với phép quay trong không gian 4 chiều Gọi là phép quay

Minkowski Nếu ta đặt vecteur XY, =(7.c) thì theo phép biến đổi

Lorentz ta co;

XÌị=zy(X¡;+1/.X4):X¿= y XG PX,

S124: LU THANK TRUNG “se; 8

Trang 13

Nếu ta đặt cosø = y.sinø = iy ø thì phép biến đổi Lorentz đẳng cấu

với phép quay Minkowski Như vậy một vecteur trong không gian 4

chiéu nào đó đều biến đổi giống như một phép quay một vecteur tọa

đỏ

Trang 14

[XÂY DỰNG VECTEUR VÂN TỐC ,VECTEUR GIA TỐC 4

Trong không gian 3 chiều ta định nghĩa vecteur vận tốc là đạo hàm của

vecteur bán kính theo thời gian Ta có a =o trong cơ học Newton

Trong cơ học tương đối ta phải xây dựng vecteur vận tốc 4 chiều dựa vào 2 bất biến là ds” và dua (gọi là khoảng thời gian riêng) Tá có:dš” =

dx*+dy*+dz*- c dẺ nên ta có dx =(dF,icdt) như vây ta có thể định

x -gọi là vecteur vận tốc 4 chiều Bây giờ ta xét mối liên hệ giữa vecteur vận tốc 4 chiều với lại vecteur vận tốc của hạt z :

Vậy „„= (yữiye ) xét về tính bất biến thì ta có đs là bất biến dty cũng bất biến nên ø„Ÿ phải là bất biến qua phép biến đổi Lorentz Hay nói cách khác vecteur vận tốc 4 chiều được xây dựng từ các bất biến cơ bản thì nó phải thể hiện sự bất biến của vận tốc của ánh sáng trong chân không : wu, = 2M is OY

a Vecteur gia toc 4 chiéu tương tự như vecteur vận tốc 4 chiều Ta xây

Trang 15

LUANUANTOONGWIER —— Ø08Đ:d2XNgUAM

Trong cơ học Newton ta có vecteur động luợng p=mi, Nhu vay

vecteur động lượng 4 chiều có thể được định nghĩa như sau : p„ =m,u,

mà ta có „ Ý =-c° nên suy ra p) =- mịc' Do đó p} sẽ bất biến qua phép biến đổi Lorentz, do ø„ = (y #, ¡zc) nên suy ra:

0„ = (mạy #, mạy 1C) = ( p ,Imc); với m= mụ y

Ta thấy khi £ <0 hay nói cách khác là không có ngoại lực tác dụng thì

2 phương trình trên cho ta định luật bảo toàn năng lượng -động lượng

Do đó vecteur động lượng 4 chiều còn được gọi là vecteur năng-xung lượng Còn m = RE :khối lượng tương đối tính Do ø=mø nên khi

=

u =c thì p->›øœ vì m —>› œ Vì p.=(P,Í#)nên La CÓ :

Cc

pip? —£-=-mic? = FE? =p +mict day là hệ thức giữa năng lượng,

khối lượng và động lượng

I)Chuyển đông của hạt tư do:

Cho hạt tự do bất biến trong trường hợp này là ds= 4s” thành ra tác

dụng S có dạng : ŠS =k fas theo nguyên lý tác dung dừng ta có:

Trang 16

d!x"

theo lộ trình nên ay"(1)=0 âz“(3) =0 nên tà được =0 từ đây suy ra

s gia tc 4 chiéu a, = 0 Hat chuyén dong tu do c6 gia t6c bn chiéu bing

b)Các định luật bảo toàn

Theo thuyết cổ điển, các định luật bảo toàn được suy ra từ điều kiện bất biến của hệ kín đối với nhóm biến đổi đối xứng và trước hết là nhóm đối xứng hình học Trong thuyết tương đối thì nhóm đối xứng

hình học là nhóm Poincaré bao gồm đối xứng không -thời gian và cả

nguyên lý tương đối Phép biến đổi vi phân tại lân cận của nhóm Poincaré ( a” )g6m hai thành phần :thành phần thứ nhất là tịnh tiến và thành phần thứ hai là phép quay Lorentz

âx” = 8ÿ + ấ/ðI,„ Xét hệ nhiều hạt ta có:

đS =3 & = 3 imu, dx” = Yi imu, dc" + 3 imu,x; ổL„

Ta có Ÿ imu,.x? ởï„ = x [imu,.x/ d,,+ imu,.x" dL,, |=

>} | imu,.x, dL,, - imuy x, dL, | vay ta có

Đặt ø„ =3, sưu : gọi là vecteur động lượng

M.u= 3 [mu „x, —mwu,x„] gọi là moment động lượng

Trang 17

Như vậy nếu ta có các tọa độ vòng của nhóm Poincaré thì ta có các

định luật bảo toàn sau :

-Định luật bảo toàn động lượng bốn chiều : ø„ = Š%” mw„ =const

-Định luật bảo toàn moment động lượng : M,„=const

Ta có moment động lượng 3 chiều : 1/ =[Z ^ ÿj] cũng bảo toàn giống như cơ học cổ điển

Trang 18

2XA4IIDENDNENG THỂ” HP M

PHẦN II: BÀI TẬP

Trang 19

Bài tâp!:

Trong thí nghiệm “vận tốc tối hậu ” của W.Bertozzi, các điện tử phát sinh ở Cathode và được gia tốc bởi hiệu điện thế giữa Anode và Cathode Sự liên hệ giữa động năng T và vận tốc v của điện tử được tìm từ thức nghiệm nhu sau(1eV=1,6 10°"" joule)

Vẽ sự biến thiên của v theo T Khi năng lượng lớn vô hạn thì vận tốc

tiến đến giới hạn nào? So sánh với lý thuyết cổ điển T = ; mv’ Tinh sự

sai biệt tương đối của v giữa kết quả thực nghiệm và lý thuyết cổ điển ở

IleV IKeV IMeV I0MeV

— Trong thí nghiệm vận tốc tối hậu trên ta lập được một bảng sau:

Trang 20

Một cái hộp và nguồn bức xạ có khối lượng M bức xạ ( dưới dạng

photon ) có năng lượng W và động lượng ad được phát ra từ một đầu i

của hộp di chuyển đến đầu kia của hộp ( thí nghiệm ảo tưởng của

Einstein ndm 1906 )

IChứng tỏ W= mc`” ,m khối lượng tương đương của bức xạ

2 một phương trình chuyển hoá năng lượng của mặt trời :

p+D—- ‘He +y

Trong đó khối lượng của các yếu tố trong phương trình :

m„=1.6724.10”” Kg

mp=3,3432.10"" Kg

Myy.= 5,0058.107" Kg Tinh ndng luong cia tia gamma

3) Gọi khối lượng tĩnh của một vật là mạ thì động năng theo cơ cổ điển là:m„v?/2 nếu năng lượng của vật di chuyển với vận tốc v có thể viết

nhi sau W = c’.p/v trong dé p= m (v).v Điều đó chứng tỏ

my) = —"— ,

| -

Bài giải:

I)Chứng tỏ W=mc” trong đó m khối lượng tương đương của bức xạ

Động lượng của hệ trước khi bức xạ P„¿ = 0 động luợng của bức xạ W là: p= sử F

Động lượng của hộp sau khi bức xạ Pạ = M.v áp dụng định luật bảo

Thai gian bite xa di tit ddu nay dén dau kia của hộp là: At=ˆ Hộp di

chuyển đuợc một đoạn là Ax=v.At

Trang 21

Mà hệ trên là cô lập nên ta có m.1 + M.Ax = 0 thé Ax = v.Atvao Atta

được l.(m- : -y=0 vậy ta có phương trình sau W=mcỶ ”

2)Tính năng luợng của tia gamma:

Ta có khối lượng proton là m„=1,6724.10”'Kg, khối luợng Deuton

Mp=3.3432 10- "Keg, khối lượng He Mye=5,0058.10° Kg, khối luợng sai biệt là Am=m,+mi; - mụy¿= 0,0098.10”ˆKg Chính sự sai biệt này mà

xuất hiện dưới hình thức tia gamma nên năng lượng được tính bằng:

W = Amc” = 0/0098 10°”.9,10'' Kg.m°/⁄s°= 8.8.0 !ÌJoule = 5,5 MeV

Trong vật lý cổ điển ta không khảo sát năng lượng tuyệt đối ma theo

cơ cổ điển ta chỉ khảo sát số hiệu giữa năng lượng và sự chuyển đổi

giữa năng lượng này Như vậy lượng tăng động năng là do ngoại lực

tác dụng:

hệ giữa năng lượng và khối lượng có m = : = W=

dW = F.dx = Thụy = vdp (3)

từ (2) và (3) =W,dW= c”.p.dp lấy tích phân 2 vế phương trình ta được

W°= cp+Wy (5) Tit (2) = pe = Wey thế vào (5) ta được: :

Trang 23

trong đó v,w là vận tốc tương đối của hai biến đổi dọc theo một trục

1 Từ đây suy ra quy luật hợp thành của nhóm biến đổi Lorentz

2 Chứng tỏ rằng không có thể lập lại một chuỗi biến đổi vào một biến đổi để được một vận tốc tương đốt lớn hơn c

Ta xét: từ K Sang K’ : XI? |=x{z |= TH m (1) ict ict ict’= y, (ict —i,.x)

ta lại xét K’ => K” x? | ha (2) ict’ ict icf"= y;(ict~i/8,x')

Trang 24

tỏ rằng không thể lap lai môt chuỗi biến đổi Lorentz li

để có vân tốc tương đối lớn hơn c:

Nếu phép biến đổi thoả qui luật trên ta xét ;u =—ˆ aa tinh dao ham là + -

của u theo v và theo w ta có ; u`,= =F 1+ BB, ' U'v# q-ñ_ 1+ BB,

Vì v và w đêu đương nên ta có u„„= 0 ; để tìm u„„„ ta cho u`,= 0; u’y=

0= w=v= c từ đây ta được u„„¿= c Rỏ ràng nếu w= v=z c thì u„ạ;y = €

cho nên nếu ta lập lại nhiều lẳn phép biến đổi Lorentz theo qui luật trên thì ta chỉ thu được u„„„ = c không thể tổn tại u„„„ = c

Bài tập 2:

Trong thành phần của tia vũ trụ có các tia và các hạt không bền như

ue mezon hoặc muyzon Các hạt phân rã thành: electron(hoặc positron)

và nøtrino Thời gian sống trung bình: đo được khi chúng đứng yên là

vào khoảng 2.10 Theo quan niệm cổ điển thì với thời gian này hạt

đi với vận tốc c thì cũng chỉ đi được khoảng 600 m

Trang 25

Tuy nhiên như các quan sát chứng tỏ các mezon được tạo thành trong các tia vũ trụ ở độ cao 20 -30 km và đi đến mặt đất với số lượng đáng

kể Ta hãy giải thích điều này ?

Ap dung bằng số : := 2.10 s ,vận tốc hạt mezon yw : v= ().99c chuyển động từ bầu khí quyển xuống mặt đất Giả sử tại mặt đất chỉ còn lại 1% số mezon của dòng ban đầu Hãy xác định độ cao đó

Bài giải:

Sự sai khác giữa lý thuyết và thực nghiệm ở trên chứng tỏ rằng lý

thuyết cổ điển không thể áp dụng được cho trường hợp này Để giải thích điều này phải dựa vào thuyết tương đối tính và kết quả của phép biến đổi Lorentz :

Thời gian r= 2.10” s là thời gian riêng đo trên hệ qui chiếu gắn với mezon , nếu mezon chuyển động so với trái đất thì thời gian mà người

—:/i=~ v; vận tốc

Hag: é

hạt mezon vì vậy không ngạc nhiên về sự khác biệt trên

Nếu theo quan điểm người đứng trên mezon thì thấy khoảng cách mà mezon bay tới mặt đất bị rút gắn lại đến 600 m theo công thức :

quan sát được tinh theo cong thife Lorentz 1 =

hệ qui chiếu gắn với méson Thời gian tính theo hệ qui chiếu gắn với

Trái đất là:U'=t.VI-” Vậy độ cao h được tính bằng h=cU= -Š—=

I-Ø

Suy ra h =2.10°m=20Km

Bai tap 3:

Một giọt mưa rơi trong trường trọng lực để

lại vết trên kính của ôtô chuyển động "† †”

Trang 26

phương thẳng đứng theo quan niệm tương đối và cổ điển

Coi hat mua chuyển động là đều với vận tốc là ¡

Bài giải:

u).theo quan niệm tương đối:

vận tốc của hạt mưa so với hệ K gắn với mặt đất là:u,=U; u,=-u; u,=0 vận tốc của hệ K so với hệ K' là:v,=-v; vụ=0; v„=0 theo công thức

Từ đây nói lên một điều là: hiệu ứng tương đối tính không đáng kể có

thể bỏ qua được khi v<< c

Bài tập 4:

Một người đứng trên xe đang chuyển động với vận tốc tương đối ¡ so

với mặt đất Người trên xe quan sát thấy sét đánh tại điểm A (trước xe)

và điểm B (sau xe) là đông thời Như vậy hỏi người đứng trên mặt đất thấy sét đánh: ở nơi nào trước nơi nào sau

Bài giải:

Trong hệ K tọa độ biến cố sétđánh ~~

tại A là (x¿, t) tại B (xạ, tạ) Trong

Trang 27

0) nén t)> t› như vậy sét đánh tại B (sau xe) trước, tại À ( trước xe) sau

theo quan sát viên đứng ở mặt đất

Bài tập 3:

Tọa độ không-thời gian của hai biến cố do trong hệ qui chiếu quán

tính K là E¡ ( xị=x, tạ=`°); Ea(xạ=2xa t;=`") Trong hệ qui chiếu C “&C

quán tính nào thì quan sát viên này thấy hai biến cố trên là đồng thời, tìm vận tốc của K' so với K và thời gian t` trong K' để các biến cố đó

xảy ra

Bài giải:

Giả sử K' chuyển động so với K với vận tốc ý dọc theo trục Ox

Theo phép biến đổi Lorenz ta có biến cố E, wong K’:

Bài giải:Theo đề bài ta có :

Vận tốc tương đối của K" so với K

Trang 28

Uy = Ux:.cos@" , Uy= Ug sind” ,u,= 0

Theo công thức công vận tốc ta được :

Một thanh thẳng có chiều dài riêng l, đứng yên trong hệ qui chiếu

quan tính @', nó nằm trong mặt phẳng ©'x`y' và tạo một góc 0 ' với

trục O’x'’ Nếu (@' chuyển động thẳng đều so hệ © với vận tốc ñ song song với trục 0x

I Tìm góc tạo bởi thanh với trục ox được quan sát viên trong hệ qui

chiếu quán tính () quan sắt

2.Tìm chiêu dài của thanh trong trường hợp này

Bài giải:

I.Tính tgø theo 2`,u:

trong hệ qui chiếu quan

tính O' :chiều dai thanh là

doc theo Ox : vì vậy

muốn đo chiểu đài thanh trong hệ thì phải đo vị trí hai đầu mút của thanh phải đồng thời từ đó ta có:

Theo phép biến đổi Lorentz ta được :

Trang 29

|

vI -#

2 Tính chiều dài thanh :

` =f} +1 =l cos” 0 "(1= Ø8))+12 sin’ A"

Từ đây ta có : ! = to VI = ذ) cos' 9 '

/ tụt = 7 = tụt '

hệ có hướng tùy ý Từ đó rút ra kết quả Tho _

Trong đó ii và ¡ ` là vận tốc của hạt trong hai hệ K va K', vận tốc ¢

2 Tit két qua trén ta rut ra duc van téc trong hai hé :

Trang 30

ràng trong SS433 thuộc ngân hà chúng ta, những vật này làm xuất

hién sự tách đôi tuần hoàn theo thời gian của những tỉa mà nó phát ra

và người ta giã sử trong bài toán nghiên cứu hai mô hình để làm rỏ sự

tách đôi của tia !!, được xác định bởi sao này

I.Mở đầu: Hiệu ng Doppler:

Một chất điểm di chuyển với vận tốc ở là hằng số dọc theo trục Ox ciia

hệ qui chiếu Œaliléen (R(Ox,y,z)) Gọi ï.ÿ.z là những vecteur đơn vị

của trục ()x,Oy,O: Chọn R,„(Mx„vy„z„) là hệ tâm quán tính của M (hệ

riéng) Truc Ox= Mx, con My,,Mz, lần lượt song song với truc Oy,Oz ,

và người ta ký hiệu ï ÿ š, là những vecteur đơn vị của hệ R„ Đặt

ý =uwš và giả sử độ lên đương

I1.Nhớ lại mà không cần chứng mình phép biến déi Lorentz ciia cùng một biến cố ,phép biến đổi này biến đổi biến đổi những tọa độ x,y,z,t trong R thành x„y„z„t, trong R„ Viết sự biến đổi này dưới dạng ma

trận Đặt / = -ử = iF với c : vận tốc ánh sáng yi-

2 Chất điểm được xem như là nguồn phát ra những photon có tan sé

9 trong R„(tần số riêng) Một quan sát viên đứng trong R nhận những

photon nay trong đó chiều và phương truyền của photon trong R được

xác định bởi vecteur don vi ii

a) Bằng cách sử dụng công thức biến đổi 4-vecteur năng — xung

lượng của photon ,xây dựng biểu thức bước sóng của photon truyền dọc

Trang 31

LUAN VAN TOT NGAIEP ~

Khao sat tritting hop nao la higu ting Doppler doc ,ngang

3.Người ta chứng mình rằng thuyết tương đối cũng cho cùng một kết quả như thuyết cổ điển khi v<<c Chứng tỏ rằng : 2 = 2 (\- `°) i

II.NGHIÊN CỨU MÔ HÌNH SAO ĐÔI:

Một sao đôi thuộc ngân hà chúng ta thì được tạo thành từ hai thành

phần khối lượng m, và m; và người ta giả sử tâm tập trung ở chất điểm mạ, mạ Và chấp nhận rằng mỗi thành phần chỉ chỉu tác dụng lực hấp dẫn bởi phần khác (nghĩa là bỏ tất cả những tác động trường ngoai)

Sử dụng kết quả nghiên cứu của bài toán hai vật hãy giải thích và tìm vận tốc các thành phần trong sao đôi trong hệ tọa độ cầu Cùng kết quả phần trên ta lãy nghiên cứu các ý tưởng sau:

trong R nhung rat xa điểm G

(tâm quán tính của mị và m;) ? ko

nhận nhitng photon bước “

đôi trong đó phương chiêu Sn a

bởi vecteur don vi i song song

Trang 32

với mặt phẳng z=0 và làm một góc với trục Ox la =(x.u) Bằng kết quả của phần trên hãy cho biểu thức của độ dài sóng i, 3, được

nhận bởi người quan sát này

2).Những phép áo được thực liện trên sao SS433: phát ra Hạụ của Hydrogène (›, -6563A ) chứng tỏ những biểuthức biến tniên của

›, 2, là hình sim( Nếu ta giả sử rằng quan sát viên trái đất là quan

sat dinh trong cau 1)

3).Người ta định nghĩa biên độ tương ứng với những biến đổi độ dài

“` Â

SÓNG te = ˆ"" - Cho biết những biên độ tương đối của những biến đổi ›, ? thì bằng nhau và có chung giá trị : thì chứng tỏ rằng mạ=

mạ Vậy tính toán những vận tốc Ý, Ý của mạ và m; theo hàm của G,

\L (khối lượng rút gọn) và chu kỳ quay T Quan sát viên trái đất biết chọn điểm (G) nhưng không biết giá trị ọ (0 < ọ < x) Chứng rằng anh

ta có thể xác định khối lượng m„ụ nhỏ nhất của sao đôi xuất phát từ những kết quả trước Hãy cho biểu thức của mụ theo T,Œ,c và c Cho

tốc độ biến thiên của À., và *

4)Bằng những thực nghiệm những biến thiên của và 2, và i, chứng

tỏ rằng những đường cong biểu diển sự biến thiên này sẽ tự cắt nhau

có 2` = 6798A Chứng tỏ rằng kết quả này với những đường cong của

vấn đề trước làm sao người ta nêu ra hiệu ứng này với mẩu được

nghiên cứu Người ta giả sử rằng quan sát viên giữ Gx là phương quan

sát Chứng tỏ rằng người ta xác định thành phần vẹ theo Gx của vận

tốc tâm khối lượng sao đôi trong hệ Galiléen của người quan sát

Chứng tỏ trong trường hợp này vụ, là hàm ›,^`, và c

Áp dụng bằng số: Với đồ thị thực nghiệm diền tả `, và 3 như sau:

e200

Trang 33

Tính toán bằng số đối với sao SS433 so sánh kết quả với khối lượng mặt trời và khối lượng thiên hà : m„=8.I0“ “kg Quan sát viên giữ Gx

nhu la phương quan sát tính vị ,v; và tính vận tốc chạy ra xa của vọ ;

so sánh kết quả cuối cùng này với vận tốc cực đại của vật trong thiên

hà vy=2300 km/s Két ludn tinh hop lý của mẩu này được sử dụng

nghiên cứu sao SS433

111 MO HINH GIAN NO VAT CHAT:

Bây giờ người ta giả sử vật thể SS433 được tạo thành từ một vật có tâm

cư ngu ở gốc hệ qui chiếu Galiléen

R(Gx,y,z) phát ra 2 loại vật chất tạo

nguyên tứ Hydrogèene Một trong

nhitng loại nguyên tử này được kích

thích đến vận tốc ý, hướng theo

nửa không gian y < (Ì ngược lại V,

hướng về nửa không gian dương

trong đó \ÿ,=|Ÿ, và Ÿ =- ÿ, với

những giá trị không thể bỏ qua được so với c Trục p của ÿ, và ÿ, làm một gốc tụ với trục Œy, sự tiến động rất chậm xung quanh trục này với vận tốc gốc ( hằng số Nếu Đ là gốc của hình chiếu p lên mặt phẳng

2m

y =0) với trục Œz; ta có (› = _ và chu kỳ tiến động 'T = ~—— =164 ngày

(0

Những nguyên tử Họ phát ra tia Hạ với À., =6563A_ và một quan sát

viên trái đất mà ta giả sử rất xa G và đứng yên trong R quan sát

những photon trong đó phương chiêu truyền trong R được xác định bởi vecteur uù song song với mặt phẳng z= 0 sao cho (¡=(X,Ú), X la vecteur

unitaire cia Gx

1) Sit dụng kết quả của (HI.2) Chứng tỏ rằng quan sát viên nhận

trong phương u những tia có độ dài sóng ›, và À, Tìm 2, và À, là hàm theo [Ì,y,v,qœ vad

2) Véi gid trj nao cia 8, thi 2, = 2., Cho w=20" , o=10"

3) Voi nhitng gid tri trén tim )., va 2, theo thoi gian

BÀI GIẢI

Trang 34

LMG BAU: HIEU UNG DOPPLER:

IViết phép biến đổi Lorentz dưới dang ma trân

4)R

2 Trong hé (R,) một photon 9, phat ra va mOt quan sat vién difng trong

(R) nhận photon này có tần số là 9và phương truyền của nó theo

vecteur đơn vị ũ có (u,u,,0):

Ta có vecture sóng trong R: k “| - uv— u, 0 vdiw = 2m

c C

a)Vecteur nang xung lượng bốn chiều trong R,„ được viết như sau:

p.,, = (hk, in *) strong R thi: p, =(ik.in®)

Ap dung phép bién d6i Lorentz ta dudc :p,, =(2)p,

k„ =y(k, =B“)=y —(u, =p) Cc Cc

Nên ta có : w= Tản 7t on -u mà u,= ũš với š là vecteur đơn vị của trục

Trang 35

ta cổ :À« nf ee) Day 1a hiệu ứng Doppler dọc

Khi v, = 0 =08=+E lúc đótg8, =F pe > w=, /1-B =>)= Ào |:

Đây là hiệu ứng Doppler ngang

Ngày đăng: 01/09/2023, 13:29

HÌNH ẢNH LIÊN QUAN

Hình  nghiên  này  không  có  giá  trị  trong  việc  nghiên  cứu  sao  SS433.Và  nó  nói  lên  một  điều  là  sao  SS433  không  phải  là  sao  đôi  của  thiên  hà  chúng - Giải bài tập vật lý tương đối hẹp
nh nghiên này không có giá trị trong việc nghiên cứu sao SS433.Và nó nói lên một điều là sao SS433 không phải là sao đôi của thiên hà chúng (Trang 38)

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w