TRƯỜNGĐẠIHỌCSƯPHẠM NGUYỄNVĂNTHÌN TÍNHCHUẨNTẮCCỦAHỌHÀMPHÂN HÌNHMỘTBIẾNVÀBÀITOÁNDUY NHẤTĐỐIVỚIĐATHỨCVIPHÂN TÓMTẮTLUẬNÁNTIẾNSĨTOÁNHỌC THÁINGUYÊN-2016... Sauy chngt icpchitithnvb icnhnysinht
Trang 1TRƯỜNGĐẠIHỌCSƯPHẠM
NGUYỄNVĂNTHÌN
TÍNHCHUẨNTẮCCỦAHỌHÀMPHÂN HÌNHMỘTBIẾNVÀBÀITOÁNDUY
NHẤTĐỐIVỚIĐATHỨCVIPHÂN
TÓMTẮTLUẬNÁNTIẾNSĨTOÁNHỌC
THÁINGUYÊN-2016
Trang 2Vàohồi8giờ30ngày10t h á n g 7năm 2016
Trang 32 M t sn h l k i u L a p p a n c h o h
m ϕ- chu n t c v c h u chu n t c v n chu n t c v t chu n t c v c chu n t c v vh chunt c 182.1 Hm phn hnhϕ- chu n t c vchun tc 182.2 nhlk i uLappanchohc h u ntc 20
Trang 4Mu
1 Ld o chnt i
c h nh th nhtnh ng n muc a thk XX,vingu n g ctnh ng c ng tr nh c a J Hadamard, E Picard,
x )ph n h nh M i th nh t utc vc c n h ln y thn g k o
t h e o ccn g d ngtrong vi c nghin cu h m (nh x) phnhnh Ngc l i
giiquytnhi
ubitonvhm(nhx)phnhnh,tacngcnxydngnhngdngn h lc
m p h nhnhmt bin
vb itonduynhti via thcviphnn g h i ncuhai
ngdngtiubiuvpc aLt h u y tNevanlinna.giiquyt
c c c v nt r o n g l u n n , n h b n h l u n t r
n , k h n g c h k h a i th c s d ng c c ktqub i
t c a LthuytNevanlinna, ch ngt iphithitlpnhngdngn h lc b nthh a i phh pvitnhhungca
bitona n g t ra
Sauy chngt icpchitithnvb icnhnysinhtngvn
Trang 5
Vnn g h i ncuvh c h u ntcc khinguntn h ngn m
Trang 6u c a thkXX b ng c c c ng tr nh c a P Montel, G Julia,P.Fatou N m 1912, P Montela r a k h i n i
n sk i mtramthc h u ntcvv i cchr a sk h ngtnticcdyconnhiuhitutrncctpconcompacttimthmkhchng.Nm1998,n g
x e m x t l i v n t r n v t c k t q u q u a n
n a n v U s a o chu n t c v c h o chu n t c v m chu n t c v ikh ngi mc a c c h m trong
u chu n t c v vc h n u t n t ist h c 0<r<1,d chu n t c vyi mz n :|z n |< chu n t c vrvz n →z0,d
Ktqut r nthn g c gilBZ a l c m a n r ng,khiph
ng.Trongkhim t trong nh ng ng d ngp c
a LthuytNevan-linna ln c h o t a t i u c h u n k i
m t r a m t h m l h n g , c h n g h
n tn h lcb nthn h t vn h lcb nthh a i , tadd ngnhn
Trang 7lin h lP i c a r d b:Mthmphnhnhtrnmtphngphclh mhngnunk h ngnhnbagit r p h nbit.Nhv y,BZ a l c m a n lcuniquantrngthuntinchovicsd ngLt h u y tNevanlinnavonghincuLt h u y thchuntc.
Theo quani m n u tr n c a Bloch,nhlPicard bng vitiuchu n chu n t c sau c a Montel: M t hF c c h m p h n h n h t r
cnhX C.PangvL Zalcman,M.L.FangvL Zalcman,
Trang 8P.C.HuvD W.Meng,L.Yang,W.BergweilervJ K.Langleycng
nghincutiuchunchoh chu
ntccchmphnhnhdi iukinkhngimcaccathcohmcth
Trongbicnhnhvy,chngt itravnthnhttronglun
nl:Nghincutiuchu nchohc h u ntcn gvii uki ntrn
ath coh m t ng qu t.V n n yc gi i quyttrong Chn g
t pt tcc cnh xb o gi c c aUv chu n t c v o chu n t c v ch chu n t c v nh chu n t c v n chu n t c v chu n t c v Lehto
1−|ξ|2
||f||N = supz∈U (1−|z|2)f # (z).
QuanstktqutrncaLehtovV i r t a n e n , C.Pommerenke
Vnn g h i ncuchnhthh a i tronglunn l:Thitlpccdng
nhl L a p p a n c h o t r ngh pt h n5 i m.Vnnyc gii
Trang 9Khi x t b i to n duy nht h m p h n h n h d i i u
nhnhfv g k hch ngsaochocc
dng n o,n≥11)thf=c1e cz v g=c2e −cz ho chu n t c vc f=tg, trong chu n t c v chu n t c v chu n t c v chu n t c v chu n t c vc chu n t c vc chu n t c vh chu n t c vng chu n t c vs c1, chu n t c vc2,
- saiphnt h u htc sq u a n tmcanhiunht o nhctrnthgiin
hJ.ZhangvR.Korhonen,A.Fletcher,J.K.Langleyv
Trang 10J Meyer, T B Cao, K Liu vN Xu, K Liu vX Qi Hi n nay, ccnghincutheohn g nytptrungvoccvn: sd u y nhtc acch
Trang 12Ngo i c c ph n mu , k tlu n,t ili u tham kh o, Lu
nn c chia lm bachng tngn g viba vnnghincu chnh:
Ch ng 1 d nh cho vi c nghi n c u ti u chu n chu n t ccho hc ch m ph n h nhdi i uki n vt pkh ngi mc a a th cohm.Trong chn g n y , c h n g t i n g h i n c u
m caBloch.BZ a l c m a n n g vaitrq u a n trngtrongccktqucach ngti.c h ngminhccktquc amnh,mtmtchngt ithit l p c cnhlki u Picard, m t kh c ch ngt iph islkhkh n g p ph i trong vi c p d ng BZ a l c m a n
t r o n g t n h h u n g n h lki u Picard c a ch ngtikh ng cho ti u chu n h m h ng.nh l1.8,n h l 1 1 0
Trang 13nhl1 1 2 lt ngqutktquc aSchwickchohc chmnguyn.Nhv ynhl1.8,nhl1.10vn h l1.12lnhngmr ng
Trang 14thcsccktqucaW.Schwicknm1989.Tiptheolnhl
1.19 vh c h u n t c c a c c h m p h n h n h
k h n g c k h n g i m C h o n= 0, chu n t c vk= 1, chu n t c vn1= 1, chu n t c vu I (z) =0vi
NidungChn g 1c cngbt r o n g cccngtrnh[1,2]
Ch ng 2 nghi n c u h m ph n h nh chu n t c theo quani
m c aLappan Cth , ch ng t i thi t l p c cn h l k i u
L a p p a n c h o h m chun tc visimt hnnm
r)→ ∞khir− → 1−vRa
(z)= ϕ chu n t c v chu n t c v ( | a +ρz/ϕϕ ϕ(|a|) ( | a | ) | ) hitutrn
f, tal u n c χ (f(z),f(w))≤||f||Nϕ sup ξ∈[z,w] ϕ(|ξ|)|z−w|, trong
f # (z)
||f||Nϕ =sup z∈U .
ϕ(|z|)
im t l p c c h mϕ- chu n t c v c h u chu n t c v n chu n t c v t chu n t c v c chu n t c v r chu n t c v n g chu n t c v h chu n t c v n chu n t c v v chu n t c v chu n t c v chu n t c v t r o n g
Trang 15n h lcb n thhai ki u Hayman choh m vo h m K t qu ki
u Lappanv ing 1i mc ph tbi u nhs a u : V i c c
iz∈K∩{f n f (k) =a}. M chu n t c vt chu n t c vi chu n t c vuthv lm cdc nh n nh n theom t h
ngkh c, ktqutr nng th i mr ng ktqu c a
Tiptheo,chngtinghincun g dngc aLthuytNevanlinnacho
to n tq - sai ph n trong c c b i to n: x cn h d u y n h t h m
Trang 16ph n d ng[P(f(z))f(qz+c)] (k) , p h chu n t c v n chu n t c v b g i t r k i u H a y m a n
c h o a th coh m kt h pq - chu n t c v s a i chu n t c v p h chu n t c v n chu n t c v d chu n t c v n g [P(f(z))f(qz+ρ c)]
Ktquutincachn g nyln h l3 1 0 vs d u y nhtca
cchmphnhnhvia thco hmchungnhaumthmnh.Ccktqut i ptheocaChn g 3ln h l3 1 4 vn h l3 1 4 vp h nbg i t r
hpq- chu n t c v s a i chu n t c v p hncaZhao vZ h a n g
NidungcaChn g 3c cngbt r o n g cngtrnh[4]
K t qu nghi n c u c a lu n nn g g p m t p h n
v o t inghi nc u c b n NafostedL t h u y t
N e v a n l i n n a v h c h u n t c c c n h x ph n hnhc a P G S T S K H T r n V n T n v t i c
c H chuntccacchmphnhnhvn g dngc atcgi.Ccktquc a
lu n nc b o c o t ih i ngh :i s - t p- h n h h c ,
Q u n g Ninh 2015, Seminar Gi i t ch -i h c Sph m Th iNguy n 2012 -2016,SeminarnhmnghincutiVinTonhc
Trang 17N(r,f)=N(r,ν f )vN(r,f)=N(r,ν f ).
a =
ν 1/ϕ(f−a) Di vi so r ν a cnhnghabi ν a = ν 1/ϕ(f−a) H mm
ngbi
1 1
Trang 181.2.1.Tiuchunchuntci vihc chmphnhnhdi
iukinkhngi mcaa thco hm
Trang 19imcaf n (f n1 )(t1 )···(f n k ) (t k)−a m c bitnht l m G i sr ng
a) n j ≥t j vim i 1≤j≤k, vl i ≥2vimi1≤i≤q;
ngi mc af n (f n1 )(t1 )···(f n k ) (t k)−a m cb it n h t l m Gis rng
a) n j ≥t j vim i 1≤j≤k, vl i ≥2vimi1≤i≤q;
Trang 20j=1 j=1
Σ
Σ +
Nhnxt1.7.n h l1 8 vn h l1 1 0 vnn g khithay
f n (f n1 )(t1)···(f n k ) (t k)bia thcohmtngqut
Σk
tj
j I
Trang 21tv
v I
Trang 22Σ
j=1
Trang 24Chn g 2
Mtsn h lkiuLappancho
ng c a l p h m chu n t c Ch ngt ich ng minh m t stiuchunkiuLappancholphmny.Ngoira,chngticngthitlpc c ti uchu n chu n ki u Lappan tn g n g c h o h c h u n t c k h i t
(z)=ϕ chu n t c v chu n t c v ( | a +ρz/ϕϕ ϕ(|a|) ( | a | ) | ) →1 (2.2)
a
R
Trang 25z∈f −1 (E) ϕ(|z|) z∈f −1 (E\{∞})
Khif l hmphnhnh ϕ -chuntc.
nhl2 6 Choϕ : [ 0 ,1)→ (0,∞)l h m t n g t r n v f l h m ph
nhnht r na n vU G i sr ng E= { a1,a2,a3 }⊂Cg mba
Trang 26Hq u 2 7 Chof l h mphnhnhtrnan v U v E⊂Cl
Trang 27ctK⊂ D, t nti E = E(K)⊂Cchabn
Trang 28tk.Gisr ng v i m i t p compactK⊂D,t n t ia∈C\
(f n f (k)) #(z)≤M v i mi f∈ Fv miz∈K∩{f n f (k) =a}.
Trang 29z|)= 1 , chu n t c v chu n t c v tanhnc ccktqu
Trang 30Chn g 3
Sd u y nhtcacchmphn
-saiphnchungnhaumthmnh
Trong chng n y, ch ng t i nghi n c ung d ng c a lthuy t
l t r o n g chng ny
nh ngh a 3.1.Chof, chu n t c vg lhaih m p h n h n h k h c h n g t r n m
u f−a v g −a c c n g s k h n g i m t n h c b i H
Trang 31Nm2014,Q.Ling,L R.JievX Zuxingxt bi ton duynhtcho
−i, ,n),a m−i /=0v ii∈{0,1, ,m},
(i2)f v g t h amnphn g trnhi s R(f,g)=0, trong
Trang 32va0 0,a1, ,a m−1 ,a m /=0l c chngsp h c
Gis[f n P(f)] (k)v[g n P(g)] (k)chungnhauα(z)−IM, khi f(z)≡tg(z)v itl h
ng s tham nt d = chu n t c v1,trongd= (n+m, chu n t c v chu n t c v chu n t c v chu n t c v, chu n t c vn+m−i, chu n t c v chu n t c v chu n t c v chu n t c v, chu n t c vn), chu n t c va m−i /=0v
ii∈{0,1, chu n t c v chu n t c v chu n t c v chu n t c v, chu n t c vm}hocfvgtham n phngtrnhisR (f,g)=0, trong
R(w1,w2)=w n (a m w m +ρa m−1 w m−1+···+a0 )
—w n (a m w m +ρa m−1 w m−1+···+a0).
i
Trang 33Nhnxt3.1.i u kinmax{χ1,χ2}<0cthb q u a trongmtlp
kh ng,qvclcc h ng s ph c,q/=0vchokl snguy ndng.Choa th cP(z)
=a n z n +ρa n−1 z n−1+· · ·+a1z+a0v icc h sa0,a1, ,a n−1 ,a n =/0vm lskh ngi
ngn≥m(k+1)+5(n≥m(k+1)+3),khi(P(f(z))f(qz+c)) (k) −a(z)cvhnkh
Nh n x t 3.2.Trongn h l 3 1 4 , k h i m= 1 , c h chu n t c v n g chu n t c v t
i chu n t c v n h chu n t c v n chu n t c v l chu n t c v i chu n t c v k chu n t c v t quc aZhaovZ h a n g
Trang 34a(z)/≡0lhmphnhnh(hmnguy n)nhcaf,g va thc P(z)=
a n z n +a n−1 z n−1+···+a1z+a0v icchsa0,a1, ,a n−1 ,a n 0. G i m
Nh n x t 3.4.Trongn h l 3 1 6 , k h i m= 1 ,c h chu n t c v n g chu n t c v t chu n t c v i
n h chu n t c v n chu n t c v l chu n t c v i chu n t c v k
ucaZhaovZ h a n g chocchmphnhnhsi uvitvibckhng
Trang 35KtluncaChn g 3
Trong Chng 3, ch ng t i nghi n c ung d ng c a Lthuy t
m nh C c ktqun ylmr ng c c ktquc a Zhao vZhang
Trang 36Ktlunvn g h
Lu n n nghi n c u nh ng ng d ng c a Lthuy tNevanlinna
trongbitonhvh mchuntc,bitonduynhtcacchmph nhnhvia