LỜI NÓI ĐẦU Lý thuyết mạch điện là một trong các nội dung khoa học có ý nghĩa quan trọng trong việc đào tạo kỹ sư các Công nghệ kỹ thuật điện điện tử, Công nghệ kỹ thuật điện tử truy
Trang 1TS NGUYỄN MINH TÂM GVC.ThS TRẦN TÙNG GIANG -ThS LÊ THỊ THANH HOÀNG
GIÁO TRÌNH
Trang 2TS NGUYỄN MINH TÂM
GVC.ThS TRẦN TÙNG GIANG ThS LÊ THỊ THANH HOÀNG
Trang 3LỜI NÓI ĐẦU
Lý thuyết mạch điện là một trong các nội dung khoa học có ý nghĩa quan trọng trong việc đào tạo kỹ sư các Công nghệ kỹ thuật điện điện tử, Công nghệ kỹ thuật điện tử truyền thông, Công nghệ kỹ thuật máy tính, Công nghệ kỹ thuật điều khiển và tự động hóa, Kỹ thuật y sinh là môn học cơ sở nhằm cung cấp cho sinh viên các phương pháp phân tích, tổng
hợp mạch, làm cơ sở để thiết kế các hệ thống điện - điện tử
Giáo trình Mạch điện được giảng dạy cho sinh viên ngành Công
nghệ kỹ thuật điện điện tử, Công nghệ kỹ thuật điện tử truyền thông, Công nghệ kỹ thuật máy tính, Công nghệ kỹ thuật điều khiển và tự động hóa, Kỹ thuật y sinh trong nhiều năm qua, có khối lượng 04 tín chỉ, được soạn thảo theo hướng tiếp cận CDIO và đã được hội đồng khoa học đào tạo của Khoa Điện-Điện tử Trường Đại học Sư phạm Kỹ thuật TP HCM thông qua
Học phần Mạch điện cung cấp cho sinh viên các kiến thức về hai định luật Kirchhoff 1, 2; Các phương pháp phân tích mạch: biến đổi tương đương, phương pháp điện thế nút, phương pháp dòng mắt lưới; Các định lý về mạch: định lý Thevenin-Norton, định lý cân bằng công suất, định lý xếp chồng; Áp dụng số phức để giải bài toán xác lập điều hòa; Mạch hỗ cảm, mạch chứa khuếch đại thuật toán, mạch ba pha đối xứng, mạch ba pha không đối xứng và mạng hai cửa
Giáo trình này gồm những chương sau:
Chương 1: Những khái niệm cơ bản về mạch điện
Chương 2: Các phương pháp phân tích mạch
Chương 3: Mạch xác lập điều hòa
Chương 4: Mạch điện ba pha
Chương 5: Mạng hai cửa
Tài liệu đưa ra những lý thuyết cơ bản sau đó đưa ra các ví dụ hướng dẫn, cách làm để giải một bài toán về mạch điện, cách tính toán để
từ đó giúp sinh viên nắm vững lý thuyết đã học và tự mình làm được các bài tập được đưa ra ở cuối mỗi chương
Các tác giả biên soạn giáo trình này đã cố gắng sưu tầm các tài liệu trong và ngoài nước, với sự đóng góp tận tình của các đồng nghiệp trong khoa, đã cố gắng biên soạn và chỉnh sửa nhưng chắc không thể tránh
Trang 4những thiếu sót, rất mong những sự đóng góp ý kiến của các đồng nghiệp
và của các em sinh viên
- Mọi ý kiến đóng góp xin gửi về:
Khoa Điện-Điện tử, Trường Đại học Sư phạm Kỹ thuật TP HCM
Email: tamnm@hcmute.edu.vn, giangtt@hcmute.edu.vn,
hoangltt@hcmute.edu.vn
Nhóm tác giả
Trang 5MỤC LỤC
LỜI NÓI ĐẦU 3
MỤC LỤC 5
Chương 1 NHỮNG KHÁI NIỆM CƠ BẢN VỀ MẠCH ĐIỆN 9
1.1 MẠCH ĐIỆN 9
1.2 CÁC ĐẠI LƯỢNG ĐẶC TRƯNG CHO QUÁ TRÌNH NĂNG LƯỢNG TRONG MẠCH ĐIỆN 12
1.2.1 Dòng điện 12
1.2.2 Điện áp 12
1.2.3 Công suất 13
1.2.4 Năng lượng tích lũy trong cuộn dây 14
1.2.5 Năng lượng tích lũy trong tụ điện 14
1.3 CÁC PHẦN TỬ CƠ BẢN CỦA MẠCH ĐIỆN 15
1.3.1 Điện trở 15
1.3.2 Điện cảm 15
1.3.3 Điện dung 16
1.3.4 Nguồn điện 17
1.4 CÁC ĐỊNH LUẬT CƠ BẢN CỦA MẠCH ĐIỆN 19
1.4.1 Định luật Ohm 19
1.4.2 Định luật Kirchhoff 1 20
1.4.3 Định luật Kirchhoff 2 21
1.5 BIẾN ĐỔI TƯƠNG ĐƯƠNG MẠCH 27
1.5.1 Biến đổi tương đương điện trở mắc nối tiếp 27
1.5.2 Biến đổi tương đương điện trở mắc song song 28
1.5.3 Mạch chia dòng điện (định lý chia dòng điện) 28
1.5.4 Mạch chia áp (cầu phân thế) 28
1.5.5 Biến đổi tương đương điện trở mắc hình sao sang tam giác: Y ∆ 31
Trang 61.5.6 Biến đổi tương đương điện trở mắc hình tam giác sang
hình sao: ∆ Y 31
1.5.7 Biến đổi tương đương nguồn sức điện động mắc nối tiếp 32
1.5.8 Biến đổi tương đương nguồn dòng mắc song song 32
1.5.9 Biến đổi tương đương nguồn 33
Bài tập chương 1 40
Chương 2 CÁC PHƯƠNG PHÁP PHÂN TÍCH MẠCH 59
2.1 PHƯƠNG PHÁP ĐIỆN THẾ NÚT 59
2.2 PHƯƠNG PHÁP DÒNG MẮT LƯỚI (DÒNG ĐIỆN MẠCH VÒNG) 68
2.3 ĐỊNH LÝ THEVENIN NORTON 71
2.3.1 Định lý Thevenin 72
2.3.2 Định lý Norton 77
2.3.3 Truyền công suất cực đại 80
2.4 NGUYÊN LÝ XẾP CHỒNG 86
Bài tập chương 2 95
Chương 3 MẠCH XÁC LẬP ĐIỀU HÒA 137
3.1 QUÁ TRÌNH ĐIỀU HÒA 137
3.1.1 Chu kỳ, tần số, tần số góc 138
3.1.2 Trị số tức thời của dòng điện 138
3.1.3 Biểu diễn góc lệch pha giữa điện áp và dòng điện 139
3.1.4 Trị số hiệu dụng của dòng điện 141
3.2 BIỂU DIỄN CÁC ĐẠI LƯỢNG ĐIỀU HÒA BẰNG SỐ PHỨC 141
3.2.1 Định nghĩa và cách biểu diễn số phức 141
3.2.2 Đổi từ dạng đại số sang dạng mũ 142
3.2.3 Đổi từ dạng mũ sang dạng đại số 143
3.2.4 Một số phép tính đối với số phức 143
3.3 QUAN HỆ DÒNG ÁP TRÊN CÁC PHẦN TỬ R, L, C, TRỞ KHÁNG VÀ DẪN NẠP 144
Trang 73.3.1 Mạch điện xoay chiều thuần trở R 144
3.3.2 Mạch điện xoay chiều thuần cảm 145
3.3.3 Mạch điện xoay chiều thuần dung 147
3.3.4 Mạch điện xoay chiều gồm R - L - C mắc nối tiếp 148
3.4 CÔNG SUẤT 152
3.4.1 Công suất tức thời 152
3.4.2 Công suất tác dụng 153
3.4.3 Công suất phản kháng 154
3.4.4 Công suất tiêu thụ và công suất phản kháng trên điện trở R 154
3.4.5 Công suất tác dụng và công suất phản kháng trên cuộn dây 155
3.4.6 Công suất tác dụng và công suất phản kháng trên tụ điện 156
3.4.7 Công suất biểu kiến S 157
3.4.8 Phương pháp giải bài toán xoay chiều 157
3.4.9 Phối hợp trở kháng giữa tải và nguồn 158
3.4.10 Cộng hưởng 158
3.5 MẠCH KHUẾCH ĐẠI THUẬT TOÁN (OP-AMP) 159
3.6 HỖ CẢM 162
Bài tập chương 3 179
Chương 4 MẠCH ĐIỆN BA PHA 233
4.1 KHÁI NIỆM CHUNG 233
4.2 CÁCH NỐI MẠCH BA PHA 235
4.2.1 Cách nối hình sao đối xứng (Y) 235
4.2.2 Cách nối tam giác đối xứng (∆) 236
4.3 CÔNG SUẤT MẠCH BA PHA 237
4.3.1 Công suất tác dụng 237
4.3.2 Công suất phản kháng 238
4.3.3 Công suất biểu kiến 238
4.4 CÁCH GIẢI MẠCH ĐIỆN BA PHA ĐỐI XỨNG 238
4.4.1 Tải nối hình Y đối xứng 238
Trang 84.4.2 Tải nối tam giác đối xứng 239
4.5 CÁCH GIẢI MẠCH ĐIỆN BA PHA KHÔNG ĐỐI XỨNG 241
4.5.1 Tải nối hình Y, có dây trung tính tổng trở Z0 241
4.5.2 Tải nối hình Y, tổng trở dây trung tính Z0 = 0 242
4.5.3 Tải nối hình không đối xứng 243
Bài tập chương 4 255
Chương 5 MẠNG HAI CỬA 267
5.1 KHÁI NIỆM 267
5.2 CÁC HỆ PHƯƠNG TRÌNH TRẠNG THÁI: Z, Y, H, A 267
5.2.1 Hệ phương trình trạng thái dạng Z 267
5.2.2 Phương pháp xác định các thông số Z 268
5.2.3 Hệ phương trình trạng thái dạng Y 270
5.2.4 Hệ phương trình trạng thái dạng H 272
5.2.5 Hệ phương trình trạng thái dạng A 273
5.3 PHÂN LOẠI MẠNG HAI CỬA 275
5.3.1 Mạng hai cửa tương hỗ 275
5.3.2 Mạng hai cửa đối xứng 275
5.4 CÁC THÔNG SỐ LÀM VIỆC 276
5.4.1 Trở kháng vào sơ cấp ZV1 276
5.4.2 Trở kháng vào thứ cấp ZV2 276
5.4.3 Trở kháng vào ngắn mạch đầu ra 277
5.4.4 Trở kháng vào hở mạch đầu ra Z1h 278
5.4.5 Trở kháng sóng của mạch hai cửa (ZC) 279
5.4.6 Hệ số truyền đạt sóng 279
5.5 LỌC ĐIỆN 280
Bài tập chương 5 288
Đáp số 302
TÀI LIỆU THAM KHẢO 318
Trang 9Chương I NHỮNG KHÁI NIỆM CƠ BẢN VỀ MẠCH ĐIỆN
Mục tiêu
Sau khi đọc chương này, sinh viên có thể:
- Có khả năng mô tả và nhận diện mạch điện và các phần tử cơ
bản của mạch điện
- Có khả năng áp dụng định luật Kirchoff, biến đổi tương đương,
để giải mạch điện
- Tính toán được công suất nguồn, công suất tiêu tán, cân bằng
công suất của một mạch điện
A TÓM TẮT LÝ THUYẾT VÀ VÍ DỤ
1.1 MẠCH ĐIỆN
Mạch điện: là một hệ thống gồm các thiết bị điện, điện tử ghép
lại Trong đó xảy ra các quá trình truyền đạt, biến đổi năng lượng hay tín hiệu điện từ đo bởi các đại lượng dòng điện, điện áp
- Mạch điện được ghép từ nhiều phần tử nhỏ riêng lẻ, mỗi phần tử
có một chức năng nhất định Mạch điện có hai loại phần tử chính, là nguồn và tải
- Nguồn là các phần tử dùng để cung cấp năng lượng điện hoặc tín hiệu điện cho mạch Ví dụ: máy phát điện, ăc quy, pin, cảm biến…
- Tải là các phần tử nhận năng lượng điện hay tín hiệu điện và chuyển hóa thành các dạng năng lượng khác Ví dụ: động cơ điện, lò điện, bóng đèn điện…
- Ngoài ra, trong mạch còn có một số phần tử khác, như phần tử dây nối dùng để nối nguồn và tải, phần tử biến đổi điện áp và dòng điện, phần tử làm khuếch đại tín hiệu trong mạch điện, v.v
Mạch điện có thể có cấu trúc rất đơn giản được biểu diễn thực tế như sơ đồ dưới đây: gồm các bóng đèn mắc song song, nguồn điện, ổ cắm, dây dẫn… được ghép nối tiếp hoặc song song tạo thành một mạch kín
Trang 10Sơ đồ một mạch điện đơn giản
Kết cấu hình học của mạch điện
Nhánh: là một đoạn gồm những phần tử ghép nối tiếp nhau, trong đó có cùng một dòng điện chạy thông từ đầu nọ đến đầu kia
Nút: là giao điểm gặp nhau của 3 nhánh trở lên
Vòng (mạch vòng, mắt lưới): là một lối đi khép kín qua các nhánh
Trang 11Ví dụ 1.2: Cho mạch điện như Hình 1.2 Hãy cho biết mạch điện
trên có bao nhiêu nhánh, bao nhiêu nút và bao nhiêu vòng?
+ Nhánh 1: gồm phần tử R1 mắc nối tiếp với nguồn E1
+ Nhánh 2: gồm phần tử R2 mắc nối tiếp nguồn E2
Trang 121.2 CÁC ĐẠI LƯỢNG ĐẶC TRƯNG CHO QUÁ TRÌNH NĂNG LƯỢNG TRONG MẠCH ĐIỆN
1.2.1 Dòng điện
Khái niệm
Dòng điện là dòng các điện tích chuyển dời có hướng dưới tác dụng của điện trường
Quy ước: Chiều dòng điện hướng từ cực dương về cực âm của
nguồn hoặc từ nơi có điện thế cao đến nơi có điện thế thấp
Cường độ dòng điện I là đại lượng đặc trưng cho độ lớn của dòng
điện Cường độ dòng điện được tính bằng lượng điện tích chạy qua tiết diện thẳng của vật dẫn trong một đơn vị thời gian
dq i dt
Đơn vị của dòng điện là ampe (A)
Bản chất dòng điện trong các môi trường
Trong kim loại: Lớp ngoài cùng của nguyên tử kim loại có rất ít electron, chúng liên kết rất yếu với các hạt nhân và dễ bật ra thành các electron tự do Dưới tác dụng của điện trường các electron tự do này sẽ chuyển động có hướng tạo thành dòng điện
Trong dung dịch: Các chất hòa tan trong nước sẽ phân ly thành các ion dương tự do và các ion âm tự do Dưới tác dụng của điện trường các ion tự do này sẽ chuyển động có hướng tạo nên dòng điện
Trong chất khí: Khi có tác nhân bên ngoài (bức xạ lửa, nhiệt…) tác động, các phần tử chất khí bị ion hóa tạo thành các ion tự do Dưới tác dụng của điện trường chúng sẽ chuyển động tạo thành dòng điện
1.2.2 Điện áp
Điện áp là đại lượng đặc trưng cho
khả năng tích lũy năng lượng của điện
trường Trong mạch điện, tại các điểm
đều có một điện thế nhất định Hiệu
điện thế giữa hai điểm gọi là điện áp U
R i
Trang 13Trong đó:
A: điện thế tại điểm A;
B: điện thế tại điểm B;
UAB: hiệu điện thế giữa A và B
Quy ước: Chiều điện áp là chiều từ điểm có điện thế cao đến điểm
có điện thế thấp
Đơn vị điện áp là vôn (V) Ký hiệu: U, u(t)
1.2.3 Công suất
Công suất P là đại lượng đặc trưng cho khả năng thu và phát năng
lượng điện trường của đòng điện Công suất được định nghĩa là tích số của dòng điện và điện áp:
Công suất tức thời
p = u.i (W) Trong đó p là công suất tức thời
Nếu dòng điện và điện áp cùng chiều thì dòng điện sinh công dương P > 0 (phần tử đó hấp thụ năng lượng)
Nếu dòng điện và điện áp ngược chiều thì dòng điện sinh công
âm P < 0 (phần tử đó phát năng lượng)
Công suất tác dụng còn gọi là công suất trung bình hay công
suất tiêu thụ
0
1
U: điện áp hiệu dụng;
I: dòng điện hiệu dụng;
cos: hệ số công suất, với = u - i (u là góc pha đầu của
điện áp và i là góc pha đầu của dòng điện)
Công suất tiêu thụ trên điện trở P = RI2
Trang 141.2.4 Năng lượng tích lũy trong cuộn dây
Khi cho dòng điện chạy qua cuộn dây thì sẽ sinh ra từ thông Φ
dt
(1.5) Công suất truyền đến cuộn cảm được xác định theo công thức:
1.2.5 Năng lượng tích lũy trong tụ điện
Điện áp giữa hai đầu tụ điện phụ thuộc bởi sự phân chia điện tích giữa hai bản tụ điện Khi có dòng điện chạy qua tụ điện thì sẽ sinh ra một điện tích q
Ta có: q = c.u (1.9) Những điện tích này có lực điện tác động chúng đó là điện trường,
1)(t Li2 t
Trang 15từ u(-) = 0, chúng ta có thể viết
2
1( ) ( )2
c
Từ kết quả này chúng ta thấy rằng WC(t) 0 Do đó từ (1.12) tụ điện là phần tử thụ động của mạch Do đó điện tích trên tụ điện (1.9) và (1.12) mang lại
uR
Hình 1.4
uR = Ri Điện dẫn: g
áp, mạch thu vô tuyến, TV, radar và các động cơ điện
Ký hiệu: L; Đơn vị: Henry (H); mH=10-3H
J C
t q t
2
1)(
2
Trang 16Trong đó: i là dòng điện đi qua cuộn dây, uL là điện áp đặt giữa hai đầu cuộn dây, di/dt chỉ sự biến thiên của dòng điện theo thời gian
Lưu ý: Trong mạch điện một chiều thì điện áp giữa hai đầu cuộn
dây bằng 0 Khi đó cuộn dây được xem như bị nối tắt
1.3.3 Điện dung
Đặc trưng cho hiện tượng tích phóng năng lượng điện trường Tụ điện là phần tử thụ động, được thiết kế nhằm mục đích lưu trữ năng lượng dưới dạng năng lượng điện trường Cũng như điện trở, tụ điện là loại linh kiện phổ biến thường gặp nhất trong các mạch điện Tụ điện được sử dụng rất rộng rãi trong nhiều loại mạch, từ mạch điện tử, mạch truyền thông, trong các loại máy tính cũng như trong hệ thống điện Lấy ví dụ, tụ điện là một bộ phận quan trọng trong bộ thu sóng vô tuyến của radio, hoặc là đóng vai trò là phần tử nhớ động trong các hệ thống máy tính
Ký hiệu: C; Đơn vị: Farad (F)
Khi cho dòng điện đi qua tụ điện thì sẽ sinh ra điện tích q;
u: điện áp đặt giữa hai đầu bản cực của tụ điện, theo tính chất tụ điện ta có: idt
c
1
uC
Lưu ý: Trong mạch điện một chiều thì dòng điện qua hai đầu tụ
điện bằng 0 Khi đó tụ điện được xem như bị hở mạch
Trang 171.3.4 Nguồn điện
1.3.4.1 Nguồn độc lập
Ý nghĩa của từ “độc lập” là giá trị của nguồn không phụ thuộc bất
kỳ vào phần tử nào trong mạch và được cho trước giá trị
Nguồn áp một chiều
Ký hiệu:
Hình 1.7
E: giá trị của nguồn Chiều của điện áp từ + sang -
Chiều của sức điện động ngược lại
Nguồn áp xoay chiều
J: giá trị của nguồn dòng, đơn vị (A);
↑: chỉ chiều của dòng điện
u +_
J
Trang 19Hình 1.13
u 2 = r.i 1 ; r: đơn vị đo là ohm
1.4 CÁC ĐỊNH LUẬT CƠ BẢN CỦA MẠCH ĐIỆN
1.4.1 Định luật Ohm
Các loại vật liệu nói chung đều có một đặc tính vật lý là có khả năng cản trở dòng điện chạy qua nó Đặc tính này được biểu diễn bằng một đại lượng gọi là “điện trở” Điện trở được ký hiệu bằng chữ R, đơn vị đo điện trở là Ohm, thường ký hiệu là Ω
R i
uR
Khi cho dòng điện đi qua điện trở R, u là điện áp đặt giữa hai đầu R Theo định luật Ohm ta có: uR = i R
Ví dụ 1.3: Một bàn ủi điện tiêu thụ dòng điện 2(A) khi hoạt động
với điện áp 120(V) Xác định điện trở của bàn ủi
Ví dụ 1.4: Cho mạch điện như Hình 1.14 Xác định dòng điện i chạy
qua mạch, điện dẫn G của mạch và công suất p tiêu tán trên điện trở
DC
+
_ U i
Hình 1.14
1(V) u2
Trang 20Giải
Áp dụng định luật Ohm ta tính được dòng điện trong mạch:
)(6)(10.610.5
Ví dụ 1.5: Một nguồn điện hình sin có biểu thức điện áp tức thời
u(t) = 20 sinπt được nối vào hai đầu điện trở R = 5 (kΩ) Xác định biểu thức dòng điện tức thời qua điện trở
R
u
10.5
1.4.2 Định luật Kirchhoff 1 (định luật K1) (định luật dòng,
định luật nút)
Bản thân định luật Ohm không cung cấp đủ công cụ để có thể phân tích một mạch điện Tuy nhiên khi sử dụng định luật Ohm kết hợp với hai định luật Kirchhoff về mạch điện, ta sẽ giải được nhiều dạng mạch điện khác nhau
Định luật K1 dựa trên quy luật bảo toàn điện tích, theo đó tổng đại
số các điện tích nằm trong một hệ kín là không thay đổi Định luật K1 được phát biểu như sau:
Tổng đại số của các dòng điện đi vào một nút (hay một biên khép kín) thì bằng 0
Trang 21Định luật K1 có thể biểu diễn dưới dạng toán học như sau:
Trong đó N là tổng số nhánh kết nối với nút đang xét và in là dòng điện thứ n đi vào (hoặc đi ra) nút đó Dựa vào định luật có thể quy ước: Các dòng điện đi vào một nút thì có giá trị dương, còn các dòng điện đi
ra một nút thì có giá trị âm, hoặc ngược lại
Ví dụ 1.6: Cho dòng điện ra vào một nút theo hình vẽ sau:
Đi theo một vòng kín với chiều tùy ý chọn thì tổng đại số các điện
áp trên các phần tử bằng 0 Với chiều của i, u, cùng chiều đi của vòng thì mang dấu dương, ngược lại mang dấu âm
Phương trình định luật Kirchhoff 2:
m 0uTrong đó M là tổng số các điện áp trong vòng kín (cũng chính là tổng số nhánh trong vòng kín), v là điện áp trên thành phần thứ m
Trang 22Chú ý: Nếu mạch có d nút, n nhánh thì ta có (d-1) phương trình
định luật Kirchhoff 1 và (n-d+1) phương trình định luật Kirchhoff 2
Ví dụ 1.7: Cho mạch điện như Hình 1.16, tìm dòng điện qua các
Hình 1.16
Giải
Giả sử ta chọn chiều dương theo chiều kim đồng hồ
Tại nút b: Theo định luật Kirchhoff 1 ta có:
I1 – I2 – I3 = 0 (1) Giả sử ta khảo sát vòng kín (a, b, d, a), áp dụng định luật Kirchhoff
2 ta có:
Uab + Ubd + Uda = 0
I1.R1 + I3.R3 - E1 = 0 (2) Khảo sát vòng (b, c, d, b) theo định luật Kirchhoff 2 ta có:
Ubc + Ucd + Udb = 0
I2.R2 + E2 –I3.R3 = 0 (3) Giải hệ ba phương trình (1) (2) (3) ta tìm được dòng các nhánh I1,
Trang 24Ví dụ 1.10: Cho mạch điện như Hình 1.19
8Ω
4Ω I
16A
2V
6Ω 11Ω
8Ω 4Ω
E R
Trang 25Ví dụ 1.11: Cho mạch điện như Hình 1.20 Tính IS biết nguồn 20V phát công suất 80 W..
Trang 26Áp dụng định luật K2: 6I +16I2 -8I1 = 0 (3)
Từ (1),(2) và (3), ta có: I1 = 15A; I2 = 6A; I=4A
2Ω
4Ω II 8I1I
I3
Trang 27Giải hệ phương trình (1), (2), (3)
I1 = 10A; I2 = -2A; I3 = 12A
Ví dụ 1.14: Cho mạch điện như Hình 1.23 Tìm các dòng điện I1,
Giải hệ phương trình (1), (2), (3): I1 = 4A; I2 = 2A; I3 = 1A
1.5 BIẾN ĐỔI TƯƠNG ĐƯƠNG MẠCH
1.5.1 Biến đổi tương đương điện trở mắc nối tiếp
Khi ta có mạch gồm nhiều điện trở mắc nối tiếp nhau, ta có thể biến đổi thành một điện trở tương đương bằng cách cộng chúng lại:
Trang 281.5.2 Biến đổi tương đương điện trở mắc song song
1R
1R
1 →
1 2
2 1 tđ
RR
.RRR
1.5.3 Mạch chia dòng điện (định lý chia dòng)
Xét mạch gồm hai điện trở mắc song song, giả sử ta biết I, R1 và
Hình 1.26
Ta có:
2 1
2 1 tđ
RR
.RRI
I.RU
2 1
RR
RI
I
2 1
1 2
RR
RII
1.5.4 Mạch chia áp (cầu phân thế)
Xét mạch gồm hai điện trở mắc nối tiếp nhau, giả sử ta biết U, R1
và R2 Hãy xác định điện áp U1 và U2
Trang 29R1 U1
U2U
Hình 1.27
Ta có: U = I Rtđ = I (R1 + R2) (1.15) Theo định luật Ohm ta có: U1 = I R1; U2 = I R2 lần lượt thay biểu thức (1-15) vào U1 và U2 ta suy ra được:
1 2
1 1
RR
R U
U
2 1
2 2
RR
R U
Điện trở 6 và 3 mắc song song với nhau, do đó điện trở tương đương là:
Trang 30Điện trở 1Ω mắc nối tiếp với điện trở 5Ω, do đó điện trở tương đương là: 1 + 5 = 6 (Ω)
Mạch điện tương đương lúc này như Hình 1.28a
Trong Hình 1.28a có hai điện trở hai mắc nối tiếp nhau, do đó điện trở tương đương của chúng là: 2 + 2 = 4 (Ω)
Rtđ
4Ω
2Ω
2Ω 8Ω
Trang 311.5.5 Biến đổi tương đương điện trở mắc hình sao sang tam giác: Y
R
.RRRR
2 3 2 3 b
R
.RRRR
R
3 1 3 1 c
R
.RRRR
Trang 32c b a
a c 1
RRR
.RRR
c b a
b a 2
RRR
.RRR
c b a
b c 3
RRR
.RRR
1.5.7 Biến đổi tương đương nguồn sức điện động nối tiếp
Khi có nhiều nguồn sức điện động mắc nối tiếp ta có thể biến đổi thành một nguồn sức điện động tương đương duy nhất bằng cách cộng lại khi chúng cùng dấu và trừ khi chúng khác dấu
tđ E
E (chú ý chiều)
1.5.8 Biến đổi tương đương nguồn dòng mắc song song
Khi có nhiều nguồn dòng mắc song song ta có thể biến đổi thành một nguồn dòng tương đương duy nhất bằng cách cộng lại khi chúng cùng dấu và trừ khi chúng khác dấu
tđ J
J (chú ý chiều)
Trang 331.5.9 Biến đổi tương đương nguồn
Phép biến đổi này được gọi là phép biến đổi tương đương nguồn
Cả hai mạch điện trong Hình 1.33 đều tương đương nhau, nghĩa là dòng điện và điện áp tại hai cực a và b đều như nhau Ta cũng dễ dàng nhận thấy: Nếu nguồn áp hay nguồn dòng đều bị triệt tiêu (nguồn áp bị ngắn mạch, nguồn dòng bị hở mạch) thì điện trở đo được giữa hai cực a và b đều bằng R Trong trường hợp khác, khi hai cực a và b được ngắn mạch với nhau, dòng điện ngắn mạch ở mạch bên trái là:
Trang 34Giải
(R4 nt R9) // R8 => Rtđ1=
60 1520
60.20
[(Rtđ1 nt R12) // R7 ] nt R11 => Rtđ2= 11,25
7525
75
25
(R2 // R3) nt (Rtđ2 // R6) => Rtđ3=
7530
75.3063
6.3
26.4,
i(6 + 4) – 5 = 0
i = 1
2 A
Trang 36Rt2 nối tiếp 4k và song song 8k sau đó nối tiếp mạch 2k
Ví dụ 1.19: Cho mạch điện như Hình 1.37 Tính I0.
12mA 10kΩ
12kΩ
3kΩ
18kΩ
3kΩ6kΩ
Trang 38Áp dụng K2: -24+6I1+30I2=0 → I2=0.5A
Ví dụ 1.21: Cho mạch điện như Hình 1.39 Tính I, U