2010 emphasize that accruals models can be estimated at the firm level, which allows variation across firms in the determinants of normal accruals.. 2 The balance sheet method of accruals
Trang 1evidence
ESG UQÀM, School of Management, University of Quebec at Montreal, P.O Box 8888, Montréal, Québec, Canada H3C 3P8
a r t i c l e i n f o
Keywords:
Corporate governance
Earnings management
Environmental uncertainty
Information asymmetry
a b s t r a c t
© 2013 Published by Elsevier Inc
1 Introduction
Inthispaper,weinvestigatetheassociationbetweenearningsmanagementandinformationasymmetryconsidering environmentaluncertainty.Thetheoryofthefirm(e.g.Child,1972;Williamson,1975)recognizesthatenvironmental uncer-taintyplacessignificantconstraintsonfirms,affectingstrategyanddecision-making.Althoughfirmsareconstrainedbythe natureoftheirenvironment,managersdohaveopportunitiestorespondstrategicallytouncertainty(Ghosh&Olsen,2009) Oneoftheseopportunitiesisearningsmanagement.Theextentofopportunisticearningsmanagementislikelytobehigher wheninformationasymmetryishigh(Dye,1988;Trueman&Titman,1988).Inturn,earningsmanagementcouldincrease theuncertaintyforinvestorsaboutthedistributionofafirm’sfuturecashflows,whichwouldcreateinformationasymmetry betweeninformedandlessinformedinvestors(Bhattacharya,Desai,&Venkataraman,2012)
Twodimensionsgenerallycharacterizeenvironmentaluncertainty:complexityanddynamism(Child,1972;Thompson,
1967).AccordingtoThompson(1967)andTerreberry(1968),acomplexenvironmentisoneinwhichinteractiverelationships relevantfordecisionmakingrequireahighdegreeofabstractioninordertoproducemanageablemappings.Adynamic environmentisoneinwhichrelevantfactorsfordecisionmakingareinaconstantstateofchange
Priorresearchsuggeststhatcomplexityoftheenvironmentincreasesthedifficultyforinvestorstoassessearnings man-agement(Lim,Ding,&Thong,2008).Financialreportingisexpectedtobemorecomplexforfirmswithdiversifiedbusiness andgeographicaloperations.Hence,weexpectearningsmanagementtoincreasewiththelevelofdiversificationandtobe moredifficulttodetectbystockmarketparticipants
∗ Corresponding author Tel.: +1 514 987 3000; fax: +1 514 987 6629.
E-mail address: cormier.denis@uqam.ca (D Cormier).
1061-9518/$ – see front matter © 2013 Published by Elsevier Inc.
Trang 2&Lev,2000).Insuchanasymmetricalcontext,wecanarguethatearningsmanagementismorelikelytooccur(e.g.Francis, LaFond,Olsson,&Schipper,2005)andlesslikelytobedetectedbymarketparticipants.Dynamicfirmsarealsocharacterized
bysalesvolatility,whichaffectsmanagerialdecisions(e.g.Child,1972;Cyert&March,1963;Williamson,1975).Itisassumed thatitisinmanagers’intereststoreducethevariabilityofreportedearnings(Ghosh&Olsen,2009;Gul,Chen,&Tsui,2003) butinavolatileenvironment,earningsmanagementisexpectedtobemoredifficulttodetectbecauseofalackofstabilityin accountingfigures.Therefore,wecanexpectearningsmanagementoccurringinadynamicenvironmenttoaffectinformation asymmetrytoalesserextentthaninastableenvironment
TheCanadianinstitutionalenvironmentmayprovidemanagersuniqueearningsmanagementopportunities.Anotable differencedistinguishestheCanadianfromtheU.S.equitymarket.IntheU.S.,ownershipinpubliclytradedfirmsishighly dispersedwhileinCanada,ownershipishighlyconcentrated.Infirmswithconcentratedownership,thereisareal possi-bilitythatdominantshareholdersmaymistreatorexpropriateoutsideshareholdersbyearningsmanipulation.Therefore, differencesinearningsmanagementopportunitiesmayexistbetweenCanadaandtheU.S.However,bylistingtheirshares
intheU.S.,Canadianfirmsbondthemselvestobetterdisclosureandgovernancepractices(Stulz,1999).Weexpectearnings managementpracticestodifferbetweenCanadianfirmsandU.S.firmsaswellastheirimpactoninformationasymmetry.We considerthatCanadaprovidesauniquecontexttoassesstheincidenceofearningsmanagementoninformationasymmetry, especiallyinanuncertainenvironment
Ourmainfindingsarethefollowing.First,weobservethatenvironmentalcomplexityanddynamismleadtoearnings man-agement,especiallyforfirmsnotcross-listedonaU.S.stockmarket.Second,insuchcontexts,earningsmanagementaffects informationasymmetrytoalesserextent.Third,ourfindingssuggestthatinthepresenceofcomplexityanddynamism, discretionaryaccrualsaremorelikelytobedetectedbyinvestorsforfirmslistedonaU.S.stockexchange.Thisresultis consis-tentwiththeviewthattheU.S.stockmarketismoreliquidandtransparentthantheCanadianmarketinthewayinformation
iscollectedandanalyzed,andthusisinabetterpositiontodetectearningsmanagementinacontextofuncertainty.Finally, thequalityofcorporategovernanceisassociatedwithlessearningsmanagement.Overall,ourfindingssupporttheview thataccrualanomalyispartlydrivenbyinvestors’failuretocorrectlyassessfutureearningsimplicationsofaccruals(Gong,
Li,&Xie,2009)
Comparedwithpriorresearch,thepresentstudyinnovatesbyinvestigatinghowthelevelofcomplexityanddynamism affectsthestockmarket’sassessmentofearningsmanagement.Bycombiningananalysisofspecificenvironmentalincentives
toengageinearningsmanagementwithanassessmentoftheincidenceoninformationasymmetry,thisstudycontributes
totheunderstandingofearningsmanagementimplications.Resultsalsosuggesttheimportanceofcontrollingforthe endogenousnatureofearningsmanagement,namelycorporategovernancemechanisms
Theremainderofthepaperisorganizedasfollows.Section2presentsthetheoreticalbackgroundanddevelops hypothe-ses.Thestudy’smethodologyisdescribedinSection3.ResultsarepresentedinSection4.Finally,Section5providesa discussionofthepotentialimplicationoftheresults
2 Background and hypotheses
2.1 Stockmarketassessmentofearningsmanagement
Priorresearchshowsarelationshipbetweenearningsmanagementandinformationasymmetryinthemarketplace Measuringaccrualsmanagementasthestandarddeviationofresidualsfromregressionsrelatingcurrentaccrualstocash flows,Francis,LaFond,Olsson,andSchipper(2004)andFrancisetal.(2005)findthatearningsmanagementisassociated withhigherinformationasymmetry,leadingtohighercostsofdebtandequity.Theyalsoshowthatinvestorsputmore importance(inthedeterminationofthecostofcapital)onaccrualsthatreflectintrinsicfeaturesofthefirm’sbusiness model,relativetoaccrualsthatreflectacombinationofpurenoiseandopportunisticchoicesandmanagement’sattemptsto makeearningsmoreinformative.Inthesamevein,LiuandWysocki(2007)arguethatthedocumentedrelationshipbetween accrualmanagementandthecostofcapitalisdrivenprimarilybythevolatilityoffirms’operatingactivitiesthatarenot relatedtoaccountingchoicesandlesssubjecttomanagerialmanipulation
However,priorevidencealsosuggeststhatinvestors’abilitytoassessearningsmanagement maybeimperfect.The market’sinabilitytofullydetectearningsmanagementisassociatedwithanincreaseintheheterogeneityofmarketbeliefs (Ronen&Yaari,2008).Theaccrualanomalyischaracterizedbystockmarketsoverweightingtheaccrualpersistence.Pincus, Rajgopal,andVenkatachalam(2007)findthatstockpricestendtooverweighttheroleofaccrualspersistence,especially discretionaryaccruals.Theauthorsobservenegativeabnormalreturnsinyeart+1forfirmswithpositivediscretionary accrualsinyeart.ThisisparticularlythecaseforcountrieshavingcommonlawtraditionssuchasAustralia,Canada,theUK andtheU.S.SoaresandStark(2009)reachthesameconclusionforaBritishsample(1989–2004)sincetheyfindthataverage annualabnormalreturnsgenerallydeclineaspriorperiodaccrualsmovefromlowtohigh.Thisoutcomeisconsistentwith theaccrualsanomalysinceinvestorsoverweightthepersistenceofaccrualsandunderweightthepersistenceofcashflows
inpredictingthenextperiod’searnings.Anexplanationoftheaccrualanomalyisthat,asdocumentedbyLevandNissim (2006),investorsavoidextreme-accrualsfirmsbecauseoftheirattributessuchassmallsize,lowprofitability,andhigh risk.LevandNissimalsoobservethatthehighinformationandtransactioncostsassociatedwiththeimplementationofa
Trang 3profitableaccrualstrategyreduceprofitsforinvestorswhotradeonaccrualsinformation.Therefore,weexpectearnings managementtoincreaseinformationasymmetryinthestockmarket
2.2 Environmentaluncertaintyandstockmarketassessmentofearningsmanagement
Thevarioustermsusedtodepictenvironmentaluncertaintyfallgenerallyintotwocategories(Child,1972;Terreberry, 1968;Thompson,1967):complexityanddynamism(orinstability).Mintzberg(1979)describesthreedimensionsofthe environmentsimilartothoseproposedbyChild(1972)butaddsnewfeaturesforeach.Heintroducesthetermmarket diversificationtoreflectwhatThompson(1967)meansbyheterogeneityandChild(1972)bycomplexity.Mintzberg(1979)
reservesthetermcomplexityforthedegreeofsophisticatedknowledgenecessarytooperateinagivenenvironmentofa technicalorscientificnature
Environmentaldynamismreferstotherateofchangeandinstabilityoftheenvironment(Dess&Beard,1984).Dynamic environmentsarecharacterizedbychangesinvariousmarketelements,suchascustomerpreferences,technology,and competitorstructure.AccordingtoDessandBeard(1984),uncertaintyistheoutcomeofcomplexityanddynamism.Earnings managementinacontextofuncertaintyislikelytoreinforcetheaccrualanomalygiventhedifficultyforinvestorstodetect earningsmanagementinsuchacontext.Ifsuchisthecase,theimpactofearningsmanagementoninformationasymmetry willbelowerinanuncertainenvironmentthaninastableenvironment
Inthisstudy,weassessenvironmentaluncertaintybyreferringtocomplexityanddynamism.Weassertthatacomplex anddynamicenvironmentweakenstherelationshipbetweenearningsmanagementandinformationasymmetry
2.2.1 Complexity
Thereismixedevidenceconcerningtherelationshipbetweencomplexityandinformationasymmetry.Accountingis morecomplexforfirmswithdiversifiedbusinessandgeographicaloperations.Agrawal,Jaffe,andMandelker(1992)find thatacquisitionsthatarefocusdecreasing(negativefocus),suchasthosemotivatedbydiversificationorfinancialmotives likeasset-stripping,experiencesuperiorlong-termperformancethanacquisitionswhicharefocuspreservingorincreasing (positivefocus).Incontrast,Megginson,Morgan,andNail(2004)findevidenceofpositivefocusoutperformance,andhence
apositiverelationshipbetweencorporatefocusandlong-termacquisitionperformance.ErwinandPerry(2000)examine theeffectofforeignacquisitionsbyU.S.firmsonanalystforecasterrors.Forasampleoffocus-preservingforeignacquisitions andfocus-decreasingacquisitions,theyfindthatpost-mergeranalystforecasterrorsaresignificantlyhigherforU.S.firms thatchoosetoexpandinternationallyoutsidetheircorebusinesssegment,relativetothosethatundertakeglobalexpansion withintheircorebusiness.However,usingearningsforecasterrorsandearningsforecastdispersiontomeasureinformation asymmetry,Jiraporn,Miller,Yoon,andYoungSang(2008)showthatdiversifiedfirmsdonotsuffermoresevereinformation asymmetrycomparedwithnon-diversifiedfirms
Thomas(2002)reachesthesameconclusionasJirapornetal.(2008)examiningtherelationshipbetweencorporate diversificationandasymmetricinformationproxiesderivedfromanalystforecasterrorsandforecastdispersion,aswellas abnormalreturnsassociatedwithearningsannouncements.Thomas(2002)arguesthat,eveniftheerrorsoutsidersmake
inforecastingsegmentcashflowsarelargerthantheerrorstheymakeinforecastingfocusedfirmcashflows,iftheseerrors arenotperfectlypositivelycorrelated,theconsolidatedforecastmaybemoreaccuratethanaforecastforafocusedfirm Concerningtherelationshipbetweendiversificationandearningsmanagement,Limetal.(2008),basedonasampleof seasonedequityoffering,findthatcurrentdiscretionaryaccrualsarehigheramongdiversifiedfirmsthanfornon-diversified ones.Theirevidenceisconsistentwiththeviewthatearningsmanagementisrelatedtotheextentofafirm’sdiversification Hence,giventheincreaseinthedifficultyforinvestorstoassessearningsmanagementfordiversifiedfirms,weexpectthe positiverelationshipbetweenearningsmanagementandinformationasymmetrytobeweakenedforfirmswithdiversified operations,i.e.,businessoperationsandgeographicaloperations
H1. Acomplexenvironmentweakenstherelationshipbetweenearningsmanagementandinformationasymmetry
2.2.2 Dynamism
Dynamicfirms,especiallythosehighlyinvolvedinintangibleassets,attractmarketparticipantsandespeciallyfinancial analysts(Barth,Kasznik,&McNichols,2001).Thosefirmsofferagrowthpotentialandarethenmorescrutinizedbyinvestors AccordingtoMilliken(1987),afirm’stopmanagementismostlikelytoexperiencetheso-called“responseuncertainty” eitherinthecourseofchoosingfroma numberofpossiblestrategiesorinthecourseofformulatingaresponsetoan immediatethreatintheenvironment.InvestingintensivelyinR&Dmaybearesponsetosuchuncertainty.AboodyandLev (2000)arguethattherelativeuniquenessofR&Dinvestmentsmakesitdifficultforoutsiderstolearnabouttheproductivity andvalueofagivenfirm’sR&Dfromtheperformanceandproductsofotherfirmsintheindustry.Furthermore,while mostphysicalandfinancialassetsaretradedinorganizedmarkets,R&Disnot.NoassetpricesderivedirectlyfromR&D information.Thus,thelevelofR&Dcontributestoinformationasymmetry.Giventhescarcityofpublicinformationabout R&Dactivities,AboodyandLev(2000)hypothesizeanddocumentthatR&Dcontributestoinformationasymmetrybetween firmsandinvestors.Insuchacontext,wecanarguethatearningsmanagementismorelikelytooccur(e.g.Francisetal.,
2005)andlesslikelytobedetectedbymarketparticipants
Trang 4Milliken(1987)definestheso-called“effectuncertainty”asaninabilitytopredictwhatthenatureoftheimpactofafuture stateoftheenvironmentorenvironmentalchangewillbeontheorganization.Inacontextofvolatility,firmsarefacingthe effectuncertainty.Volatilityisapowerfulcontextualfactoraffectingmanagerialdecisionsfordynamicfirms(Child,1972; Cyert&March,1963;Williamson,1975).Priorresearchsuggeststhatmanagershaveincentivestoreducethevariabilityof reportedearnings(e.g.Guletal.,2003;Wang&Williams,1994).LeblebiciandSalancik(1981)findthatbankloanofficers searchformoreinformationwhenmakingloandecisionsinavolatileenvironment.Accountingstandardsprovidesadegree
offlexibility,givingopportunisticdiscretiontomanagersinreportingearningsinanattempttoreducethevariabilityin reportedearningsviaaccrualmanagement(e.g.Bannister&Newman,1996)
Salesorearningsvariabilityincreasesthelevelofdifficultyforinvestorstoassessearningsmanagement.Inthecontext
ofsalesorearningsvolatility,managershaveincentivestoreducethevariabilityofreportedearnings(Guletal.,2003) Forfirmswithunstablesalesorearnings,earningsmanagementmightbedifficulttodetectbymarketparticipants.Prior research(e.g.Ghosh&Olsen,2009)showsthatmanagersusediscretionaryaccrualstoreducethevariabilityinreported earningswhenfacinghighsalesvolatility.Inourview,inacontextofhighsalesvariation,itismoredifficultforinvestorsto assessearningsmanagement.Therefore,weexpectthepositiverelationshipbetweendiscretionaryaccrualsandinformation asymmetrytobeweakenedforfirmsinvolvedinresearchanddevelopmentactivitiesandthosefacingunstablesales Thisgivesrisetothesecondhypothesis:
H2. Adynamicenvironmentweakenstherelationshipbetweenearningsmanagementandinformationasymmetry
3 Method
3.1 Sample
Wefixedthesamplebasedonaninitialdatasetinwhichwecollecteddataaboutcorporategovernance.Ourstarting pointis189non-financialfirmsrepresentingtheTorontoStockExchangeS&P/TSXIndexidentifiedin2002.Mergersand acquisitions,bankruptciesanddelistingsreducedoursamplefrom189to155in2005.Foraninitialsampleof155firms, therearemissingdataforgovernancevariablesandsharepricevolatility(18firms).Thesamplecomprises137firmslisted
ontheTorontostockexchange(TSE)in2005(133firmsforthebid-askspreadestimationmodel).Theresulting137firms represent80%ofthemarketcapitalizationofnon-financialfirmslistedontheTSE
Governancevariablesarecollectedfromproxystatements.Sharepricevolatilityandbid-askspreadaremeasuredfor theyear2005whilefinancialandgovernancevariableswerecollectedbasedontheinformationavailableinStockGuide(a Canadiandatabase)inthespringof2005,i.e.2004financialstatements.Bid-askspreadiscollectedfromCanadianMarket ResearchCenterdatabase(CFRMTSX).Samplefirmsoperateinthefollowingindustries(one-digitSICcodes):materials; energy;consumerproducts&services;industrials;Informationtechnology
3.2 Empiricalmodel
Thisstudyattemptstoprovideanintegratedanalysisofearningsmanagementandinformationasymmetry.Wereferto thefollowingsimultaneousequations:
ABSDACCi,t=ˇ0+ˇ1SIZEi,t+ˇ2INDDIRi,t+ˇ3CEOCHAIRi,t+ˇ4BODSIZEi,t
+ˇ5BODSIZESQRi,t+ˇ6ACSIZEi,t+ˇ6ACSIZEi,t (1)
SPV/BASi,t=ˇ0+ˇ1SYSRISKi,t+ˇ2FFLOi,t+ˇ3ANFOLLi,t+ˇ4ABSDACCi,t+ˇ5ABSDACC∗USi,t
+ˇ6ABSDACC∗ENVUNCi,t+ˇ7ABSDACC∗ENVUNC∗USi,t+ˇ8ENVUNCi,t+ˇ9ENVUNC∗USi,t+ˇ10USi,t (2) whereABSDACCistheabsolutevalueofestimateddiscretionaryaccrualsscaledbylaggedtotalassets;SPVistheshareprice volatility;BASisthebid-askspread;SIZEisthenaturallogarithmoftotalassets;INDDIRisthepercentageofindependent directorsontheboard;CEOCHAIRistheindicatorvariabletakingthevalueof1iftheCEOalsoistheChairmanoftheboard,
0otherwise;BODSIZEisthenumberofdirectorsontheboard;BODSIZESQRisthesquareofthenumberofdirectorsonthe board;ACSIZEisthenumberofmembersontheauditcommittee;SYSRISKisthesystematicrisk(beta);FFLOisthepercentage
offreefloat;ANFOLListhenumberofanalystsfollowingafirm;ENVUNCistheenvironmentaluncertainty(SEGMENTS,RD, SCV);USistheU.S.listing
3.2.1 Estimationofearningsmanagement
AccordingtoSchipper’s(1989)definition,earningsmanagementis“apurposefulinterventionintheexternalfinancial reportingprocess,withtheintentofobtainingsomeprivategain(asopposedto,say,merelyfacilitatingtheneutraloperation
oftheprocess)”.ConsistentwithHanandWang(1998)andEricksonandWang(1999),earningsmanagementisestimated
byacross-sectionalregressionforthe2001to2003period(155firms× 3years=465firm-yearobservations).The estima-tionofnormalaccrualsiscross-sectionalbasedonindustryspecificobservations(5industriesfor3years).Industry-level
Trang 5estimationsremovethevariationinthenormalaccrualsthatiscommonacrossfirmsinthesameindustry(Burgstahler, Hail,&Leuz,2006;Dechow,Sloan,&Sweeney,1995;Dechow,Sloan,&Sweeney,1996;Francisetal.,2005;Leuz,Nanda,& Wysocki,2003).1Observationsvaryamongindustries:from43forindustrialsto174forconsumerproductsandservices
Weintroducediscretionaryaccrualsinabsolutevaluetocaptureearningsmanagement
HribarandCollins(2002)arguethatthedifferencebetweennetincomeandcashflowfromoperationsisthecorrect measureoftotalaccrualsandthattheuseofabalancesheetapproachmayleadtoasystematicbiasindiscretionaryaccruals estimation.Theyshowthatbalancesheetaccrualsestimatesarepredictablybiasedinstudieswherethepartitioningevent
iscorrelatedwitheithermergersoracquisitions,ordiscontinuedoperations.Theauthorsdemonstratethattestsofmarket mispricingofaccrualsareunderstatedduetoerroneousclassificationof“extreme”accrualsfirms.2 Whileafirm’stotal accrualsareeasilyaccessiblefromitsfinancialstatements,normalanddiscretionaryaccrualsarenotdirectlyobservable andmustbeinferredthroughanestimationmodel
Jones’s(1991)modelperformspoorlyforfirmswith“extreme”performance(Dechowetal.,1995;Kothari,Leone,& Wasley,2005).Sincewefocusonenvironmentaluncertaintythatislikelytoinvolvefirmswithextremeperformance(e.g highsalesvolatility),wewillrelyonDechowandDichev(2002)(DD)whomodelaccrualsasafunctionofcurrent,past, andfuturecashflows.Accrualsanticipatefuturecashcollections/paymentsandreversewhencashpreviouslyrecognized
inaccrualsiscollected/paid.DDfocusonshort-termworkingcapitalaccruals.However,accordingtoMcNichols(2002),DD modeldoesnotcontrolforfundamentalfactorsinfluencingaccruals.WebaseaccrualsestimationonDDmodelasmodified
byMcNicholscombiningDDandJonesmodels.BasedonJonesmodel,fixedassetsandyear-to-yearchangeinsales(a firm’sunderlyingperformance)areaddedtotheregressionestimations.Wefocusonworkingcapitalaccruals,whichare accrualsnetofdepreciation,amortizationandunusualitems.Unusualitems(field70inStockGuidedatabase)includesuch elementsasnon-recurringgainsandlosses,restructuringprovisions,write-offs,andothernon-operatinggainsorlosses Thisisconsistentwiththeviewthatshort-termaccrualsarehardertodetectbymarketparticipantsthanarelong-term accruals(e.g.impairmentofassets)
Foragivenindustry,workingcapitalaccrualsaremodeledinthefollowingmanner:
WCaccrualsit =˛1+˛2Operatingcashflowit−1+˛3Operatingcashflowit+˛4Operatingcashflowit+1
+˛4Changeinsalesit+˛4Fixedassetsit+εit (3)
Thecoefficientsfromtheaboveregressions(variablesscaledbylaggedtotalassets)arethenusedtocomputenormal accruals.Meanindustrycoefficientsareasfollows(averageadjustedR-squareof51.3%)3:
−0.065Operatingcashflowit−1−0.568Operatingcashflowit+0.271Operatingcashflowit+1
+0.092Changeinsalesit−0.029Fixedassetsit
3.2.2 Determinantsofearningsmanagement
Firmsize(SIZE).Largefirmstakeintoaccountthereputationcostswhenengaginginearningsmanagement.Thesefirms mayhaveabetterknowledgeofthemarketenvironment,bettercontrolovertheiroperationsandbetterunderstandingof theirbusinessesrelativetosmallfirms(Kimetal.,2003).Largefirmsmayhavemoresophisticatedinternalcontrolsystems andhave morequalifiedinternalauditorsascomparedtosmallfirms.Moreover,priorresearchdocumentsa negative associationbetweenfirmsizeandextremeaccruals(Lev&Nissim,2006).Hence,weexpectfirmsizetobenegativelyrelated
toearningsmanagement
Corporategovernance.Weexpectthequalityofcorporategovernancetobenegativelyrelatedtoearningsmanagement Corporategovernancemitigatesthedegreeofearningsmanagementandimprovesthequalityoffinancialreporting(Beasley, Carcello,Hermanson,&Lapides,2000;Warfield,Wild,&Wild,1995).Governancevariablesareintroducedtocapturehow corporategovernanceactingasamonitoringfactoraffectsearningsmanagement.Theboard’smonitoringinfluences man-agerialdiscretionandinducesfirmstomoretransparencyinorganizationalperformancemeasurementandreporting(Eng
&Mak,2003;Fama,1980).Fivevariablesareusedtocapturetheboardeffectiveness:Independentdirectors(INDDIR);board
1 Dechow et al (2010) emphasize that accruals models can be estimated at the firm level, which allows variation across firms in the determinants
of normal accruals However, firm-level estimation assumes time-invariant parameter estimates and imposes sample survivorship biases Therefore, the models are most frequently estimated at the industry level This specification assumes constant coefficient estimates within the industry Hence, the authors argue that some firms may have large residuals because of variation induced by industry membership rather than because of earnings management.
2 The balance sheet method of accruals may create bias in the estimation of normal accruals when the firm is involved in mergers and acquisitions Hence, the change in working capital accounts can be affected by the operation of mergers and acquisitions without any earnings management intention The Canadian stock market is very active in mergers and acquisitions.
3 Coefficients do not vary substantially when we estimate accruals based on a cross-sectional regression for the whole sample (Adjusted R-square; 51.7%).
WC accrualsit = −0.125 Operating cash flowit−1
(0.000)
− 0.465 Operating cash flowit
(0.000)
+ 0.260 Operating cash flowit+1
(0.000)
+ 0.072 Change in salesit (0.000)
− 0.014 Fixed assetsit (0.257)
+ εit
Trang 6chairduality(CEOCHAIR);boardsize(BODSIZE);boardsizesquared(BODSIZESQR);andauditcommitteesize(ACSIZE).4Ghosh, Marra,andDoocheol(2010)findthatearningsmanagementdoesnotvarywithboardcompositionandstructure,orwith theauditcommitteecomposition,expertise,andownership.However,theyfindthatfirmswithsmallerboardsandaudit committeeshavelargerdiscretionaryaccruals.Somepriorstudiesassumetherelationshipbetweenboardsizeandboard performancetobecurvilinear(e.g.Eisenberg,Sundgren,&Wells,1998;Golden&Zajac,2001;Vafeas,1999;Yermack,1996)
Tocontrolforthepossiblecurvilinearityintherelationshipbetweenboardsizeandearningsmanagement,weincludethe variableboardsizesquaredasaninstrument.WetreatABSDACCasanendogenousvariableandgovernancevariablesas instruments.5
3.2.3 Determinantsofinformationasymmetry
Severalproxiesexisttocaptureinformationasymmetry.Welker(1995),Healy,Hutton,andPalepu(1999),Leuzand Verrecchia(2000),andFrancisetal.(2005)showthattheextentofinformationasymmetry– proxiedbybid-askspread, sharepricevolatilityorstockliquidity(tradingvolume)–isnegativelyassociatedwithdisclosurequality.Inthecurrent study,weusesharepricevolatilityandbid-askspreadtoassessinformationasymmetry.Sharepricevolatilityismeasured
asthestandarddeviationofpercentagechangesindailystockpricesfortheyear2005
Priorstudiessuggestthatvariousfirmattributesarerelatedtoinformationasymmetry(Leuz&Verrecchia,2000).Based
onthatliterature,weuseanalystfollowing,systematicrisk,andfreefloataskeydeterminantsofsharepricevolatilityand bid-askspread.Thesefourvariablesareintroducedascontrolvariablesforinformationasymmetry
Systematicrisk(SYSRISK).Apositiverelationshipisexpectedbetweensystematicriskandinformationasymmetry.The higherafirm’ssystematicrisk(beta),themoredifficultitisforinvestorstoaccuratelyassessafirm’svalueandthemore likelytheyareexpectedtoincurinformationcoststoassessitsriskdrivers.Priorresearchdocumentsanassociationbetween systematicriskandthecostofcapital(e.g.Botosan&Plumlee,2005;Botosan,1997;Hail&Leuz,2006;Leuz&Verrecchia, 2000;Mikhail,Walther,&Willis,2004).BetaisextractedfromStockGuidedatabaseandiscomputedbasedonpercentage stockpricechangeweekoverweekforaperiodof260weeksendingattheendof2005fiscalyear
Freefloat(FFLO).Weexpectanegativeassociationbetweenfreefloatandinformationasymmetry.Controlblocksusually havegreateraccesstoprivateinformationthanadiffuseownership(Leuz&Verrecchia,2000).Freefloatisusedasan inverseproxyforinsidercontrol.Thevariableismeasuredasoneminusthepercentageofvotingsharesthatarecloselyheld (percentageofvotesattachedtothesharesofafirmheldbydirectors,andindividualsorcompaniesthatownmorethan 10%ofsharesoutstanding)
Analystfollowing(ANFOLL).Weexpectanegativerelationshipbetweenthenumberoffinancialanalyststhatfollowafirm
onanannualbasisandinformationasymmetry.Afirm’sanalystfollowingmayproxyfortheextentofitscommunication withfinancialanalysts(Leuz,2003).Priorresearchsuggeststhatanalystcoveragereducesasymmetryinthestockmarket (Alford&Berger,1999)
Environmentaluncertainty(ENVUNC).Environmentaluncertaintyreferstofirmcomplexityanddynamismandiscaptured
bythenumberofbusinessandgeographicalsegments(SEGMENTS),R&Dintensity(RD),andsalescoefficientofvariation (SCV).Weestimatethreeseparateregressionsadding inturninteractiontermsABSDACC*SEGMENTS,ABSDACC*RD, and ABSDACC*SCVtotheregressions.Wealsomeasureoveralluncertaintybythecombinationofthethreevariables
WeexpectcoefficientsoninteractiontermsABSDACC*SEGMENTS,ABSDACC*RD,andABSDACC*SCVtobenegatively associ-atedwithinformationasymmetry.ThevariableSEGMENTSproxiesforcomplexityandismeasuredasoneifthetotalnumber
ofsegmentsisgreaterthanthesamplemedian.DynamismiscapturedbythevariablesRDandSCV.RDisabinaryvariable measuredasR&Dscaledbysalesgreaterthanthesamplemedian.SCVisabinaryvariablethattakesthevalueofoneifthe salescoefficientofvariationisgreaterthanthesamplemedian.SCViscalculatedforeachfirmbasedonannualobservations from2000to2004.Priorresearch(e.g.Ghosh&Olsen,2009)showsthatmanagersusediscretionaryaccrualstoreduce variabilityinreportedearningsforfirmswithhighsalesvolatility.Inacontextofhighsalesvolatility,itismoredifficultfor investorstoassessearningsmanagement
U.S.listing(US).Managerialincentivesforearningsmanagementareaffectedbytheintensitywithwhichafirmis mon-itoredbyinvestorsortheiragentssuchassecuritiesregulatorsandfinancialanalysts(Healyetal.,1999).TheSEChas traditionallybeendiligentinitspursuitoffirmswithinappropriatedisclosureandreportingpractices(e.g.,Feroz,Park,
&Pastena,1991).Moreover,marketefficiencyisenhancedifthenumberofanalystsfollowingthefirmincreases(Lang& Lundholm,1996).Thenumbersinvolved,aswellasthegeographicaldispersionofanalystsintheUnitedStates,ensurethat firmsfaceacriticalaudienceandhighscrutinywhenreportingtoinvestors.Inthisvein,basedonasampleofCanadianoil andgasfirms,CormierandMagnan(2002)showthatmanagerialincentivesforearningsmanagement,aswellasinvestors’ appreciationofvariousperformancemetrics,canbeaffectedbythemagnitudeofexternalmonitoringthataccompaniesa U.S.stockexchangelisting
4 In Canada, audit committees must comprise at least three independent members We consider that adding a few more members could enhance the monitoring role of the audit committee.
5 Prior studies document that the presence of an independent and competent board of directors should limit managers’ ability to manage earnings ( Klein, 2002; Peasnell et al., 2003 ) More recently, Chang and Sun (2009) show that the passage of the Sarbanes-Oxley Act (SOX) improves the effectiveness of an
Trang 7Table 1
Descriptive statistics.
N = 137 Minimum Maximum Mean Standard deviation Mean Non-U.S listing (N = 69) Mean U.S listing (N = 68)
NACC is estimated normal accruals scaled by lagged total assets; DACC is estimated discretionary accruals scaled by lagged total assets; ABSDACC is the absolute value of estimated discretionary accruals scaled by lagged total assets; BAS is the bid-ask spread; SPV is share price volatility; ANFOLL is the number
of analysts following a firm; SYSRISK is Systematic risk (beta); FFLO is the percentage free float; RD is the amount of R&D in % of sales; SEGMENTS is the number of business and geographical segments; SCV is the sales coefficient of variation calculated for each firm based on annual observations from 2000
to 2004; INDDIR is the percentage of independent directors on the board; CEOCHAIR is an indicator variable taking on the value of 1 if the CEO also is the Chairman of the board; 0 otherwise; BODSIZE is the number of directors on the board; ACSIZE is the number of members on the audit committee; US is an indicator variable for U.S listing.
ABSDACC*ENVUNC*UStoassesstheeffectofU.S.cross-listingoninformationasymmetryandexpectU.S.marketstobeina betterpositiontodetectearningsmanagementincontextsofcomplexityanddynamism.Weexpectanegativerelationship betweentheinteractiontermABSDACC*ENVUNC*USandinformationasymmetry
4 Results
4.1 Descriptivestatistics
Table1providessomedescriptivestatistics.Samplefirmsarequitelarge(totalassetsaveraging$5billion).About78%
ofsamplefirmsarefreefloat.Firmsarefollowedonaveragebysevenfinancialanalysts.Discretionaryaccrualsareon average1.3%oftotalassetswhiletheabsolutevalueoftotaldiscretionaryaccrualsaverages5.2%oftotalassets.6Onaverage, firmsinvestinR&D inaproportionof4.0%oftotalassets,operateinclosetofivebusinessdivisionsandgeographical segments,andexhibithighsalesvolatility(meancoefficientofsalesvariationof29%).Moreover,36%ofsamplefirmshave independentdirectorswhile20%arepresentingCEOandboardchairduality.Halfofsamplefirmsarecross-listedonaU.S stockexchange.Wealsoobservemoreenvironmentaluncertainty(segments,R&Dintensity,andsalesvolatility,)for cross-listedfirms.Finally,thelevelofdiscretionaryaccruals(inabsolutevalue)ismuchlessimportantforcross-listedfirms(0.048 versus0.056)comparedwithnon-cross-listedfirms.Therearenosignificantdifferencesingovernancevariablesamong cross-listedandnon-cross-listedfirms
InTable2,wepresentdiscretionaryaccrualsinabsolutevalue(ABSDACC)for highandlowlevelsofenvironmental uncertainty,namely,salescoefficientofvariation,numberofsegments,andresearchanddevelopmentintensity.Results confirmourexpectations.Wealsopresentdifferencesfornon-U.S.versusU.S.listing.WeobservemoreABSDACCfornon-U.S listingforfirmsthatarefacinghighuncertainty.U.S.listingfirmsdonotshowsignificantdifferencesinthelevelofABSDACC betweenhighandlowuncertainty
Table3presentscorrelations.Consistentwithourexpectation,ABSDACCispositivelyassociatedwithsharepricevolatility (SPV)(0.24).WeobserveapositiveassociationbetweenSPVandR&Dintensity(RD)(0.17),whichisinlinewithpriorevidence (e.g.Aboody&Lev,2000).WealsoobserveanassociationbetweenABSDACCandboardsize(BODSIZE)(−0.12)andaudit committeesize(ACSIZE)(−0.17).ThisresultshowstheimportancetotreatABSDACCendogenously.Moreover,weobservea positiverelationshipbetweenABSDACCandsalesvolatility(SCV)(0.22).Finally,U.S.listing(US)isassociatedwithsystematic
6 We split the sample based on the median of a measure of an overall uncertainty (combining SEGMENTS, RD and SCV: 1 if two or three uncertainty measures are larger than the sample median, 0 otherwise) Results (not tabulated) show that normal accruals are equals among the two groups (2.9%
Trang 8Table 2
Descriptive statistics Mean discretionary accruals in absolute value based on dynamism, diversity and volatility.
p value
SEGMENTS is the number of business and geographical segments; RD is the amount of R&D in % of sales; SCV is the sales coefficient of variation calculated for each firm based on annual observations from 2000 to 2004.
Table 3
Correlations.
1 SPV * 0.48 * 0.24 * 0.26 0.13 * −0.44 * −0.14 0.04 0.05 * −0.38 * −0.33 * 0.17 −0.04 * 0.13 0.02
3 ABSDACC 1 * 0.13 0.06 * −0.26 * −0.18 0.08 −0.05 * −0.12 * −0.17 * 0.10 −0.03 * 0.22 −0.08
a SPV is share price volatility; BAS is the bid-ask spread; ABSDACC is the absolute value of estimated discretionary accruals scaled by lagged total assets; SYSRISK is Systematic risk (beta); FFLO is the percentage of free float; SIZE is the natural logarithm of total assets; ANFOLL is the number of analysts following
a firm; INDDIR is the percentage of independent directors on the board; CEOCHAIR is an indicator variable taking on the value of 1 if the CEO also is the Chairman of the board; 0 otherwise; BODSIZE is the number of directors on the board; ACSIZE is the number of members on the audit committee; RD is the amount of R&D in % of sales; SEGMENTS is the number of business and geographical segments; SCV is the sales coefficient of variation calculated for each firm based on annual observations from 2000 to 2004; US is an indicator variable for U.S listing.
* Significant at 0.10.
risk(SYSRISK)(0.29),freefloat(FFLO)(0.17),firmsize(SIZE)(0.14),analystfollowing(ANFOLL)(0.14),RD(0.20)andcomplexity (SEGMENTS)(0.16).Bid-askspread(BAS)ispositivelyassociatedwithABSDACC(0.28)andnegativelyassociatedwithSIZE (−0.31),ANFOLL(−0.19),andBODSIZE(−0.14)
4.2 Multivariateanalyses
Sincewepositthatcorporategovernanceaffectsearningsmanagementandinformationasymmetrysimultaneously,
we firstdetermine whetheran interactionexists betweenthese variables using Hausman test The Studentt-test of thecoefficientforthevariableresidualsconstitutestheHausmantest.Usingthisprocedure,fortheoveralluncertainty regression,we rejectthenull hypothesisof noendogeneity withrespecttoSPV andABSDACC (t-test=−4.57;p<0.00) andwithrespecttoBASandABSDACC(t-test=−3.65;p<0.00).Therefore,wetreatABSDACCasanendogenousvariable
Inlightofthisdiagnostic,werelyonathree-stageestimationprocedureforasystemofsimultaneousequations.3SLS (whichcombines2SLSandSeeminglyUnrelatedLeastSquare–SURE)mayimprovetheefficiencyofparameterestimates whenthere iscontemporaneous correlationoferrors acrossequations.Moreover,thegreatertheintra-equation mul-ticollinearity,themorelikely 3SLSis tohave aconsiderablegain inefficiencyfortheentiresystemofSURE (Binkley,
1982) In practice, thecontemporaneous correlation matrix is estimatedusing OLS residuals For overall uncertainty regressions,weobserveasignificantcorrelationoferrorsacrossequations(−0.14betweenABSDACCandSPVequations and −0.10between ABSDACC and BASequations) Concerningintra-equation multicollinearity, we observethat some interactionterms arehighly correlated ABSDACCis correlated at 0.86with ABSDACC*SCVand 0.87 withABSDACC*RD Sincemulticollinearitycouldbeanissue,SUREislikelytoimprovetheefficiencyoftheentiresystem(Binkley,1982) STATAsoftwareisbeingused.Finally,weexcludefromregressionsobservationswithstandardizedresidualsexceeding two
Trang 9Table 4
3SLS estimation of the relationship between discretionary accruals and share price volatility in interaction with environmental uncertainty.
Environmental uncertainty Complexity segments Dynamism R&D Dynamism sales volatility Overall uncertainty
ABSDACC regression
SPV regression
Coefficient difference ABSDACC and
ABSDACC*ENVUNC
Coefficient difference ABSDACC and
ABSDACC*US
Coefficient difference
ABSDACC*ENVUNC and
ABSDACC*ENVUNC*US
ABSDACC is the absolute value of estimated discretionary accruals scaled by lagged total assets; SPV is share price volatility; SIZE is the natural logarithm
of total assets; INDDIR is the percentage of independent directors on the board; CEOCHAIR is an indicator variable taking on the value of 1 if the CEO also
is the Chairman of the board, 0 otherwise; BODSIZE is the number of directors on the board; ACSIZE is the number of members on the audit committee; SYSRISK is the systematic risk (beta); FFLO is the percentage of free float; ANFOLL is the number of analysts following a firm; ENVUNC is the environmental uncertainty variable; US is an indicator variable for U.S listing.
* p < 0.10.
** p < 0.05.
*** p < 0.01.
One-tailed if directional prediction, two-tailed otherwise.
Endogenous variables: ABSDACC, SPV.
InTable4,wepresentresultsofthe3SLSregressiononthedeterminantsofearningsmanagement(ABSDACC)and informa-tionasymmetry(SPV,BAS).Concerningtheimpactofcorporategovernanceonearningsmanagement,resultsfirstshowthat thenumberofmembersoftheauditcommittee(ACSIZE)isnegativelyrelatedtoABSDACCinallfourregressions.Coefficients
onthevariableBODSIZESQRarepositiveandsignificant,whichisconsistentwithanon-linearrelationshipbetweenboard sizeandearningsmanagement.Afteracertainbreakpoint,thesizeoftheboardisassociatedwithmoreearnings manage-ment.OurresultsaresomewhatconsistentwithGhoshetal.(2010)whofindthatearningsmanagementvarieswithboard sizeandauditcommitteesize.Finally,consistentwithpriorresearch,firmsize(SIZE)isnegativelyrelatedtoABSDACC Concerningthedeterminantsofsharepricevolatility(SPV),resultsareconsistentwithourhypotheses.Asexpected, systematicrisk(SYSRISK)ispositivelyrelatedtoSPV.Coefficientsonthemaineffectforenvironmentaluncertainty,i.e SEGMENTS,RD,SCVandoveralluncertaintyaresignificantandpositivelyrelatedtoSPV.ConcerningtheeffectofU.S.listing, coefficientsontheinteractiontermABSDACC*USarenegativeandsignificantinallfourregressions,whichsuggeststhatin thepresenceoflowuncertainty,earningsmanagementcreateslessasymmetryforcross-listedfirms.Forallregressions, TheStudentt-testsshowthatthesumofcoefficientsonABSDACCandABSDACC*USisstatisticallydifferentfromzero.Inthe presenceoflowenvironmentaluncertainty,thereisstillasymmetrycreatedbyearningsmanagementforU.S.listedfirms Thelowlevelofearningsmanagementunderlowuncertaintyforcross-listedfirmscouldalsoexplainitssmallimpacton informationasymmetry(seeTable2)
Complexity.ConsistentwithH1,therelationshipbetweenABSDACCandSPVissmallerforfirmswithoperationsand geographicaldiversificationsincethecoefficientontheinteractiontermABSDACC*SEGMENTSisnegativeandsignificant (−37.937;p<0.05)whilethecoefficientonABSDACCispositiveandsignificant(44.001;p<0.01).TheStudentt-testfor
Trang 10Table 5
3SLS estimation of the relationship between discretionary accruals and bid-ask spread in interaction with environmental uncertainty.
Environmental uncertainty Complexity segments Dynamism R&D Dynamism sales volatility Overall uncertainty
ABSDACC regression
BAS regression
Coefficient difference ABSDACC and
ABSDACC*ENVUNC
52.43 (0.000) 29.40 (0.000) 66.41 (0.000) 11.64 (0.000) Coefficient difference ABSDACC and
ABSDACC*US
Coefficient difference
ABSDACC*ENVUNC and
ABSDACC*ENVUNC*US
ABSDACC is the absolute value of estimated discretionary accruals scaled by lagged total assets; BAS is the bid-ask spread; SIZE is the natural logarithm of total assets; INDDIR is the percentage of independent directors on the board; CEOCHAIR is an indicator variable taking on the value of 1 if the CEO also
is the Chairman of the board, 0 otherwise; BODSIZE is the number of directors on the board; ACSIZE is the number of members on the audit committee; SYSRISK is the systematic risk (beta); FFLO is the percentage of free float; ANFOLL is the number of analysts following a firm; ENVUNC is the environmental uncertainty variable; US is an indicator variable for U.S listing.
* p < 0.10.
** p < 0.05.
*** p < 0.01.
One-tailed if directional prediction, two-tailed otherwise.
Endogenous variables: ABSDACC, BAS.
coefficientdifferenceonABSDACCandABSDACC*SEGMENTSis statisticallydifferentfromzero(t=37.78;p<0.000).This resultsuggeststhatuncertaintydoesnoteliminatetheeffectofearningsmanagementonsharepricevolatility
ThecoefficientontheinteractiontermABSDACC*SEGMENTS*USispositiveandsignificant(33.451;p<0.05).TheStudent t-testshowsthatthesumofcoefficientsonABSDACC*SEGMENTSandABSDACC*SEGMENTS*USisstatisticallyclosetozero (t=2.22;p<0.136).ForU.S.listedfirms,theimpactofearningsmanagementonasymmetrywouldnotdifferinthepresence
orabsenceofcomplexity.Asasensibilityanalysis,weusethelogarithmofSEGMENTSinsteadofabinaryvariable.Essentially, results(nottabulated)remainsimilartothosepresentedinTable4.Ourfindingsareconsistentwiththeargumentthatthe U.S.stockmarketismoreliquidandtransparentthantheCanadianmarketinthewayinformationiscollectedandanalyzed, andthus,isinabetterpositiontodetectearningsmanagementinacontextofcomplexity
Dynamism.ConsistentwithH2,therelationshipbetweenABSDACCandSPVissmallerforfirmsinvolvedinR&Dactivities sincethecoefficientontheinteractiontermABSDACC*RDisnegativeandsignificant(−13.774;p<0.01).TheStudentt-test forcoefficientdifferenceonABSDACCandABSDACC*RDisstatisticallydifferentfromzero(t=24.21;p<0.000).Thisresult suggeststhatuncertaintydoesnoteliminatetheeffectofearningsmanagementonsharepricevolatility.Thecoefficient
ontheinteractiontermABSDACC*RD*USispositiveandsignificant(13.590;p<0.01).TheStudentt-testshowsthatthesum
ofcoefficientsonABSDACC*RDandABSDACC*RD*USisstatisticallyclosetozero(t=0.00;p<0.964).ForU.S.listedfirms,the impactofearningsmanagementonasymmetrywouldnotdifferinthepresenceorabsenceofdynamismasexpressedby R&Dintensity
AlsoconsistentwithH2,therelationshipbetweenABSDACCandSPVissmallerforfirmswithhighsalesvolatilitysince thecoefficientontheinteractiontermABSDACC*SCVisnegativeandsignificant(−46.773;p<0.05).TheStudentt-testfor