Dữ liệu cổ từ có sẵn từ thành đá của tuổi Creta từ Việt Nam, Đông Dương và Nam Trung Quốc được biên soạn và xem xét trong bối cảnh kiến tạo tầm quan trọng của họ trong một hệ quy chiếu chung đối với paleopoles đồng niên ÁÂu với. Yếu tố quan trọng đóng một vai trò quan trọng trong việc xác định độ tin cậy của kết quả cổ từ để sử dụng trong các nghiên cứu kiến tạo đã được đưa vào xem xét, bao gồm các trường hợp không có bằng chứng về remagnetization, mà là một tính năng phổ biến đối với nhiều loại đá trong khu vực này. Nhìn chung, các dữ liệu cổ từ kỷ Phấn trắng từ khối Nam Trung Hoa cho thấy rằng vị trí địa lý hiện tại của khối Nam Trung Hoa đã tương đối ổn định đối với Âu Á với từ giữa kỷ Phấn Trắng và các paleomagnetically phát hiện chuyển động của một khối thạch quyển mạch lạc phải căn cứ vào các dữ liệu thu được từ đại diện các địa phương cụ thể khác nhau trên toàn khối để tách nhiều địa phương, biến dạng quy mô nhỏ hơn từ đúng chuyển động quy mô thạch quyển (dịch và hoặc xoay) của một khối kiến tạo. Phấn trắng dữ liệu cổ từ đại học đầu từ Đông DươngThiện Thái Khối tiết lộ các mẫu phức tạp của nội tấm biến dạng để đáp ứng với các va chạm Ấn ĐộEurasia. Paleomagnetically phát hiện chuyển động từ lợi nhuận của các khối kiến tạo để được giải thích chủ yếu là phản ánh chuyển của các khối lớp vỏ phía trên do gấp và đứt gãy quy trình. Cứng nhắc, luân chuyển khối thạch quyển quy mô không nhất thiết phải được hỗ trợ bởi các dữ liệu cổ từ. Kết quả cổ từ từ các khu vực phía đông và phía nam của hệ thống đứt gãy Sông Hồng cho rằng hệ thống lỗi transcurrent lớn này đã có một lịch sử trượt phức tạp thông qua nhiều của Kainozoi và nó không phân ranh giới hoàn toàn không đáng kể và xoay xoay các bộ phận của vỏ trái đất trong lĩnh vực này. Tuy nhiên, hầu hết các kết quả cổ từ từ các khu vực phía đông và phía nam của hệ thống đứt gãy Sông Hồng ở vĩ độ của tỉnh Vân Nam là phù hợp với một rất khiêm tốn (khoảng 800 km + ) phần phía nam, nhưng paleomagnetically phân giải của dịch vĩ độ. Theo đó, do khó khăn trong việc tách thạch quyển quy mô chuyển động tấm thực tế từ những người tương đối mỏng, khối vỏ trên, chúng tôi chủ trương hết sức thận trọng trong việc giải thích dữ liệu cổ từ từ các khu vực như Đông Dương, nơi khối tương tác và biến dạng mạnh mẽ được biết là đã xảy ra. Thượng Chí Cung
Trang 1Journal of Geodynamics xxx (2013) xxx– xxx
jo u r n al ho me p a g e :h t t p : / / w w w e l s e v i e r c o m / l o c a t e / j o g
Cung Thuo.ng Chía,∗, John W Geissmanb,1
a Institute of Geological Sciences, Vietnam Academy of Science & Technology 84 Chua Lang Street, Dong Da Dist., Hanoi, Viet Nam
b Department of Earth and Planetary Sciences, MSC 03 2040, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
a r t i c l e i n f o
Article history:
Received 22 July 2010
Received in revised form
19 November 2011
Accepted 22 November 2011
Available online xxx
Keywords:
Paleomagnetism
Tectonics
Cretaceous
Vietnam
Indochina
South China
Extrusion
a b s t r a c t
© 2011 Elsevier Ltd All rights reserved
ThetectonichistoryoftheSoutheastAsiaregionhasattracted
theattentionofnumerousgeoscientistsforoveracentury.Active
tectonic-geodynamic processes have affected the region in a
∗ Corresponding author Tel.: +84 0913 222 102; fax: +84 4 37754797.
E-mail addresses: chicung@gmail.com (T.C Cung), geissman@utdallas.edu
(J.W Geissman).
1 Now at: Department of Geosciences, The University of Texas at Dallas, ROC 21,
800 West Campbell Road, Richardson, TX 75080-3021, United States.
Tel: +1 972 883 2454; fax: +1 972 883 2537.
prolonged and complicated fashion These include the subduc-tionoftheIndo-AustralianplateundertheEurasiaplatealongthe Indonesiaarc;theIndia–Eurasiacollisionanddifferentintra-plate deformationprocessesassociatedwiththeformationandgrowth
oftheTibetanPlateau.TheSoutheastAsianregionisconsidereda naturallaboratoryforactivetectonicandgeodynamicprocesses, andthuscanbeusedasananalogforstudyingmoreancient tec-tonicprocesses.Therearetwogeneralschoolsofthoughtregarding the effects of the collision between India and Eurasia on the subsequenttectonichistoryofeasternandsoutheastAsia Propo-nentsofextrusiontectonicssuggestthatconvergencebetweenthe Indian subcontinent andtheEurasian platewasmainly accom-modated byeast–southeastdirected translation and rotationof 0264-3707/$ – see front matter © 2011 Elsevier Ltd All rights reserved.
doi: 10.1016/j.jog.2011.11.008
Trang 22 T.C Cung, J.W Geissman / Journal of Geodynamicsxxx (2013) xxx– xxx
Fig 1. Generalized tectonic framework map of Southeast Asia, modified from Leloup et al (2001) and Takemoto et al (2005) Arrows adjacent to several major structures show overall sense of shear prior to ∼16 Ma along these structures.
large-scale,discretecontinentallithosphericblockssuchas
‘Sun-daland’(i.e.Indochina,Shan-Thai,thesouthwestEastVietnamSea,
andsouthwestBorneo),SouthChina,andTibetalongmajor
left-lateralstrike-slipfaults(Tapponnieretal.,1982,1986;Peltzerand
Tapponnier,1988;ReplumazandTapponnier,2003)(Fig.1).In
con-trast,otherworkersarguethatcrustalshorteningandthickeningin
theHimalayaandTibetistheprincipalmechanismfor
accommo-datingthiscollision(Deweyetal.,1989;EnglandandHouseman,
1989;Englandand Molnar,1990).Onemajorconsequence
pre-dictedbybothmodels,however,isalarge-magnitudeclockwise
rotationofSundaland,whichbehavedeitherasarigidlithospheric
block(abasictenetoftheextrusionmodel)orasaseriesof
upper-crustalblocksthatweretranslatedsoutheastwardalonglaterally
continuous,north–south–trendingdextralshearzonesandrotated
inaclockwisesense(asincrustalshorteningmodels)
Overthepastfewdecades,paleomagneticresultsfromrocksof
differentagesandorigins fromtheSoutheastAsianregionhave
increased both in quantity and quality, and the data obtained
contribute to elucidating the tectonic history of this region
over time, by providing increasingly accurate paleogeographic
reconstructionsoflithosphere-scaleandsmallerblocksthatwere
weldedtogetherasmicrocontinentstoformtheEurasian
conti-nent(Fig.2).However,theinterpretationofpaleomagneticresults
from an actively deforming region such as Southeast Asia is
notstraightforward,becauseearlyacquired,essentiallyprimary
magnetizationsmaybemodifiedbysubsequenttectoniceffects,
involving enhanced fluid migration, increased burial and thus
enhancedtemperatures,penetrativedeformation,aswellasother
processes(Lowrieetal.,1986;McCabeandElmore,1989;Fuller
etal.,1991;GillettandGeissman,1993;Pareset al.,1999;Van
derVooandTorsvik,2011).Paleomagneticallydetectedrotations,
as documentedby discrepancies or discordances in declination betweenobservedandexpected(or“reference”)declinationsmay sometimesreflectspatiallylocalizedcomponentsofdeformation relatedtoshearzones(Ronetal.,1984;JacksonandMolnar,1990), differentialshorteningwithinthrustsheets(StamatakosandHirt, 1994;Roperchetal.,2000;Sussmanetal.,2004;Pueyoetal.,2004),
orarcrelateddeformation(MacDonald,1980;MinyukandStone,
2009).Therefore,rigidbody,internallycoherentrotationsofplates,
ormicroplates,cannotalwaysbeassumedonthebasisofthedata available
Thispapersynthesizestheavailablepaleomagneticdatafrom CretaceoustoPaleogenecontinentalredbedformationsfromthe Indochina and South China regions obtained in severalstudies
bydifferentresearchersandevaluatestheirtectonicimportance, especially paleomagnetically detected deformation (specifically rotationandtranslation)ofcrustalelementsthatislikelyrelated
totheIndia–EurasiacollisionduringtheCenozoic.Spacedoesnot allowus to focus attention onthe details of the accuracy and reliabilityofeachspecificpaleomagneticdataset;rather,we con-centrateonthetectonicinterpretationofthesedata,andconsider suchfactorsastheoriginandnatureofmagnetization characteris-ticoftherocksexamined(e.g.,primaryorsecondary,i.e.,theextent
ofpossibleremagnetization),theageoftherockformation,andthe effectsthattectonicdeformationmayhaveplayedindefiningthe tectonicimportance
Therelativerotationandtranslationofanystructuralblockor domainthathavebeenidentifiedonthebasisofpaleomagnetic directionsfrom rockslocatedwithinthat blockaredetermined
bycomparingtheobserveddirectionswiththecoevalexpected
Trang 3T.C Cung, J.W Geissman / Journal of Geodynamicsxxx (2013) xxx– xxx 3
Table 1
Apparent Polar Wander Path for Eurasia derived by Besse and Courtillot (1991)
Courtillot (1991, 2002) have derived synthetic APWPs for the
Eurasiacontinentfrom200Matopresentwithconsiderablyhigh
precision.Inaddition,severalstudieshavecontributedtothe
inde-pendentdevelopmentofanAPWPfortheSouthChinablockitself
(e.g.,Enkinetal.,1992;Chenetal.,1993;Hankardetal.,2005;Sun
etal.,2006;Zhuetal.,2006;Tsunekietal.,2009),thereforethe
paleomagneticdatafromrocksoftheIndochinaandSouthChina
blocksdiscussedinthispaperwillbecomparedwiththeexpected
directions calculated from this APWP for certain geologictime periods(Table1)toevaluatetheirtectonicsignificance
Block
AccordingtoHsuetal.(1988),theSouthChinaBlockconsists
of two micro-continents—the Yangtze Craton in the northwest and the Hoa Nam Block in the southeast (Fig 1) These two micro-continentswereweldedtogetherduringsubductionofthe
Fig 2. Simplified tectonic framework digital elevation map of the Indochina and South China regions and the observed declinations of selected Cretaceous rock formations compared with expected declination values.
Trang 44 T.C Cung, J.W Geissman / Journal of Geodynamicsxxx (2013) xxx– xxx
60
50
40
30
20
10
0
-10
-20
-30
-40
-50
Locality Latitude, N
Mean, Early Cretaceous (K1) poles
Mean, Late Cretaceous (K2) poles
Mean, Cretaceous poles
o
Fig 3. Relative rotation of elements of South China tectonic block, as a function of
latitude of the sampling area, with respect to Eurasia The stars represent the relative
rotation of South China Block calculated from the mean of paleomagnetic poles for
the Early Cretaceous, the Late Cretaceous, and the entire Cretaceous Period Vertical
bars represent the uncertainty of each result, as represented by ˛ 95 values.
paleo-PacificplateundertheEurasiaplateinlateMesozoictime,
alongtheJiangnansuturezone,which exposesof
Mesoprotero-zoicandNeoproterozoiclow-grademetamorphicrocks.Xu(1993),
however,suggeststhattheentireeasternpartoftheChinese
land-masswasdominatedbyaMesozoicsinistralshearsystem.TheXu
(1993)hypothesisissupportedbyisotopicandpaleomagneticdata
fromJurassicandCretaceousintrusionsthatarewidelyexposedin
thesoutheastpartoftheSouthChinaBlock(Gilderetal.,1996)
ThereisgeneralconsensusthatbytheLateJurassictheSouth
ChinaBlockwasalreadyaccretedtotheNorthChinaBlockalong
theQinlingsuturebelt,formingthestableEurasiacontinent.Since
theearly1980s,paleomagneticstudieshavebeencarriedouton
MesozoicandCenozoicrockformationsinChina,andthesedata
havefacilitatedtheconstructionofoverallwell-definedApparent
PolarWanderPaths(APWP)fortheSouthChinaandNorthChina
blocksfromtheLatePermiantothepresent.Ageneralcomparison
oftheseAPWPswiththeAPWPfortheEurasiancontinentshows
that,sincetheCretaceous,theSouthChinaandNorthChinablocks
haveremainedrelativelystablewithrespecttotheEurasiaplate
(Enkinetal.,1992).TheIndia–EurasiacollisionduringtheCenozoic
hasnotsignificantlydistortedtheSouthChinaandNorthChina
blocksrelativetooneanotherandtoEurasia(Enkinetal.,1992;
Chenetal.,1993)
Paleomagneticdata from Cretaceous rock formations of the
SouthChinaBlock(listedinTable2)showthat,among23studiesat
generallyseparatelocalities,onlysixprovideevidenceforlocalities
affectedbyacombinationoftherelativerotationandlatitudinal
translation,andthesedatamainlycomefromUpperCretaceousto
Eocenecontinentalredbeds.Forsixotherlocalities,onlyrelative
rotationhasbeenfoundandtwoothersitesshowonlylatitudinal
translation.Therelative rotationandlatitudinaltranslationdata
aresummarizedinFigs.3and4
AcomparisonofEarlyCretaceous,LateCretaceousandoverall
CretaceousmeanpaleopolesoftheSouthChinaBlocktothe
corre-spondingpaleopolesoftheEurasiacontinentshowsnosignificant
rotationnorlatitudinaltranslationoftheSouthChinaBlockoverall
relativetotheEurasiacontinent.Thisfurtherconfirmsthe
conclu-sionofpreviousworkers(e.g.,Enkinetal.,1992;Chenetal.,1993;
Hankardetal.,2005;Sunetal.,2006;Zhuetal.,2006).We
inter-prettherelativerotationandtranslationthatisimpliedbydata
fromsomelocalitiestoreflectlocaldeformationoftheuppercrust,
ratherthanmotionoftheentirelithosphericblock.This
interpre-tationappearstobeconsistentwiththeobservationthat,atleast
forsomelocalities,largermagnitudesofrotationhavebeen
sug-gestedinyoungerrocks(e.g.,UpperCretaceoustoEocenestrata),
yetolder,underlyingrockformationshavebeenlessdeformedby
20
10
0
-10
-20
Latitudinal Translation, in degrees Locality Longitude, E
Mean, Early Cretaceous (K1) poles
Mean, Late Cretaceous (K2) poles
Mean, Cretaceous poles
o
30 25
15
5
-5
-15
-25
98 100 104 106 108 110 112 114 116 118 120
Fig 4. Latitudinal translation of elements of the South China block as a function
of longitude of the sampling area with respect to Eurasia The stars represent the relative translation, in degrees, of parts of the South China Block calculated from the mean of paleomagnetic poles for the Early Cretaceous, the Late Cretaceous, and the entire Cretaceous Period Vertical bars represent the uncertainty of each result, as represented by ˛ 95 values.
verticalaxisrotation.Therearealternativeexplanationsforsuch seeminglydisparatedatasets.Olderrockscouldhavebeen system-aticallyremagnetizedatatimeyoungerthantheageofoverlying rockspreservingprimarymagnetizationsthatimplyrotations
Anaccuratepaleomagneticassessmentofthedisplacementof
alarge-scalelithosphericblockshould,inprinciple,bebasedon datafromseveralwell-distributedstudylocalities,asresultsfrom deformedordeformingareas,typicallyatthemarginofcratonic block,maylikelybeunrepresentativeofthestableinterior(e.g., VanderVoo,1993).Datafromareasthathavepotentiallybeen affectedbymorelocalscaletectonismmustbeconsideredwith greatcautionwhenconsideringtheirincorporationintoagrand meanpaleomagneticpoledeterminationforacraton.Furthermore, theageoftherocksexamined,aswellastheageofthe magne-tization(s)thatarecharacteristicoftherocksexaminedmustbe knownforthemostrobustcomparisonswithwell-datedreference paleomagneticpoles.Finally,asmoreandmorestudiesare demon-strating,theeffectsofsedimentcompactionontheinclinationof theremanencepreservedinsedimentaryrocksduringwhatare typicallyprolongedandcomplicateddiageneticprocessescanbe significant(refs).Inclinationflatteningfactors(f),withfbeingthe ratiooftan(Io)/tan(If),whereIoistheobservedinclinationand
Ifisthedecompactedordeflattenedinclination,canbe approx-imated using both laboratory-based approaches (e.g.,Bilardello andKodama,2009,2010)andoneinvolvingexaminationofthe elongationbiasinobservedpaleomagneticvectorsrelativetoan expectedlong-termgeocentricaxialdipolefieldmodel(Tauxeand Kent,2004).Forredbeds,forexample,fvaluestypicallyvaryfrom about0.78(e.g.,Donohoo-Hurley,2011;Donohoo-Hurleyetal.,in preparation)toabout0.52(e.g.,KentandOlsen,2008).Notall “ref-erence”paleomagneticpolesthatareusedinthepresentoverview,
oranysimilarassessment,eitherincludeonlythosedatafrom sed-imentaryrocksthathavebeenadequatelycorrectedforinclination shallowingorarebasedonlyondatafromigneousrocks (unaf-fectedbyinclinationshallowing).Consequently,inferencesbased
ontheinclinationsofpaleomagneticdatafromsedimentaryrocks thatwediscussbelowmustbetreatedwithcaution,asitislikely thatcurrentestimatesoflatitudinaltranslationmaybeingreater errorthanthatsimplybasedontheestimateddispersionofthe populationofdatausedtodetermineameaninclination
Since1992,severalpaleomagneticstudieshavebeencarriedout
bythefirstauthorofthiscontribution,aswellasothers,ondifferent
Trang 5T.C Cung, J.W Geissman / Journal of Geodynamicsxxx (2013) xxx– xxx 5
Table 2
Cretaceous–Eocene paleomagnetic results of the South China block.
( ◦ N) ( ◦ E) ( ◦ N) ( ◦ E) A 95 ( ◦ N) ( ◦ E) R ± R ±
South China block
Note: Sign = Significance (Y: Yes, N: No), Ref = Reference, K1 = Early Cretaceous, K2 = Late Cretaceous, K = Cretaceous, J3–K = Late Jurassic–Cretaceous, K2–E = Late Cretaceous–Eocene, E = Eocene Rotation and latitudinal translation were calculated at each study locality following Butler (1992) ; negative (positive) sign indicates CCW (CW) rotation and southward (northward) translation, respectively Expected VGPs are calculated from Eurasian poles ( Table 1 ) derived by Besse and Courtillot (1991) (1) = Chan (1991) , (2) = Gilder et al (1993) , (3) = Funahara et al (1992) , (4) = Hu et al (1990) , (5) = Zhai et al (1992) , (6) = Huang and Opdyke (1992a) , (7) = Zhu et al (1988) , (8) = Lin (1984) , (9) = Enkin et al (1991a) , (10) = Enkin et al (1991b) , (11) = Otofuji et al (1990) , (12) = Kent et al (1986) , (13) = Yoshioka et al (2003) , (14) = Otofuji et al (1998) , (15) = Hsu (1987) , (16) = Gilder et al (1999) , (17) = Li et al (1995)
rockunitsofCretaceousageinVietnam.Theresultsofthesestudies
havebeenpublishedinVietnameseandinternationaljournals(Chi,
1996,2001;Chietal.,1998,1999,2000;ChiandDorobek,2004)
Thesecondauthorisintheprocessesofpreparingacontribution
onacollectionofCretaceousredbedsobtainedin2009andsome
preliminaryresultsarepresentedhere.Theresultsofallofthese
studiesaresummarizedbelow;informationonindividualsitedata
andcharacteristicsofthepaleomagnetismofeachrockunitisin
theoriginalpapers
3.1 NorthwesternVietnam
Tensiteswith76orientedcoresampleswerecollectedfromLate
JurassicandCretaceousextrusive,intrusive,andredbedrocksfrom
theTuLeDepressionandSongDaTerrane,situatedjusttothesouth
oftheRedRiverfault(Figure1ofChietal.,2000).Theanalysisofthe
rockmagneticpropertiesandtheresponsetoprogressiveAFand
thermaldemagnetizationofrocksamplesrevealsthattheprincipal
remanencecarrierintheextrusiveandintrusiverockssampledis
nearlypuretolowTimagnetiteandthatofredbedssampledis
hematite(Chietal.,2000).Thepaleomagneticresults(Table3)are
interpretedtosuggestthattheareastudiedinnorthwestVietnam
hasnotbeensignificantlyrotatednortranslatedina latitudinal
senserelativetotheSouthChinaBlockortheEurasiacontinent
sincetheCretaceous(Table5,Figs.5and6).Theresultsare
consis-tentwiththosereportedbyHuangandOpdyke(1993),fromUpper
CretaceousredbedstratanearXiaguan,insouthwesternYunnan,
China,situated adjacenttotheRedRiverfault.Chietal.(2000)
determinedaLateJurassic–Cretaceouspaleomagneticpoleforthe
northwestregionofVietnam,whichislocatedat83.9◦N,233.1◦E
(A95=11.9◦).Thispoleisstatisticallyindistinguishablefromthe
LateCretaceouspaleomagneticpolefortheXiaguanarea(83.6◦N, 152.7◦E, A95=10◦)reported by Huang and Opdyke (1993), but bothoftheseresultsareassociatedwithrelativelyhighdispersion ThetworeportedpolesarealsoindistinguishablefromCretaceous paleomagneticpolesfortheSouthChinablockandEurasia con-tinentat95%confidencelevel,whichfurthercorroboratesHuang andOpdyke’s(1993)conclusionthattheRedRiverfaultdoesnot demarcateunrotatedandsignificantlyrotatedregions(Huangand Opdyke,1993)
Morerecently,Takemotoetal.(2005)reporteddatafromthe YenChauFormation,consistingofmid-Cretaceousredbedthatare partoftheSongDaTerraneinnorthwestVietnam.Fifteensites, withsixtotenhandsamplesateachsite,werecollectedatYen Chauand Lai Chaulocalitiesalong theroadNo 6leading from
60 50 40 30 20 10 0 -10 -20 -30 -40
Rotation Magnitude, in degrees Locality Latitude, N
(counter- clockwise)
21
11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27
Yongping (K1) Yunlong
(K2) Lanping (K2) Xiaguan (K2) Northern V ietnam (J3-K)
Khorat Plateau (J3-K1)
Southern Vietnam (K)
Shan Plateau (J3-K)
Simao Terrane Mengla (Eocene)
Mengla (K2)
Jinggu (K2)
Jinggu (K1)
70 80 90 100 110 120
o
Lanping (Eocene)
Fig 5. Relative rotation of elements of the Indochina-Shan Thai terranes, as a func-tion of the latitude of the sampling area, with respect to Eurasia Vertical bars represent the uncertainty of each result, as represented by ˛ 95 values.
Trang 66 T.C Cung, J.W Geissman / Journal of Geodynamicsxxx (2013) xxx– xxx
Table 3
Paleomagnetic results of Late Jurassic–Cretaceous rocks from northwestern Vietnam.
Note: N = total number of samples; n = number of samples used in calculation of mean directions; ChRM = characteristic remanent magnetization; D g , I g = geographic (in situ) declination and inclination; D s , I s = stratigraphic (tilt corrected) declination and inclination; ˛ 95 = radius of 95% confidence circle; k = precision parameter; VGP = Virtual Geomagnetic Pole; J3–K = Late Jurassic-Cretaceous; K2–Pg = Late Cretaceous–Paleogene; K2 = Late Cretaceous.
Figs.4and5).Onthebasisofapaleomagneticcollectioninvolving
tenseparatelocalities,with6–19sitescollectedperlocalityand
sevento15samplescollectedfromeachsite,Geissman
(unpub-lisheddata,2011)concludedthat,overall,thepaleomagneticdata
fromthisareaareconsistentwiththosereportedbyTakemotoetal
(2005),andthat,dependingonthelocalityinvestigated,the
rema-nenceinthesemid-Cretaceousstrataisheavilycontaminatedbya
relativelyrecent,post-foldingmagnetization(Fig.7)
Overall,thepaleomagneticresultsfromthethreeareaslocated
alongandimmediatelysouthwestoftheRedRiverfaultsystemin
northernVietnamsuggestthatthefaultdoesnotdemarcate
non-rotatedandsignificantlyrotatedcrust.IfelementsoftheIndochina
Blockhadbeenextrudedbyasignificantamount,inasoutheast
directedfashion,assuggestedbyproponentsoftheextrusion
tec-tonics,itmusthavetakenplaceonsomeotherfaultslocatedfarther
tothesouthwestoftheRedRiverfault
3.2 SouthernVietnam
Twentyfoursiteswithatotalof163coresampleswere
col-lectedfromCretaceousvolcanic,intrusiveandsedimentaryrocks
insouthern Vietnam (Chi and Dorobek,2004).Thedistribution
ofVGPsfromtheacceptedsites(Table4 whencomparedwith
20
10
0
-10
-20
Latitudinal Translation, in degrees Locality Longitude, E
25
15
5
-5
-15
-25
Southern Vietnam Khorat Plateau
Northern Vietnam
Simao Terrane
Mengla (Eocene) Lanping (Eocene)
Mengla (K2)
Lanping (K2) Jinggu (K2)
Jinggu (K1) Shan Plateau
Yongping (K1) -30
Fig 6.Relative translation of the Indochina-Shan Thai terranes, as a function of the
longitude of the sampling area, with respect to Eurasia Vertical bars represent the
uncertainty of each determination, as represented by the ˛ 95 values.
theEurasiameanCretaceouspaleopole,mayindicateaveryslight southwarddisplacementofsouthernVietnam(6.5±5.1◦),yetno appreciablerotationsincetheCretaceous(Table5,Figs.4and5) Giventhatthisistheonlysetofpaleomagneticresultsfrom south-ernVietnamandthatthedataarefromawiderangeofrocktypes, this result, although it representsthe only data availablefrom southernVietnam,shouldbeconsideredoflimitedimportance The available paleomagnetic data from Cretaceous rocks in northwest and southern Vietnam maysupport somedegree of internaldeformationofthisregioninresponsetotheIndia–Eurasia collision,butthedistributionofthedataremainsfartoosparse
to provide firm conclusions The possible southward displace-ment,yetinsignificantrotationofsouthernVietnam,mayreflect north–southorientedspreadinginthenorthernpartofSouthChina Seawiththedevelopmentofamajorright-lateraltransformfault systemthat extendedjustoff theeastern continentalmarginof Vietnam(TaylorandHayes,1980,1983).Highquality paleomag-neticdataaresorelyneededfromCretaceousrocksfromthefar northeastpartofVietnam,eastoftheRedRiverfaultsystem
Atermthathasoftenbeenusedinreferencetotectonicmodels
ofCenozoicdeformationintheSoutheastAsiaregion,andreferred
tointheintroduction,isthe‘Sundaland’plate.TheSundalandplate
isdefinedtothenortheastbytheRedRiverfault,tothewestbythe SagaingfaultinMyanmar,totheeastbythePhilippinesubduction zone,andtothesouthbytheIndonesiasubductionzone(Fig.1) ThisplateincludestheShan-ThaiandIndochinablocks,southwest EastVietnamSea,BorneoandMalaya-Indonesiaislands Paleomag-neticdatafromfarthersouthintheSundalandplate(Fulleretal., 1991;RichterandFuller,1996)wereusedtoevaluatetheCenozoic tectonicevolutionofthisregionandreflectthetectoniccomplexity
oftheSoutheastAsianregion.Oppositesenserotationswith dif-ferentmagnitudesofrotationhavebeenobservedfromthesame terraneorfromdifferentterranes.Datafromtheinteriorpartof Sundalandaresupportiveofsomemagnitudeofclockwise rota-tion,althoughcounterclockwiserotationsappeartocharacterize theIndonesianpeninsulaandislandslocatedinthesoutheastern partoftheregion
The Cretaceous paleomagnetic data of the Shan-Thai and Indochinablocksobtainedoverthepasttwodecadesorsohighlight the nature and potential complexities of intraplate deforma-tion due to theimpact of India–Eurasia collision Accordingto
Trang 7T.C Cung, J.W Geissman / Journal of Geodynamicsxxx (2013) xxx– xxx 7
Fig 7.Some preliminary paleomagnetic results from Cretaceous redbeds in northwest Vietnam (a, b) Relatively recent road construction activities have resulted in abundant road exposures of relatively fresh bedrock in this area (c–i) Examples of response to progressive demagnetization by Cretaceous redbeds Orthogonal demagnetization diagrams showing the endpoint of the magnetization vector plotted onto the horizontal (filled symbols) and vertical (open symbols) planes ( Zijderveld, 1967 ) Selected demagnetization steps are show adjacent to vertical projections All diagrams in geographic coordinates (c–e) Demagnetization results showing the removal of a north-directed and steep positive inclination (in geographic coordinates) magnetization followed, at high laboratory unblocking temperatures, a magnetization that is northwest-directed and shallow inclination that, in stratigraphic coordinates is north–northeast directed and moderate positive in inclination and is interpreted as a primary remanence (f and g) Demagnetization results showing the first-removal of a north-directed and moderate positive inclination magnetization, followed by an east-directed and shallow magnetization Results from this locality are interpreted to suggest a considerable magnitude clockwise rotation, that is inconsistent with other data from northwest Vietnam and likely reflective of a local structural feature (h and i) Examples of results where a moderate negative inclination magnetization predominates; after structural correction this magnetization is south-directed and of relatively shallow inclination, and thus interpreted as a reverse polarity primary magnetization.
Trang 88 T.C Cung, J.W Geissman / Journal of Geodynamicsxxx (2013) xxx– xxx
Table 4
Paleomagnetic results of Cretaceous rock formations from southern Vietnam.
Lat ( ◦ N) Long ( ◦ E) D g ( ◦ ) I g ( ◦ ) D s ( ◦ ) I s ( ◦ ) ˛ 95 k s ( ◦ N) s ( ◦ E) A 95
Note: St = bedding strike, Dp = bedding dip, n = number of samples (sites) used in calculation of mean directions, N = total number of samples (sites), D g (I g ) = geographic declination (inclination), D s (I s ) = stratigraphic declination (inclination), ˛ 95 (A 95 ) = circle of 95% confidence, k = precision parameter, s ( s ) = stratigraphic latitude (longitude).
a Indicates the sites which were not included in the mean calculation.
models proposed for the quasi-rigid extrusion of tectonic
ele-mentsofSoutheast Asia,theIndochinaBlockhasexperienced a
netclockwiserotationofabout40◦,andhasbeendisplaced
south-wardsome800–1000km,which underfavorable circumstances
is resolvable with paleomagnetic data, along the sinistral Red
Riverand MeKong Riverfault systems toaccommodate
defor-mationrelatedtotheconvergenceoftheIndia–Eurasiacollision
ThepaleomagneticdatafromUpperJurassictoLowerCretaceous
sedimentary rocks from the Khorat Plateau (16.5◦N, 103.0◦E),
Thailand(YangandBesse,1993)arecitedasearlyacquired
evi-denceinsupportofthismodel.Basedonacomparisonwithfive
selectedLateJurassic–EarlyCretaceouspaleopolesfromtheSouth ChinaBlock,YangandBesse(1993)determinedthattheIndochina Blockhasrotatedabout14◦ (14.2±7.1◦)clockwiseandwas dis-placed some 11◦ southward (11.5±6.7◦) relative to the South ChinaBlocksincetheCretaceous.IfLateJurassictoEarly Creta-ceousreference poles for theEurasian continentare used as a reference,however,the estimatedmagnitudeof KhoratPlateau clockwiserotationisless(10.2±7.3◦)andtheestimatedmagnitude
of southwarddisplacement is insignificant(3.4±6.9◦)(Table5, Figs.4and5).Asnotedabove,theselectionofaccuratereference paleomagneticpolesiscriticalforreliabletectonicinterpretation
Table 5
Cretaceous–Eocene paleomagnetic results of the Indochina Block.
( ◦ N) ( ◦ E) A 95 ( ◦ N) ( ◦ E) R ± R ±
Indochina Block:
Shan-Thai Block:
Simao Terrane:
Note: Ref = reference, significance (Y = Yes, N = No) K1 = Early Cretaceous, K2 = Late Cretaceous, K = Cretaceous, J3–K = Late Jurassic–Cretaceous, J3–K1 = Late Jurassic–Early Cretaceous, E = Eocene Rotation and latitudinal translation were calculated at each study locality following Butler (1992) ; negative (positive) sign indicates CCW (CW) rotation and southward (northward) translation, respectively Expected poles are calculated ( Table 1 ) from Eurasian poles derived by Besse and Courtillot (1991) (1) = Takemoto et al (2005) , (2) = Chi et al (2000) , (3) = Chi and Dorobek (2004) , (4) = Yang and Besse (1993) , (5) = Sato et al (2001) , (6) = Sato et al (1999) , (7) = Huang and Opdyke (1993) , (8) = Funahara et al (1993) , (9) = Yang et al (2001) , (10) = Chen et al (1995) , (11) = Richter and Fuller (1996)
Trang 9T.C Cung, J.W Geissman / Journal of Geodynamicsxxx (2013) xxx– xxx 9
ofpaleomagneticresultsfromaparticulararea,inparticularwhen
magnitudesofrotationandlatitudinaltranslationmayberelatively
small
Many paleomagnetic studies have been carried out on
Cre-taceousto Eocenered bed formationsfrom theLanping-Simao
TerraneinwesternYunnan,China(HuangandOpdyke,1993;Chen
etal.,1995;Satoetal.,1999,2001;Yangetal.,2001; Burchfiel
et al.,2007; Geissmanetal., 2011,in preparation).In terms of
geographiclocation,thisareaispartofwesternYunnanProvince,
China,yetinatectoniccontext,theareaiswithintheShanThai
BlockneartheeasternsyntaxisoftheIndia–Eurasiacollisionbelt
(Fig.1);wherelocallyintenseinternaldeformation,involving
fold-ingandfaultingofthickupperPaleozoicthroughlowerTertiary
strataoccurredinresponsetotheIndia–Eurasiacollisionand
dis-placementofcomponentsofsoutheastAsia(WangandBurchfiel,
1997).Arangeofpaleomagneticresultshavebeenobtainedfrom
CretaceoustoEocenered bed stratafromdifferentlocalities in
this broadregion,reflecting a heterogeneousdeformation field
Inferredclockwiserotationsoflocalregions withintheLanping
Simaobeltareaslargeas100◦,andestimatesofsouthward
lat-itudinaldisplacementrelativetoboththeEurasiaandtheSouth
Chinareferenceframesrangefrominsignificantto,moretypically,
about10◦ andnogreaterthan12◦ (Table5,Figs.5 and6).The
areasthatareinterpretedtohaveexperiencedlargemagnitudesof
rotationlikelyreflectlocaldeformationofupper-crustalelements
duringdifferentialcrustalshortening(MacDonald,1980;Burchfiel
etal.,2007).Insomeareasofthebelt,suchasnearLanpingand
Mengla, somewhatlarger magnitudesof clockwiserotation are
suggestedbydatafromEoceneredbeds,althoughlesser
clock-wiserotationshavebeenestimatedbasedondatafromunderlying
UpperCretaceousredbeds(Fig.5).Similar,seeminglyconflicting
resultshavebeenobtainedforinferredlatitudinaldisplacements,
withyounger,overlyingredbedsyieldinglargervaluesthanolder
rocks(Fig 6).It ispossible thatthese datasets mayimplythe
complexityoflocaltectonicdisplacements.Alternative
interpreta-tionsinvolvetheoverallreliabilityoftheageinterpretationofthe
rocksand,moreimportantly,theageoftheircharacteristic
mag-netization.Itisoftendifficulttodetermineasufficientlyaccurate
ageofthicksequencesofmediumtocoarsegrainedcontinental
redbedsbecausefossilsareuncommon.Ageassignmentsforred
bedsequencesareoftenbasedonstratigraphiccorrelations,and,
togetherwithinaccuracies in interpretingthe agesof
magneti-zationscharacteristicoftherocks,thesecanresultininaccurate
tectonicinterpretationsofpaleomagneticdata,leadingto
unrea-sonableconclusions, especially in stronglydeformedrocks, like
partsofSoutheastAsia
PaleomagneticdatafromUpper JurassictoCretaceous
conti-nental redbeds,exposed nearthe westernmarginof theShan
ThaiBlockneartheSagaingright-lateralstrike-slipfault(Fig.1
showthat thestudy areawas rotatedin a clockwise senseby
nearly 30◦ (29.1±5.2◦) and may have been translated
north-wardbyabout8◦(7.8±4.0◦)(RichterandFuller,1996)(Table3,
Figs.4and5).Acomponentoftheinferreddeformationofthisarea
islikely a consequenceofdextraldisplacementalong themore
than1000kmlongSagaingfaultsystem,thatformedandduring
theIndia–Eurasiacollisionprocessandremainsveryactive(Vigny
etal.,2003;TsutsumiandSato,2009).Underthosecircumstances
wherethereisampleevidenceofsufficientaveragingofthe
geo-magneticfieldandthatdatacanbeaccuratelyreferencedtothe
paleohorizontal,paleomagneticdatacanprovideapowerfulmeans
ofquantifyingimportantcomponentsofthedeformationmatrix,
specificallyvertical axisrotation and latitudinal componentsof
displacement.Paleomagneticdatabasedonstudiesthathave
con-centratedortargetedsamplingintectonicallyactiveareasmustbe
interpretedwithcaution,astheyrepresentthecumulativesumof
allcomponentsofdeformationexperiencedbytherocksstudied
andthusmaynotbeanaccuraterepresentationofthephaseof deformationofinterest(e.g.,overaspecifictimeinterval).Rarely
is itthecase that asingle setofobservations fromarelatively restrictedlocalityanaccuratereflectionofthecoherentmotion
oftheentire lithosphericblock.Caution shouldbetakenin the interpretationofpaleomagneticallydefinedrotationsand/or trans-lationsofspecificareas,inparticularinthecontextofthemotion
offeatures thatencompassaconsiderably largerareathanthat examinedinthepaleomagneticstudy
InthecontextofthehistoryoflateMesozoictopresent defor-mationofVietnamandimmediatelyadjacentareas,overall, the paleomagneticdatafromCretaceousandPaleogenesedimentary rocksfromtheSouthChinaBlockandIndochinaregionscanbe interpretedtoindicatethattheSouthChinaBlockhasbeen rela-tivelystablewithrespecttotheEurasiancontinentatleastsince theCretaceous.Componentsofverticalaxisrotationandlatitudinal translation,dominantlyinasouth-directedsense,havecontributed
tothedeformationofcrustaltolithospherescaleelementsof South-east Asia We suspect that resultsfrom some localities reflect more localized deformation of elements confinedto theupper crust, rather than involving an entire lithosphere section The India–EurasiacollisionstronglydeformedtheIndochina–ShanThai Block,inparticularintheareasnearthecollisionbelt.Duringthe Cenozoic,IndochinaandpartsofSundalandexperiencedcomplex internaldeformationandclearlydidnotbehaveasacoherentblock,
as suggested by extrusionmodels The RedRiver fault system, whichis juxtaposedonor adjacenttothelong-livedleftlateral AilaoShanshearzone,maynotentirelydemarcatetheSouthChina BlockandtheIndochinaBlock.Someoftheavailablepaleomagnetic dataareinterpretedtosuggestthatatleastsometerraneslocated southwestofthefaultsystemhavenotbeensignificantlyrotated nortranslatedsouthwardrelativetotheSouthChinablocksincethe Cretaceous.However,thepreponderanceofpaleomagneticresults frommuchoftheLanpingSimaobeltinwesternYunnanProvince, China,inconsistentwithamodestamountofsouthward displace-ment,andvariableclockwiserotation,withtheobservedrangein rotationmagnitudespossiblyreflectingmorelocalized deforma-tionunrelatedtothataffectingtheremainderofthelithosphere
inthisregion.Amobile,morelithospherescaleboundarybetween theSouthChinaandIndochinablocksintheextrusionmodelis possiblylocated,atthelatitudeofnorthwestVietnam,southwest
oftheRedRiverfault.Althoughthedatauponwhichthisisbased areverysparse,theinferredverymodestsouthwarddisplacement
ofthesouthernpartofVietnammaybeconsistentwiththe extru-sionmodel,however,noclockwiserotationhasbeenobservedfrom thisarea.Modestmagnitudecounterclockwiserotationsappearto characterizetheBorneoandMalayapeninsulaareas,locatedfarther
tothesouth(Fulleretal.,1991),indicatingthatthecomplex tec-tonicevolutionoftheSoutheastAsianregioncannotbecompletely explainedbyanysingle,simpletectonicmodel
Acknowledgements
The research has been supported by a grant for the basic research project (No 105.03.05.09) from National Foundation forScienceandTechnologyDevelopment(Nafosted)ofVietnam
to Cung Thuong Chi.In addition,Geissman acknowledges sup-portfromNationalScienceFoundationawardsEAR9706300and EAR0537604 Mr.ScottMuggletonassisted Geissmanwithfield samplinginnorthernVietnam;andthecollaborationwithDr.N.V Phooverthistimeperiodisgreatlyappreciated.Wewishtothank
Dr.MikeFullerforhelpfulcommentsonthemanuscript
Trang 1010 T.C Cung, J.W Geissman / Journal of Geodynamicsxxx (2013) xxx– xxx
References
Besse, J., Courtillot, V., 1991 Revised and synthetic apparent polar wander paths of
the African, Eurasian, North America and Indian Plates, and true polar wander
since 200 Ma Journal of Geophysical Research B96, 4029–4050.
Besse, J., Courtillot, V., 2002 Apparent and true polar wander and the geometry of the
geomagnetic field over the last 200 Myr – art no 2300 Journal of Geophysical
Research-Solid Earth 107 (B11), 2300.
Bilardello, D., Kodama, K.P., 2009 Measuring remanence anisotropy of hematite in
red beds: anisotropy of high field isothermal remanence magnetization (hf-AIR).
Geophysical Journal International 178, 1260–1273.
Bilardello, D., Kodama, K.P., 2010 Rock magnetic evidence for inclination shallowing
in the early Carboniferous Deer Lake Group red beds of western Newfoundland.
Geophysical Journal International 181, 275–289.
Burchfiel, B.C., Studnicki-Gizbert, C., Geissman, J.W., Wang, E., Lianzhong, C., 2007.
How much strain can continental crust accommodate without developing
obvious, through-going faults? In: Whence the Mountains? Inquiries into the
Evolution of Orogenic Systems: A Volume in Honor of Raymond A Price
Geolog-ical Society of America Special Paper 433 Geological Society of America, Boulder,
pp 51–62.
Butler, R., 1992 Paleomagnetism Blackwell Scientific Publications, Boston, USA.
Chan, L.S., 1991 Paleomagnetism of late Mesozoic granitic intrusions in Hong Kong:
implications for Upper Cretaceous reference pole of South China Journal of
Geophysical Research 96B, 327–335.
Chen, H., Dobson, J., Heller, F., Hao, J., 1995 Paleomagnetic evidence for clockwise
rotation of the Simao region since the Cretaceous: a consequence of India–Asia
collision Earth and Planetary Science Letters 134, 203–217.
Chen, Y., Courtillot, V., Cogne, J.P., Besse, J., Yang, Z., Enkin, R.J., 1993 The
configura-tion of Asia prior to the collision of India: Cretaceous paleomagnetic constraints.
Journal of Geophysical Research B98, 21927–21941.
Chi, C.T., Dorobek, S.L., 2004 Cretaceous palaeomagnetism of Indochina and
sur-rounding regions: Cenozoic tectonic implications In: Malpas, J., Fletcher, C.J.N.,
Ali, J.R., Aitchison, J.C (Eds.), Aspects of the Tectonic Evolution of China, vol 226.
Geological Society, London, Special Publication.
Chi, C.T., 2001 Results of paleomagnetic study on Jurassic sandstone and siltstone of
the Ha Coi formation and their tectonic implications Journal of Geology, Series
B 17–18, 35–44.
Chi, C.T., Yem, N.T., Cuong, N.Q., 2000 Paleomagnetic results of Late
Jurassic–Cretaceous extrusive and intrusive rocks from northwestern
region of Vietnam Journal of Geology, Series A 256 (1–2), 1–8 (in Vietnamese).
Chi, C.T., Cuong, N.Q., Yem, N.T., 1999 Paleomagnetic results of Cretaceous rock
for-mations from South-east Asia region and from South China block: their tectonic
implications Journal of Geology, Series A 252 (5–6), 8–17 (in Vietnamese).
Chi, C.T., Yem, N.T., Bao, N.X., 1998 Paleomagnetic study of Late Jurassic-Cretaceous
extrusive and intrusive igneous rocks from South Vietnam: tectonic implications
for the Cenozoic tectonic history of Indochina Block Journal of Geology, Series
A 249 (11–12), 1–8 (in Vietnamese).
Chi, C.T., 1996 Paleomagnetism of Mesozoic and Cenozoic rocks from Vietnam:
implications for the Tertiary tectonic history of Indochina and a test of the
extrusion model PhD Thesis Texas A&M University, College Station, Texas.
Dewey, J.F., Cande, S., Pitman III, W.C., 1989 Tectonic evolution of the India/Eurasia
collision zone Eclogae Geologicae Helvetiae 82, 717–734.
Donohoo-Hurley, L.L., 2011 Magnetic records from uppermost Triassic to earliest
Jurassic Red Beds, Utah and Arizona, and from mid-Pleistocene lake beds, New
Mexico Earth and Planetary Sciences Albuquerque, University of New Mexico.
PhD, p 149.
Donohoo-Hurley, L.L., Geissman, J.W., Wawrzyniec, T.F., Roy, M., Inclination bias of
the uppermost Triassic to lowermost Jurassic Moenave Formation, Utah and
Ari-zona: how can time-equivalent data from the American Southwest be reconciled
with those from eastern North America? in preparation.
England, P.C., Houseman, G.A., 1989 Extension during continental convergence,
with application to the Tibetan Plateau Journal of Geophysical Research 94B,
17561–17579.
England, P.C., Molnar, P., 1990 Right lateral shear and rotation as the explanation
for strike-slip faulting in eastern Tibet Nature 344, 140–142.
Enkin, R.J., Chen, Y., Courtillot, V., Besse, J., Xing, I., Zhang, Z., Zhuang, Z., Zhang, J.,
1991a A Cretaceous pole from South China and the Mesozoic hairpin turn of
the Eurasian apparent polar wander path Journal of Geophysical Research 96B,
4007–4027.
Enkin, R.J., Courtillot, V., Xing, I., Zhang, Z., Zhuang, Z., 1991b The stationary
Cretaceous paleomagnetic pole of Sichuan (South China Block) Tectonics 10,
547–559.
Enkin, R.J., Yang, Z., Chen, Y., Courtillot, V., 1992 Paleomagnetic constraints on the
geodynamic history of the major blocks of China from the Permian to the present.
Journal of Geophysical Research B97, 13953–13989.
Fuller, M., Haston, R., Lin, J., Richter, B., Schmidtke, E., Almasco, J., 1991 Tertiary
paleomagnetism of regions around the South China Sea Journal of Southeast
Asian Earth Sciences 6, 161–184.
Funahara, S., Nishiwaki, N., Miki, M., Murata, F., Otofuji, Y-I., Wang, Y.Z., 1992
Paleo-magnetic study of Cretaceous rocks from the Yangtze block, central Yunnan,
China: implications for the India–Asia collision Earth and Planetary Science
Letters 113, 77–91.
Funahara, S., Nishiwaki, N., Miki, M., Murat, F., Otofuji, Y-I., Wang, Y.Z., 1993
Clock-wise rotation of the Red River fault inferred from paleomagnetic study of
Cretaceous rocks in the Shan-Thai-Malay block of western Yunnan, China Earth
and Planetary Science Letters 117, 29–42.
Gilder, S., Coe, R., Wu, H., Kuang, G., Zhao, X., Wu, Q., Tang, X., 1993 Cretaceous and Tertiary paleomagnetic results from southeast-China and their tectonic implications Earth and Planetary Science Letters 117, 637–652.
Gilder, S.A., Gill, J., Coe, R.S., Zhao, X., Liu, Z., Wang, G., Yuan, K., Liu, W., Kuang, G., Wu, H., 1996 Isotopic and paleomagnetic constraints on the Mesozoic tectonic evo-lution of South China Journal of Geophysical Research 101 (B7), 16137–16154 Gilder, S.A., LeLoup, P.H., Courtillot, V., Chen, Y., Coe, R., Zhao, X.X., Xiao, W.J., Halim, N., Cogne, J.P., Zhu, R., 1999 Tectonic evolution of the Tancheng-Lujiang (Tan-Lu) Fault via Middle Triassic to Early Cenozoic paleomagnetic data Journal of Geophysical Research 104 (15), 365–375.
Gillett, S.L., Geissman, J.W., 1993 Regional late Paleozoic remagnetization
of shallow-water carbonate rocks in the Great Basin: the usefulness of micro-fold tests from late compaction fabrics In: Applications of Paleomag-netism to Sedimentary Geology SEPM (Society for Sedimentary Geology),
pp 129–147.
Hankard, F., Cogne, J.-P., Kravchinsky, V., 2005 A new Late Cretaceous paleomagnetic pole for the west of Amuria block (Khurmen Uul, Mongolia) Earth and Planetary Science Letters 236, 359–373.
Hu, L., Li, P., Ma, X., 1990 A magnetostratigraphic study of Cretaceous redbeds from Shanghan, western Fujian, China (in Chinese) Geology of Fujian 1, 33–42 Huang, K., Opdyke, N.D., 1992a Paleomagnetism of Cretaceous to lower Tertiary rocks from southwestern Sichuan: a revisit Earth and Planetary Science Letters
112, 29–40.
Huang, K., Opdyke, N.D., 1993 Paleomagnetic results from Cretaceous and Jurassic rocks of south and southwest Yunnan: evidence for large clockwise rotation
in the Indochina and Shan-Thai-Malay terranes Earth and Planetary Science Letters 117, 507–524.
Hsu, V., 1987 Paleomagnetic results from one of the red basins in South China EOS Trans AGU 68, 295.
Hsu, K.J., Shuh, S., Li, J., Chen, H., Pen, H., Sengor, A.M.C., 1988 Mesozoic overthrust tectonics in south China Geology 16, 418–421.
Jackson, J., Molnar, P., 1990 Active faulting and block rotation in the west-ern Transverse Ranges, California Journal of Geophysical Research 95 (B13), 22073–22078.
Kent, D.V., Xu, G., Huang, K., Zhang, W.Y., Opdyke, N.D., 1986 Paleomagnetism of Upper Cretaceous rocks from South China Earth and Planetary Science Letters
79, 179–184.
Kent, D.V., Olsen, P.E., 2008 Early Jurassic magnetostratigraphy and paleolati-tudes from the Hartford continental rift basin (eastern North America): testing for polarity bias and abrupt polar wander in association with the Central Atlantic magmatic province Journal of Geophysical Research 113, B06105, doi:06110.01029/02007JB005407.
Leloup, P., Arnaud, N., Lacassin, R., Kienast, J., Harrison, T., Trong, T., Replumaz, A., Tapponnier, P., 2001 New constraints on the structure, thermochronology, and timing of the Ailao Shan-Red River shear zone, SE Asia Journal of Geophysical Research 106 (B4), 6683–6732.
Li, Z., Metcalfe, I., Wang, X.F., 1995 Vertical-axis block rotation in southeast China: new paleomagnetic results from Hainan Island Geophysical Research Letters
22, 3071–3074.
Lin, J., 1984 The apparent polar wander paths for the North and South China blocks PhD Thesis University of California, Santa Barbara.
Lowrie, W., Hirt, A., Kligfield, R., 1986 Effects of tectonic deformation on the rema-nent magnetization of rocks Tectonics 5, 713–722.
MacDonald, W.D., 1980 Net tectonic rotation, apparent tectonic rotation, and the structural tilt correction in paleomagnetic studies Journal of Geophysical Research B85, 3659–3669.
McCabe, C., Elmore, R.D., 1989 The occurrence and origin of late Paleozoic remag-netization in the sedimentary rocks of North America Review of Geophysics 27, 471–494.
Minyuk, P.S., Stone, D.B., 2009 Paleomagnetic determination of paleolatitude and rotation of Bering Islands (Komandorsky Islands) Russia: comparison with rotations in the Aleutian Islands and Kamtchatka Stephan Mueller Special Pub-lication Series 4, 329–348.
Otofuji, Y-I., Inoue, Y., Funahara, S., Murata, F., Zheng, X., 1990 Paleomagnetic study
of eastern Tibet – deformation of the Three Rivers region Geophysical Journal International 103, 85–94.
Otofuji, Y-I., Liu, Y., Yokoyama, M., Tamai, M., Yin, J., 1998 Tectonic deformation
of the southwestern part of the Yangtze craton inferred from paleomagnetism Earth and Planetary Science Letters 156, 47–60.
Pares, J.M., Van der Pluijm, B.A., Dinares-Turell, J., 1999 Evolution of magnetic fabrics during incipient deformation of mudrocks (Pyrenees, northern Spain) Tectono-physics 307, 1–14.
Peltzer, G., Tapponnier, P., 1988 Formation and evolution of strike-slip faults, rifts, and basins during the India–Asia collision: an experimental approach Journal
of Geophysical Research 93B, 15085–15117.
Pueyo, E.L., Pocovi, A., Millan, H., Sussman, A.J., 2004 Map-view models for cor-recting and and calculating shortening estimates in rotated thrust faults using paleomagnetic data Boulder, Geological Society of America Special Paper 383, 57–71.
Replumaz, A., Tapponnier, P., 2003 Reconstruction of the deformed collision zone between India and Asia by backward motion of lithosphere blocks Journal of Geophysical Research 108, doi:10.1029/2001JB000661.
Richter, B., Fuller, M., 1996 Palaeomagnetism of the Sibumasu and Indochina blocks: Implications for the extrusion tectonic model In: Hall, R., Blundell, D (Eds.), Tec-tonic Evolution of Southeast Asia, vol 106 Geological Society, London, Special Publication, pp 203–224.