throughout the dissertation strings, graph, deterministic finite automata, digital images, the basic model of digital image steganography, some parameters to determine the quality of dig
Trang 1MINISTRY OF EDUCATION AND TRAINING
HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
——————————
Nguyen Huy Truong
RESEARCH ON DEVELOPMENT OF METHODS
OF GRAPH THEORY AND AUTOMATA
IN STEGANOGRAPHY AND SEARCHABLE ENCRYPTION
DOCTORAL DISSERTATION IN MATHEMATICS AND
INFORMATICS
Hanoi - 2020
Vic b ■■ Thành viên s s Mang l Luôn h 123doc cam k Th Sau khi nh Th Xu Sau h Nhi 123doc s Mang l Luôn h 123doc cam k Th Sau khi nh Th ut phát t Sau h Nhi 123doc s Mang l Luôn h 123doc cam k Th Sau khi nh Th Xu Sau h Nhi 123doc s Mang l Luôn h 123doc cam k Th Sau khi nh Th Xu Sau h Nhi 123doc s Mang l ng ý r ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ a thu a thu t phát t u event thú v a thu a thu u event thú v a thu a thu t phát t u event thú v a thu a thu t phát t u event thú v ■ u m ■ ■ ■ ■ ■ ■■ n m ■ ■■ n m ■ ■■ n m ■ ■■ n m ■ n s ■ i tr ■ ■ ■ i tr ■ ■ ■ i tr ■ ■ ■ i tr ■ ■ ■ i tr ng n ■ ■ ng t n s ■ n s ■ ng t n s ■ n s ■ ■ ng t n s ■ n s ■ ng t n s ■ n s ■ ■ t kho th nghi n xác nh ■ ■ nghi n xác nh ý t ■ nghi n xác nh ■ ■ nghi n xác nh ■ ■ nghi ■ ■ ■ ■ ■ ý t t n ■ ■ ■ ■ t n ■ ■ ■ ■ ý t t n ■ ■ ■ ■ ý t t n ■ ph t s ■ u m t s ■ u m t s ■ u m t s ■ u m ng ho u Thành viên ti i là website d i là website d i là website d i là website d ■ ■ ■ m ra ■ ■ ■ ■ ng t m ra ■ ■ ■ ■ m ra ■ ■ ■ ■ m ra ■ ■ ■ i th ■ m m mang l ng 1 CH ng 1 CH ng t , event ki t kho th m m mang l ng 1 CH ng 1 CH , event ki t kho th m m mang l ng 1 CH ng 1 CH ng t , event ki t kho th m m mang l ng 1 CH ng 1 CH ng t , event ki t kho th m m vi ■ ■ ■ ■ ■ ■■■ ■ ■ n t ■ ■■ n t ■■ n t ■ ■■ n t ■ ■■ c hi ■ ■ o c ■ ■ ■ n kh i m ■ o c i, 123doc i m ■ i, 123doc i m ■ o c i, 123doc i m ■ o c i, 123doc i m ■ ■ ■■ ■ ■ ■■ ■ ■ ■ ■■ ■ ■ ■■ ■ ng ký s ■ ■ ■ i nh ■ ■ vi ■ ■ i nh ng ■ vi ■ ■ i nh ■ ■ vi ■ ■ i nh ■ ■ vi ■ n theo cho ng ng m ti cho ng m ti cho ng ng m ti cho ng ng m ti cho ng ■ ng l ■ ng h ■ ■ ■ ng h ■ ■ ■ ng h ■ ■ ■ ng h ■ ■ p t ■■ ■ P NH P NH n kh ■■ ■ P NH P NH n kh ■■ ■ P NH P NH n kh ■■ ■ P NH P NH n kh ■ ng quy ■ ■ ng quy ■ ng ki ■ ng quy ■ ■ ng quy ■ ■ ■ ■ ■ u chia s ng ki ■ n thi u chia s ■ n thi u chia s ng ki ■ n thi u chia s ng ki ■ n thi c s úng các ch ■■ th ã t ■ ■■ th ã t ■ ■■ th ã t ■ ■■ th ã t ■ ■■ i h ■ ■ ■ ng l ■ ■ ■ ■ ng l ■ ■ ■ ng l ■ ■ ■ ng l ■ i dùng, công ngh ■ N CÁC ng s N CÁC ■ ■ ■ i dùng, công ngh ■ N CÁC ng s N CÁC m ti ■ ■ i dùng, công ngh ■ N CÁC ng s N CÁC ■ ■ ■ i dùng, công ngh ■ N CÁC ng s N CÁC ■ ■ ■ i dùng, công ngh ng các d ■ n l m ti ng b t th ■ n l ng b t th ■ n l m ti ng b t th ■ n l m ti ng b t th ■ n 2.000.000 tài li ■ ■ ■ ■ ng D và mua bán tài li ■ ■ ■ và mua bán tài li ■ ■ ■ ■ và mua bán tài li ■ ■ ■ và mua bán tài li ■ ■ ■ chuy ■ ■■ c 123doc luôn luôn t chuy n online b ■■ c 123doc luôn luôn t chuy ■ ■■ c 123doc luôn luôn t chuy ■ ■■ c 123doc luôn luôn t ■ ■ n online b i h ■ ■ i h ■ ■ n online b i h ■ ■ n online b i h ■ ■ I ■ I ■ c kh ■ I ■ I ■ c kh ■ I ■ I ■ c kh ■ I ■ I ■ c kh ■ ■ t nh t nh t nh t nh ch v ch V U KHO ■ U KHO n 2.000.000 tài li U KHO ■ U KHO n 2.000.000 tài li U KHO ■ U KHO n 2.000.000 tài li U KHO ■ U KHO n 2.000.000 tài li ■ n sang ph ■ ■ n sang ph ■ ■ n sang ph ■ ■ n sang ph ■ ■ ■■■ t cho ng ng t cho ng ng t cho ng ng t cho ng ng ■ ■ ■ ■ ■ ■ ■ sau khi hi ■ ■ ■ hi ■ ■ ng tài li hi ■ ■ ■ hi ■ ■ ■ hi ■ N TH N TH ng tài li N TH N TH N TH N TH ng tài li N TH N TH ng tài li a123doc.net c niêm y ■ nh v ■ nh v ■ nh v ■ nh v ■ n th ■ ■■ n th ■ ■■ n th ■ ■■ n th ■ ■■ n th u hàng ■ u hàng ■ ■ u hàng ■ u hàng ■ ■ n thông tin xác minh tài kho ■ ■ ■ ■ n thông tin xác minh tài kho ■ ■ ■ n thông tin xác minh tài kho ■ ■ ■ ■ n thông tin xác minh tài kho ■ ■ ■ ■ ■ i dùng Khi khách hàng tr A THU A THU trí c ■ ■ i dùng Khi khách hàng tr A THU A THU u hi trí c ■ ■ i dùng Khi khách hàng tr A THU A THU trí c ■ ■ i dùng Khi khách hàng tr A THU A THU trí c ■ ■ KTTSDDV ■ t c hi u hi o c ■ hi o c ■ hi u hi o c ■ hi u hi o c ■ hi t ho ■ ■ ■ ■ ■ ■ ■ ■■ ■ ■ ■ ■■ u qu ■ ■ ■■ ■ ■ ■ ■■ ■ ■ ■ ■■ u qu a mình trong l a mình trong l u qu a mình trong l u qu a mình trong l ■ nh v ■■ u Vi ■ ■ ■■ u Vi ■ ■ ■■ u Vi ■ ■ ■■ u Vi ■ ■ ■■ c các quy N Chào m N Chào m t c N Chào m N Chào m ■ t c N Chào m N Chào m t c N Chào m N Chào m t c ng ngh ■ i gia t nh i gia t ■ i gia t ■ i gia t ■■■ ■ ■ nh ■ ■ ■ ■ nh ■ ■ nh ■ c: tài chính tín d ■ t Nam Tác phong chuyên nghi ■ t Nam Tác phong chuyên nghi ■ ■ t Nam Tác phong chuyên nghi ■ t Nam Tác phong chuyên nghi ■ n online không khác gì so v ■ ■ n online không khác gì so v t, uy tín cao nh ■ n online không khác gì so v ■ ■ n online không khác gì so v ■ ■ n online không khác gì so v ■ c c t, uy tín cao nh ng thu nh nh v ng thu nh nh v t, uy tín cao nh ng thu nh nh v t, uy tín cao nh ng thu nh nh v a v ■ ■■ ■ ■ ■ ■ ■ nh v ■ nh v ■ nh v ■ nh v ■ p nh nh áp d ■ ■ c: tài chính tín d ■ ■ c: tài chính tín d ■ ■ c: tài chính tín d ■ ■ c: tài chính tín d i vi ■ ng b ng b ■ ng b ng b ■ ng b ng b ■ ng b ng b ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ thành thành viên c n email b c tài li ■ thành thành viên c n email b c tài li ■ thành thành viên c n email b c tài li ■ thành thành viên c n email b c tài li ■ c b t, vi ■■■ ■■■ p online cho t ■■■ ■■■ p online cho t ■■■ ■■■ p online cho t ■■■ ■■■ p online cho t ■ ■ ■ ■ ■ ng cho các d ng, công ngh ■ t Mong mu ■ ■ t Mong mu ■ ■ t Mong mu ■ t Mong mu ■ u và ki 123doc v u và kinh doanh online Tính u và kinh doanh online Tính u và kinh doanh online Tính ó có ngh ■ ■ ■ ■ ■■ ■ ■ ■ ■ ■ ■ ng, công ngh ■ ■ ng, công ngh ■ ■ ng, công ngh ■ ■ ng, công ngh i 123doc i 123doc.net! Chúng tôi cung c i 123doc i 123doc.net! Chúng tôi cung c i 123doc i 123doc.net! Chún mô t i 123doc i 123doc.net! Chúng tôi cung c ng ý v ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■■ t c ■ ■■ ■ t cwebsite ■ ■■ t c ■ ■■ t c ■ ■ ■ i b p, hoàn h ■ ■ ■ i b p, hoàn h ■ n mang l i b p, hoàn h ■ ■ ■ i b p, hoàn h ■ ■ ■ i b a là Thàn là website ki ch v thông tin, ngo ■ a 123doc và n ng ký v n mang l các thành viên c ■ a 123doc và n n ■ a 123doc và n ng ký v n mang l các thành viên c ■ a 123doc và n ng ký v n mang l các thành viên c ■ ■ n g n g n g n g n g i các ■ ■ ■■ ■ ■■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ó có th c B ■ ■ thông tin, ngo c B ■ a ch ■ thông tin, ngo c B ■ ■ thông tin, ngo c B ■ ■ thông tin, ngo c B i i ■ i cho c i 123doc.netLink xác th ■ i 123doc.netLink xác th ■ ■ ■ o, ■ i choguyên tri th ■ o, ■ o, i cho c ■ o, i cho c ■ u kho n có th ng ky, b ■ n có th ■ n có th n có th n có th ■ c 100.000 l email b ■ ■ ■ ■ ■ ■ ■■■ i ng cao tính trách nhi p ti cao tính trách nhi p ti ng cao tính trách nhi p ti ■ cao tính trách nhi p ti ■ ■ ■ ■■ ■■■ ng ■■ ■ ng ■■ ■ n c ■ ■ ■ ■ a website ■ ■ ■ ■ a website ■ ■ a website ■ , Khách hànnh xác, nhanh chóng phóng to, thu nh n vào tài kho n vui lòng phóng to, thu nh n vào tài kho ■ n th phóng to, thu nh n vào tài kho n th phóng to, thu nh n vào tài kho n th phóng to, thu nh ■ ■ c niêm y ■ ■ ■ ■ a n không m ti ■ ■■ i ng ■ ng xã h ■ i ng i ây) cho b ■ i ng ■ ■ i ng p D p D ng xã h p D ng xã h ■ t truy c ■ ■ ■ ■ ■ c quý báu, phong phú, , Khách hàng có th ■■ , Khách hàng có th , Khách hàng có th , Khách hàng có th n online hi ■ ■ ■ i ■ i ■ ■ i ■ ■■ ch V ng ky, b ch V ■ m tháng 5/2014; 123doc v m tháng 5/2014; 123doc v ch V m tháng 5/2014; 123doc v t theo t i m ■ ■ ■ ■ ■■ ■ ■ ng nh ■ ■ ■ ■ ■ c s i m ■ ■ c s i m m n c ■ p m m n c ■ ■ m n c m n c ■ ng ý Mong mu ■ (nh ■ (nh t ngu ■ ■ ■ ■ ■ ■ (nh ■ ■ ■ tùy ý ■ tùy ý ■ tùy ý ■ ■■■ n, tùy thu t ngu tùy ý ■ ■■■ t ngu tùy ý ■ ng th a 123doc, b ■ ■ ■ a 123doc, b ■ ■ a 123doc, b a 123doc, b ■ u qu p email c i ngày, s n vui lòng ■ ■ ■■■ ■ ■■■ n tài nguyên tri th ■ ■ ■ ■■■ ■ c g n tài nguyên tri th c g n tài nguyên tri th ■ ■ và uy tín nh c mô t c mô t ■ ■ ■ c mô t ng ng ■ ■ ng ng ■ ng ng i v c vào các “ ■ ng ng i v ■ i ■ ■ ■ ■ ■ ■ m T ■ a mình và click vào link 123doc a d ■ ■■ ■ ■ n man nguyên tri th ■■ n s dàng tra c ■■ n s dàng tra c ■■ n s ■■ dàng tra c ■■ n s ■■ dàng tra c ■■■ ■ u 2.000.000 thành viên ng nh ■■■ ■■■ ■ ■ ng, giàu giá tr ■ ■■ ■ a ch ■■ ■ a ch ■■ t c i dùng M ■■■ i dùng M ■■■ i dùng M ■■■ i dùng M ■■■ ■ ■ ■ i ây) cho b ■ i ây) cho b ■ ■ i ■ i ây) cho b các o b p email c c quý báu, phong phú, email b ■ ■ email b ■ c h ■ c h ■ ■ c h u Kho c quý báu, phong phú, ■ ■ c h c quý báu, phong phú, ■ ■ c 100.000 l c 100.000 l c 100.000 l ■ u tài li ■ u tài li ■ u tài li ■ u tài li c tiêu hàng c tiêu hàng c tiêu hàng c tiêu hàng ■ ng nh ■ ng nh ng nh ■ ■ ng nh ■ nn viên c ■ ■ ■ n Th ■ ■ ■ ■ ■■ a mình và click vào link 123doc ■ ■ c quý báo các users có thêm thu nh n, tùy thu u m n, tùy thu u m u m n, tùy thu u m ■ ng th ■ ■■ ■ ■ ■■ ■ ■■ ng quy ■■ ■ ng quy ■ ng quy ■■ a Thu ■ ng quy ■■ ■ t cách chính xác, nhanh chóng t truy c t cách chính xác, nhanh chóng t truy c t cách chính xác, nhanh chóng t truy c t cách chính xác, nhanh chóng ■ ■■ ■■ ■■ ng ky, b ■■ ng ky, b ■ ng ký, l a website ■ i mong mu ■ ■ ■ ■ ■ ■ ■ ■ n v ■ ■ n l ã g c vào các “ ■ n l c vào các “ a d ■ ■ n l ■ ■ ■ n l c vào các “ ■ ■ a 123doc.net tr ■ a 123doc.net tr ■ p m a 123doc.net tr ■ ■ a d p m a 123doc.net tr ■ a d p m i sau n ■ ■ i sau n i sau n ■ i sau n ■ i t vào top 200 các website ph ■ n vui lòng n vui lòng ng, giàu giá tr ■ ■ ■ ■ ■ ■ i ngày, s D ng, giàu giá tr i ngày, s ng, giàu giá tr i ngày, s n t ■ ■ ■ ■ ■ ■ ■ ng D ■ ■ p ti i ■ p ti i ■ p ti p ti i ■ ■ u Kho ■ u Kho ■ ■ ■■ ■ ■ ■■ u Kho ■ ■ n trên website i ■ ■ n trên website ■ n trên website ■ ■ n trên website thành th thành th ■ thành th ng nh ch V thành th ng nh u ki ã g ■ ■ ■ ■■ u 2.000.000 thành viên ■ u 2.000.000 thành viên ■ ■ u 2.000.000 thành viên ■ n Th ■ ■ n Th ■ ■■ n Th ■■ n cho cho các users có thêm thu nh i ■ ” sau ■ p Chính vì v ng th p email c p email c ■ ■ ■ ■ ■ ng th ■ ■ ng th vi a Thu vi a Thu vi vi a Thu ■ ■ ■ ■ i mong mu ■ ây (sau ■ ■ ■ n tài li ■ n tài li n tài li i mong mu n tài li i mong mu ■ bi ■ ■ ■ ■ n v ■ n v a mình và click vào link 123doc a mình và click vào link 123doc n v ■ y 123doc.net ra ■ ■ n nh ■ ■ ■ ■ ■ ■ u online l u online l u online l ây u online l ■ ■ n t ■■■ ■ ■ ■■ n t ■■ n t ■■ ■ ng D i Vi ng D ng ký, l ■ ng ký, l ng D ■ ng ký, l ■ ■ ■ c g ■ n nh ■ n nh i n nh n nh ■ t Nam, t ■ ■ ■ i ■ i ch V ch V u ki ■ ch V ■ ■■ ■ ■ ■ ■ u ki ■ ■ u ki ■ t Vi t Vi ■ t vào top 200 các website ph t Vi t T t vào top 200 các website ph t Vi t vào top 200 các website ph ■ ■ n cho cho các users có thêm thu nh ■ ■ ■ ■ ■ ■ ■ ■ ■ n cho cho các users có thêm thu nh ■ n cho cho các users có thêm thu nh t Nam, cung c ” sau p Chính vì v t Nam, cung c ” sau t Nam, cung c t Nam, cung c ” sau ■ m tìm ki ng th ■ ■ ■ ■ ây (sau ây (sau ■ ■ ây (sau áp ã g ã g ■ ■ ■ ■ ■ ng nhu c ■ m thu y 123doc.net ra i i ■ i ■ ■ ■ ■ ■ m, chúng tôi có th ■ ■ p nh ây ■ p nh ây p nh p nh ây ■■■ c top 3 Google Nh ■■■ ■■■ ■ ■ ■ ■ ■ u chia s ng tài li ng tài li ng tài li ng tài li c g c g ■ ■ c g ■ bi bi bi ■ ■ ■ ■ ■ ■ ■ ■■■ ■■ ■■■ n nh ■■■ n nh ■■■ n nh tài li t T t T ■ ■ t T p Chính vì v ■ ■ ■ ■ ■ ■ c không th ■ c không th ■ c không th p Chính vì v c không th ■ p Chính vì v u ch ■ ■■■■ p nh m i Vi i Vi i Vi ng th ng th ng th ■■■ ■ ■ ■ ■ ■ áp t Nam, t t Nam, t t Nam, t ■ ■ ■ ■ ■ c danh hi ■ ■ KTTSDDV theo quy ■ tìm th ng nhu c tìm th ■ tìm th tìm th ng và ki i i y 123doc.net ra ■ i ■ ■ ■ y 123doc.net ra ■ y 123doc.net ra m, chúng tôi có th m, chúng tôi có th ■ ■ m, chúng tôi có th ■ ■ ■ ■ ■ ■ ■ y trên th ■ u do c y trên th tìm ki y trên th tìm ki y trên th tìm ki m ti u chia s ■ ■ ■ ■ ■ n online ■ ng ■ m thu ■ m thu ■ m thu ■ ■■ tài li ■ ■■ ■■ ■■ ■■ ■ ■■ t ■ ■■ ■ ■ ■ ■ ng ngo ■ ng bình ch ng ngo ■ c top 3 Google Nh ng ngo c top 3 Google Nh ng ngo c top 3 Google Nh u ch m ■ ■ p nh p nh m p nh m ■ ■ ■ ■ áp ■ ■ ■ ■ ■ ■ áp ■ áp i tr i tr ■ i tr i tr ■ ■■ ■ ■ ng nhu c ■ ■ ■ ■ 123doc.net KTTSDDV theo quy n là website ki 123doc.net KTTSDDV theo quy 123doc.net ng nhu c 123doc.net KTTSDDV theo quy ng nhu c ng và ki ■■■■ ■■■■ ■■■■ ■ ■ u chia s ■ ■ m ti u chia s u chia s ■ ■ m ti c danh hi c danh hi c danh hi n online ■ ■ ■ ■ tài li ■ ■ ■ n online hi tài li tài li t t t ■ ■ ■ ■ u ch u do c ■ u do c ■ u do c u ch u ch ■■■ ■ ■ ■■■ ■ ■■■ ■ u qu ng ng ng ng và ki ■ ng và ki ng và ki và uy tín nh ng bình ch ng bình ch ng bình ch ■ ■ ■ m ti m ti m ti ■ ■ n online ■ ■ ■ ■ ■ n là website ki n online n là website ki n online n là website ki ■ ■ ■ m ti m ti m ti ■ ■ ■ n online hi n online hi n online hi ■ ■ ■ u qu u qu u qu ■ ■ ■ và uy tín nh và uy tín nh và uy tín nh ■ ■ ■ Luôn h ■■ ng t ■ i là website d ■ ■■ u chia s ■ và mua bán tài li ■ u hàng ■■ u Vi ■ t Nam Tác phong chuyên nghi ■ p, hoàn h ■ o, cao tính trách nhi ■ m ■ ng ng ■■ i dùng M ■ c tiêu hàng ■■ ■ a 123doc.net tr ■ thành th ■ vi ■ n tài li ■ u online l ■ n nh ■ t Vi ■ t Nam, cung c ■ p nh ■ ng tài li ■■■ c không th ■ tìm th ■ y trên th ■ ■■ ng ngo ■ i tr ■ 123doc.net123doc cam k ■ t s ■ mang l ■ i nh ■ ng quy ■ n l ■ t nh ■ t cho ng ■■ i dùng Khi khách hàng tr ■ thành thành viên c ■ a 123doc và n ■ p ti ■ n vào tài kho ■ n c ■ a 123doc, b ■ n s ■ ■■■ c h ng nh ■ ng quy ■ n l ■ i sau n ■ p ti ■ n trên website
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.
Sau khi nh ■ n xác nh ■ n t ■ ■■ ng h ■ th ■ ng s ■ chuy ■ n sang ph ■ n thông tin xác minh tài kho ■ n email b ■ ■■ ng ký v ■ i 123doc.netLink xác th ■ c s ■ ■■■ c g ■ i v ■ ■■ a ch ■ email b ■ ■■ ng ky, b ■ n vui lòng ■■ ng nh ■ p email c ■ a mình và click vào link 123doc ■ ã g ■ i
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.net! Chúng tôi cung c ■ p D ■ ch V ■ (nh ■ ■■■ c mô t ■■■ i ây) cho b ■ n, tùy thu ■ c vào các “ ■ i ■ u Kho ■ n Th ■ a Thu ■ n v ■ ng D ■ ch V ■ ” sau ■ ây (sau ■ ây ■■■ c g ■ t T ■ ng th ■ i ■ m, chúng tôi có th ■ p nh ■ KTTSDDV theo quy ■ t
Xu ■ t phát t ■ ý t ng t ■ o c ■ ng ng ki ■ m ti ■ n online b ■ ng tài li ■ u hi ■ u qu ■ nh ■ t, uy tín cao nh ■ t Mong mu ■ n mang l ■ i cho c ■ ng ng xã h ■ i m ■ t ngu ■ n tài nguyên tri th ■ c quý báu, phong phú, ■ a d ■ ng, giàu giá tr ■ ■■ ng th ■ i mong mu ■ n t ■ i ■ u ki ■ n cho cho các users có thêm thu nh ■ p Chính vì v ■ y 123doc.net ra ■■ ■ m ■ áp ■ ng nhu c ■ u chia s ■ tài li ■ u ch ■■■ ng và ki ■ m ti ■ n online.
Sau h ■ n m ■ t n ■ m ra ■■ i, 123doc ■ ã t ■ ng b ■■ c kh ■ ng nh v ■ trí c ■ a mình trong l ■ nh v ■ c tài li ■ u và kinh doanh online Tính ■■ n th ■ i ■ m tháng 5/2014; 123doc v ■■ ■ c 100.000 l ■■ t truy c ■ p m ■ i ngày, s ■ u 2.000.000 thành viên ■■ ng ký, l ■ t vào top 200 các website ph ■ bi ■ n nh ■ i Vi ■ t Nam, t ■ tìm ki ■ m thu ■ c top 3 Google Nh ■■■■ c danh hi ■ u do c ■ ng ng bình ch ■ n là website ki ■ m ti ■ n online hi ■ u qu ■ và uy tín nh ■ Nhi ■ u event thú v ■ , event ki ■ m ti ■ n thi ■ t th ■ c 123doc luôn luôn t ■ o c ■ i gia t ■ ng thu nh ■ p online cho t ■ t c ■ các thành viên c ■ a website.
123doc s ■ u m ■ t kho th ■ vi ■ n kh ■ ng l ■ i h ■ n 2.000.000 tài li ■ t c ■ nh v ■ c: tài chính tín d ■ ng, công ngh ■ thông tin, ngo ■ i ng ■ , Khách hàng có th ■ dàng tra c ■ u tài li ■ u m ■ t cách chính xác, nhanh chóng.
Mang l ■ i tr ■ nghi ■ m m ■ i m ■ cho ng ■■ i dùng, công ngh ■ hi ■ n th ■ hi ■ ■■ ■ n online không khác gì so v ■ i b ■ n g ■ c B ■ n có th ■ phóng to, thu nh ■ tùy ý.
Luôn h ■■ ng t ■ i là website d ■ ■■ u chia s ■ và mua bán tài li ■ u hàng ■■ u Vi ■ t Nam Tác phong chuyên nghi ■ p, hoàn h ■ o, cao tính trách nhi ■ m ■ ng ng ■■ i dùng M ■ c tiêu hàng ■■ ■ a 123doc.net tr ■ thành th ■ vi ■ n tài li ■ u online l ■ n nh ■ t Vi ■ t Nam, cung c ■ p nh ■ ng tài li ■■■ c không th ■ tìm th ■ y trên th ■ ■■ ng ngo ■ i tr ■ 123doc.net
123doc cam k ■ t s ■ mang l ■ i nh ■ ng quy ■ n l ■ t nh ■ t cho ng ■■ i dùng Khi khách hàng tr ■ thành thành viên c ■ a 123doc và n ■ p ti ■ n vào tài kho ■ n c ■ a 123doc, b ■ n s ■ ■■■ c h ng nh ■ ng quy ■ n l ■ i sau n ■ p ti ■ n trên website
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.
Sau khi nh ■ n xác nh ■ n t ■ ■■ ng h ■ th ■ ng s ■ chuy ■ n sang ph ■ n thông tin xác minh tài kho ■ n email b ■ ■■ ng ký v ■ i 123doc.netLink xác th ■ c s ■ ■■■ c g ■ i v ■ ■■ a ch ■ email b ■ ■■ ng ky, b ■ n vui lòng ■■ ng nh ■ p email c ■ a mình và click vào link 123doc ■ ã g ■ i
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.net! Chúng tôi cung c ■ p D ■ ch V ■ (nh ■ ■■■ c mô t ■■■ i ây) cho b ■ n, tùy thu ■ c vào các “ ■ i ■ u Kho ■ n Th ■ a Thu ■ n v ■ ng D ■ ch V ■ ” sau ■ ây (sau ■ ây ■■■ c g ■ t T ■ ng th ■ i ■ m, chúng tôi có th ■ p nh ■ KTTSDDV theo quy ■ t
Xu ■ t phát t ■ ý t ng t ■ o c ■ ng ng ki ■ m ti ■ n online b ■ ng tài li ■ u hi ■ u qu ■ nh ■ t, uy tín cao nh ■ t Mong mu ■ n mang l ■ i cho c ■ ng ng xã h ■ i m ■ t ngu ■ n tài nguyên tri th ■ c quý báu, phong phú, ■ a d ■ ng, giàu giá tr ■ ■■ ng th ■ i mong mu ■ n t ■ i ■ u ki ■ n cho cho các users có thêm thu nh ■ p Chính vì v ■ y 123doc.net ra ■■ ■ m ■ áp ■ ng nhu c ■ u chia s ■ tài li ■ u ch ■■■ ng và ki ■ m ti ■ n online.
Sau h ■ n m ■ t n ■ m ra ■■ i, 123doc ■ ã t ■ ng b ■■ c kh ■ ng nh v ■ trí c ■ a mình trong l ■ nh v ■ c tài li ■ u và kinh doanh online Tính ■■ n th ■ i ■ m tháng 5/2014; 123doc v ■■ ■ c 100.000 l ■■ t truy c ■ p m ■ i ngày, s ■ u 2.000.000 thành viên ■■ ng ký, l ■ t vào top 200 các website ph ■ bi ■ n nh ■ i Vi ■ t Nam, t ■ tìm ki ■ m thu ■ c top 3 Google Nh ■■■■ c danh hi ■ u do c ■ ng ng bình ch ■ n là website ki ■ m ti ■ n online hi ■ u qu ■ và uy tín nh ■ Nhi ■ u event thú v ■ , event ki ■ m ti ■ n thi ■ t th ■ c 123doc luôn luôn t ■ o c ■ i gia t ■ ng thu nh ■ p online cho t ■ t c ■ các thành viên c ■ a website.
123doc s ■ u m ■ t kho th ■ vi ■ n kh ■ ng l ■ i h ■ n 2.000.000 tài li ■ t c ■ nh v ■ c: tài chính tín d ■ ng, công ngh ■ thông tin, ngo ■ i ng ■ , Khách hàng có th ■ dàng tra c ■ u tài li ■ u m ■ t cách chính xác, nhanh chóng.
Mang l ■ i tr ■ nghi ■ m m ■ i m ■ cho ng ■■ i dùng, công ngh ■ hi ■ n th ■ hi ■ ■■ ■ n online không khác gì so v ■ i b ■ n g ■ c B ■ n có th ■ phóng to, thu nh ■ tùy ý.
Luôn h ■■ ng t ■ i là website d ■ ■■ u chia s ■ và mua bán tài li ■ u hàng ■■ u Vi ■ t Nam Tác phong chuyên nghi ■ p, hoàn h ■ o, cao tính trách nhi ■ m ■ ng ng ■■ i dùng M ■ c tiêu hàng ■■ ■ a 123doc.net tr ■ thành th ■ vi ■ n tài li ■ u online l ■ n nh ■ t Vi ■ t Nam, cung c ■ p nh ■ ng tài li ■■■ c không th ■ tìm th ■ y trên th ■ ■■ ng ngo ■ i tr ■ 123doc.net
123doc cam k ■ t s ■ mang l ■ i nh ■ ng quy ■ n l ■ t nh ■ t cho ng ■■ i dùng Khi khách hàng tr ■ thành thành viên c ■ a 123doc và n ■ p ti ■ n vào tài kho ■ n c ■ a 123doc, b ■ n s ■ ■■■ c h ng nh ■ ng quy ■ n l ■ i sau n ■ p ti ■ n trên website
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.
Sau khi nh ■ n xác nh ■ n t ■ ■■ ng h ■ th ■ ng s ■ chuy ■ n sang ph ■ n thông tin xác minh tài kho ■ n email b ■ ■■ ng ký v ■ i 123doc.netLink xác th ■ c s ■ ■■■ c g ■ i v ■ ■■ a ch ■ email b ■ ■■ ng ky, b ■ n vui lòng ■■ ng nh ■ p email c ■ a mình và click vào link 123doc ■ ã g ■ i
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.net! Chúng tôi cung c ■ p D ■ ch V ■ (nh ■ ■■■ c mô t ■■■ i ây) cho b ■ n, tùy thu ■ c vào các “ ■ i ■ u Kho ■ n Th ■ a Thu ■ n v ■ ng D ■ ch V ■ ” sau ■ ây (sau ■ ây ■■■ c g ■ t T ■ ng th ■ i ■ m, chúng tôi có th ■ p nh ■ KTTSDDV theo quy ■ t
Xu ■ t phát t ■ ý t ng t ■ o c ■ ng ng ki ■ m ti ■ n online b ■ ng tài li ■ u hi ■ u qu ■ nh ■ t, uy tín cao nh ■ t Mong mu ■ n mang l ■ i cho c ■ ng ng xã h ■ i m ■ t ngu ■ n tài nguyên tri th ■ c quý báu, phong phú, ■ a d ■ ng, giàu giá tr ■ ■■ ng th ■ i mong mu ■ n t ■ i ■ u ki ■ n cho cho các users có thêm thu nh ■ p Chính vì v ■ y 123doc.net ra ■■ ■ m ■ áp ■ ng nhu c ■ u chia s ■ tài li ■ u ch ■■■ ng và ki ■ m ti ■ n online.
Sau h ■ n m ■ t n ■ m ra ■■ i, 123doc ■ ã t ■ ng b ■■ c kh ■ ng nh v ■ trí c ■ a mình trong l ■ nh v ■ c tài li ■ u và kinh doanh online Tính ■■ n th ■ i ■ m tháng 5/2014; 123doc v ■■ ■ c 100.000 l ■■ t truy c ■ p m ■ i ngày, s ■ u 2.000.000 thành viên ■■ ng ký, l ■ t vào top 200 các website ph ■ bi ■ n nh ■ i Vi ■ t Nam, t ■ tìm ki ■ m thu ■ c top 3 Google Nh ■■■■ c danh hi ■ u do c ■ ng ng bình ch ■ n là website ki ■ m ti ■ n online hi ■ u qu ■ và uy tín nh ■ Nhi ■ u event thú v ■ , event ki ■ m ti ■ n thi ■ t th ■ c 123doc luôn luôn t ■ o c ■ i gia t ■ ng thu nh ■ p online cho t ■ t c ■ các thành viên c ■ a website.
123doc s ■ u m ■ t kho th ■ vi ■ n kh ■ ng l ■ i h ■ n 2.000.000 tài li ■ t c ■ nh v ■ c: tài chính tín d ■ ng, công ngh ■ thông tin, ngo ■ i ng ■ , Khách hàng có th ■ dàng tra c ■ u tài li ■ u m ■ t cách chính xác, nhanh chóng.
Mang l ■ i tr ■ nghi ■ m m ■ i m ■ cho ng ■■ i dùng, công ngh ■ hi ■ n th ■ hi ■ ■■ ■ n online không khác gì so v ■ i b ■ n g ■ c B ■ n có th ■ phóng to, thu nh ■ tùy ý.
Luôn h ■■ ng t ■ i là website d ■ ■■ u chia s ■ và mua bán tài li ■ u hàng ■■ u Vi ■ t Nam Tác phong chuyên nghi ■ p, hoàn h ■ o, cao tính trách nhi ■ m ■ ng ng ■■ i dùng M ■ c tiêu hàng ■■ ■ a 123doc.net tr ■ thành th ■ vi ■ n tài li ■ u online l ■ n nh ■ t Vi ■ t Nam, cung c ■ p nh ■ ng tài li ■■■ c không th ■ tìm th ■ y trên th ■ ■■ ng ngo ■ i tr ■ 123doc.net
123doc cam k ■ t s ■ mang l ■ i nh ■ ng quy ■ n l ■ t nh ■ t cho ng ■■ i dùng Khi khách hàng tr ■ thành thành viên c ■ a 123doc và n ■ p ti ■ n vào tài kho ■ n c ■ a 123doc, b ■ n s ■ ■■■ c h ng nh ■ ng quy ■ n l ■ i sau n ■ p ti ■ n trên website
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.
Sau khi nh ■ n xác nh ■ n t ■ ■■ ng h ■ th ■ ng s ■ chuy ■ n sang ph ■ n thông tin xác minh tài kho ■ n email b ■ ■■ ng ký v ■ i 123doc.netLink xác th ■ c s ■ ■■■ c g ■ i v ■ ■■ a ch ■ email b ■ ■■ ng ky, b ■ n vui lòng ■■ ng nh ■ p email c ■ a mình và click vào link 123doc ■ ã g ■ i
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.net! Chúng tôi cung c ■ p D ■ ch V ■ (nh ■ ■■■ c mô t ■■■ i ây) cho b ■ n, tùy thu ■ c vào các “ ■ i ■ u Kho ■ n Th ■ a Thu ■ n v ■ ng D ■ ch V ■ ” sau ■ ây (sau ■ ây ■■■ c g ■ t T ■ ng th ■ i ■ m, chúng tôi có th ■ p nh ■ KTTSDDV theo quy ■ t
Xu ■ t phát t ■ ý t ng t ■ o c ■ ng ng ki ■ m ti ■ n online b ■ ng tài li ■ u hi ■ u qu ■ nh ■ t, uy tín cao nh ■ t Mong mu ■ n mang l ■ i cho c ■ ng ng xã h ■ i m ■ t ngu ■ n tài nguyên tri th ■ c quý báu, phong phú, ■ a d ■ ng, giàu giá tr ■ ■■ ng th ■ i mong mu ■ n t ■ i ■ u ki ■ n cho cho các users có thêm thu nh ■ p Chính vì v ■ y 123doc.net ra ■■ ■ m ■ áp ■ ng nhu c ■ u chia s ■ tài li ■ u ch ■■■ ng và ki ■ m ti ■ n online.
Sau h ■ n m ■ t n ■ m ra ■■ i, 123doc ■ ã t ■ ng b ■■ c kh ■ ng nh v ■ trí c ■ a mình trong l ■ nh v ■ c tài li ■ u và kinh doanh online Tính ■■ n th ■ i ■ m tháng 5/2014; 123doc v ■■ ■ c 100.000 l ■■ t truy c ■ p m ■ i ngày, s ■ u 2.000.000 thành viên ■■ ng ký, l ■ t vào top 200 các website ph ■ bi ■ n nh ■ i Vi ■ t Nam, t ■ tìm ki ■ m thu ■ c top 3 Google Nh ■■■■ c danh hi ■ u do c ■ ng ng bình ch ■ n là website ki ■ m ti ■ n online hi ■ u qu ■ và uy tín nh ■ Nhi ■ u event thú v ■ , event ki ■ m ti ■ n thi ■ t th ■ c 123doc luôn luôn t ■ o c ■ i gia t ■ ng thu nh ■ p online cho t ■ t c ■ các thành viên c ■ a website.
123doc s ■ u m ■ t kho th ■ vi ■ n kh ■ ng l ■ i h ■ n 2.000.000 tài li ■ t c ■ nh v ■ c: tài chính tín d ■ ng, công ngh ■ thông tin, ngo ■ i ng ■ , Khách hàng có th ■ dàng tra c ■ u tài li ■ u m ■ t cách chính xác, nhanh chóng.
123doc cam k ■ t s ■ mang l ■ i nh ■ ng quy ■ n l ■ t nh ■ t cho ng ■■ i dùng Khi khách hàng tr ■ thành thành viên c ■ a 123doc và n ■ p ti ■ n vào tài kho ■ n c ■ a 123doc, b ■ n s ■ ■■■ c h ng nh ■ ng quy ■ n l ■ i sau n ■ p ti ■ n trên website
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.
Sau khi nh ■ n xác nh ■ n t ■ ■■ ng h ■ th ■ ng s ■ chuy ■ n sang ph ■ n thông tin xác minh tài kho ■ n email b ■ ■■ ng ký v ■ i 123doc.netLink xác th ■ c s ■ ■■■ c g ■ i v ■ ■■ a ch ■ email b ■ ■■ ng ky, b ■ n vui lòng ■■ ng nh ■ p email c ■ a mình và click vào link 123doc ■ ã g ■ i
Th ■ a thu ■ n s ■ ng 1 CH ■ P NH ■ N CÁC ■ I ■ U KHO ■ N TH ■ A THU ■ N Chào m ■ ng b ■■■ ■ i 123doc.net! Chúng tôi cung c ■ p D ■ ch V ■ (nh ■ ■■■ c mô t ■■■ i ây) cho b ■ n, tùy thu ■ c vào các “ ■ i ■ u Kho ■ n Th ■ a Thu ■ n v ■ ng D ■ ch V ■ ” sau ■ ây (sau ■ ây ■■■ c g ■ t T ■ ng th ■ i ■ m, chúng tôi có th ■ p nh ■ KTTSDDV theo quy ■ t
Xu ■ t phát t ■ ý t ng t ■ o c ■ ng ng ki ■ m ti ■ n online b ■ ng tài li ■ u hi ■ u qu ■ nh ■ t, uy tín cao nh ■ t Mong mu ■ n mang l ■ i cho c ■ ng ng xã h ■ i m ■ t ngu ■ n tài nguyên tri th ■ c quý báu, phong phú, ■ a d ■ ng, giàu giá tr ■ ■■ ng th ■ i mong mu ■ n t ■ i ■ u ki ■ n cho cho các users có thêm thu nh ■ p Chính vì v ■ y 123doc.net ra ■■ ■ m ■ áp ■ ng nhu c ■ u chia s ■ tài li ■ u ch ■■■ ng và ki ■ m ti ■ n online.
Sau h ■ n m ■ t n ■ m ra ■■ i, 123doc ■ ã t ■ ng b ■■ c kh ■ ng nh v ■ trí c ■ a mình trong l ■ nh v ■ c tài li ■ u và kinh doanh online Tính ■■ n th ■ i ■ m tháng 5/2014; 123doc v ■■ ■ c 100.000 l ■■ t truy c ■ p m ■ i ngày, s ■ u 2.000.000 thành viên ■■ ng ký, l ■ t vào top 200 các website ph ■ bi ■ n nh ■ i Vi ■ t Nam, t ■ tìm ki ■ m thu ■ c top 3 Google Nh ■■■■ c danh hi ■ u do c ■ ng ng bình ch ■ n là website ki ■ m ti ■ n online hi ■ u qu ■ và uy tín nh ■ Nhi ■ u event thú v ■ , event ki ■ m ti ■ n thi ■ t th ■ c 123doc luôn luôn t ■ o c ■ i gia t ■ ng thu nh ■ p online cho t ■ t c ■ các thành viên c ■ a website.
123doc s ■ u m ■ t kho th ■ vi ■ n kh ■ ng l ■ i h ■ n 2.000.000 tài li ■ t c ■ nh v ■ c: tài chính tín d ■ ng, công ngh ■ thông tin, ngo ■ i ng ■ , Khách hàng có th ■ dàng tra c ■ u tài li ■ u m ■ t cách chính xác, nhanh chóng.
Trang 2MINISTRY OF EDUCATION AND TRAINING HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY
——————————
Nguyen Huy Truong
RESEARCH ON DEVELOPMENT OF METHODS
OF GRAPH THEORY AND AUTOMATA
IN STEGANOGRAPHY AND SEARCHABLE ENCRYPTION
Major: Mathematics and Informatics Major code: 9460117
DOCTORAL DISSERTATION IN MATHEMATICS AND INFORMATICS
SUPERVISORS:
1 Assoc Prof Dr Sc Phan Thi Ha Duong
2 Dr Vu Thanh Nam
Hanoi - 2020
Trang 3DECLARATION OF AUTHORSHIP
I hereby certify that I am the author of this dissertation, and that I have completed it
under the supervision of Assoc Prof Dr Sc Phan Thi Ha Duong and Dr Vu Thanh
Nam I also certify that the dissertation’s results have not been published by other authors
Hanoi, May 18, 2020PhD Student
Nguyen Huy Truong
Supervisors
Trang 4I am extremely grateful to Assoc Prof Dr Sc Phan Thi Ha Duong
I want to thank Dr Vu Thanh Nam
I would also like to extend my deepest gratitude to Late Assoc Prof Dr Phan Trung
Huy
I would like to thank my co-workers from School of Applied Mathematics and
Informatics, Hanoi University of Science and Technology for all their help
I also wish to thank members of Seminar on Mathematical Foundations for Computer
Science at Institute of Mathematics, Vietnam Academy of Science and Technology for their
valuable comments and helpful advice
I give thanks to PhD students of Late Assoc Prof Dr Phan Trung Huy for sharing
and exchanging information in steganography and searchable encryption
Finally, I must also thank my family for supporting all my work
Trang 5Page
LIST OF SYMBOLS iii
LIST OF ABBREVIATIONS iv
LIST OF FIGURES v
LIST OF TABLES vi
INTRODUCTION 1
CHAPTER 1 PRELIMINARIES 4
1.1 Basic Structures 4
1.1.1 Strings 4
1.1.2 Graph 4
1.1.3 Deterministic Finite Automata 6
1.1.4 The Galois Field GF (pm) 7
1.2 Digital Image Steganography 8
1.3 Exact Pattern Matching 11
1.4 Longest Common Subsequence 12
1.5 Searchable Encryption 15
CHAPTER 2 DIGITAL IMAGE STEGANOGRAPHY BASED ON THE GALOIS FIELD USING GRAPH THEORY AND AUTOMATA 16
2.1 Introduction 16
2.2 The Digital Image Steganography Problem 18
2.3 A New Digital Image Steganography Approach 19
2.3.1 Mathematical Basis based on The Galois Field 19
2.3.2 Digital Image Steganography Based on The Galois Field GF (pm) Using Graph Theory and Automata 21
2.4 The Near Optimal and Optimal Data Hiding Schemes for Gray and Palette Images 29
2.5 Experimental Results 34
2.6 Conclusions 38
CHAPTER 3 AN AUTOMATA APPROACH TO EXACT PATTERN MATCHING 40
3.1 Introduction 40
3.2 The New Algorithm - The MRc Algorithm 42
3.3 Analysis of The MRc Algorithm 48
3.4 Experimental Results 51
3.5 Conclusions 56
CHAPTER 4 AUTOMATA TECHNIQUE FOR THE LONGEST COMMON SUBSEQUENCE PROBLEM 57
4.1 Introduction 57
Trang 64.2 Mathematical Basis 58
4.3 Automata Models for Solving The LCS Problem 62
4.4 Experimental Results 67
4.5 Conclusions 68
CHAPTER 5 CRYPTOGRAPHY BASED ON STEGANOGRAPHY AND AUTOMATA METHODS FOR SEARCHABLE ENCRYPTION 69
5.1 Introduction 69
5.2 A Novel Cryptosystem Based on The Data Hiding Scheme (2, 9, 8) 71
5.3 Automata Technique for Exact Pattern Matching on Encrypted Data 75
5.4 Automata Technique for Approximate Pattern Matching on Encrypted Data 77 5.5 Conclusions 79
CONCLUSION 81
LIST OF PUBLICATIONS 82
BIBLIOGRAPHY 83
Trang 7LIST OF SYMBOLS
where p is prime and m is a positive integer
(I, M, K, Em, Ex) A data hiding scheme
block
from an image block
qcolour The number of different ways to change the colour of each
pixel in an arbitrary image block
Trang 8LIST OF ABBREVIATIONS
Trang 9LIST OF FIGURES
Figure 1.1 A simple graph 5
Figure 1.2 A spanning tree of the graph given in Figure 1.1 6
Figure 1.3 The transition diagram of A in Example 1.3 7
Figure 1.4 The basic diagram of digital image steganography 9
Figure 1.5 The degree of appearance of the pattern p 12
Figure 2.1 The nine commonly used 8-bit gray cover images sized 512 × 512 pixels 35 Figure 2.2 The nine commonly used 8-bit palette cover images sized 512 × 512 pixels 36
Figure 2.3 The binary cover image sized 2592 × 1456 pixels 36
Figure 3.1 Sliding window mechanism 41
Figure 3.2 The basic idea of the proposed approach 45
Figure 3.3 The transition diagram of the automaton Mp, p = abcba 47
Trang 10LIST OF TABLES
Table 1.2 The performing steps of the BF algorithm 11
Table 1.3 The dynamic programming matrix L 13
Table 2.1 Elements of the Galois field GF (22) represented by binary strings and decimal numbers 30
Table 2.2 Operations + and · on the Galois field GF (22) 30
Table 2.3 The representation of E and the arc weights of G for the gray image 31 Table 2.4 The payload, ER and PSNR for the optimal data hiding scheme (1, 2n− 1, n) for palette images with qcolour = 1 37
Table 2.5 The payload, ER and PSNR for the near optimal data hiding scheme (2, 9, 8) for gray images with qcolour = 3 37
Table 2.6 The payload, ER and PSNR for the near optimal data hiding scheme (2, 9, 8) for palette images with qcolour = 3 38
Table 2.7 The comparisons of embedding and extracting time between the chapter’s and Chang et al.’s approach for the same optimal data hiding scheme (1, N, blog2(N + 1)c), where N = 2n − 1, for the binary image with qcolour = 1 Time is given in second unit 38
Table 3.1 The performing steps of the MR1 algorithm 47
Table 3.2 Experimental results on rand4 problem 52
Table 3.3 Experimental results on rand8 problem 52
Table 3.4 Experimental results on rand16 problem 53
Table 3.5 Experimental results on rand32 problem 53
Table 3.6 Experimental results on rand64 problem 54
Table 3.7 Experimental results on rand128 problem 54
Table 3.8 Experimental results on rand256 problem 55
Table 3.9 Experimental results on a genome sequence (with |Σ| = 4) 55
Table 3.10 Experimental results on a protein sequence (with |Σ| = 20) 56
Table 4.1 The Refp of p = bacdabcad 60
Table 4.2 The comparisons of the lcs(p, x) computation time for n = 50666 67
Table 4.3 The comparisons of the lcs(p, x) computation time for n = 102398 68
Trang 11In the modern life, when the use of computer and Internet is more and more essential,
information security becomes increasingly important There are two popular methods to
provide security, which are cryptography and data hiding [2, 5, 6, 20, 56, 62, 81]
Cryptography is used to encrypt data in order to make the data unreadable by a third
party [5] Data hiding is used to embed data in digital media Based on the purpose of
the application, data hiding is generally divided into steganography that hides the
existence of data to protect the embedded data and watermarking that protects the
copyright ownership and authentication of the digital media carrying the embedded data
integrating cryptography with steganography is as a third choice for data security
[2, 5, 6, 12, 19, 61, 62, 81, 86, 93]
With the rapid development of applications based on Internet infrastructure, cloud
computing becomes one of the hottest topics in the information technology area Indeed, it
is a computing system based on Internet that provides on-demand services from application
and system software, storage to processing data For example, when cloud users use the
storage service, they can upload information to the servers and then access it on the Internet
online Meanwhile, enterprises can not spend big money on maintaining and owning a
benefits for individuals and organizations, cloud security is still an open problem when cloud
providers can abuse their information and cloud users lose control of it Thus, guaranteeing
privacy of tenants’ information without negating the benefits of cloud computing seems
necessary [28, 38, 40, 41, 60, 95, 102] In order to protect cloud users’ privacy, sensitive
data need to be encoded before outsourcing them to servers Unfortunately, encryption
makes the servers perform search on ciphertext much more difficult than on plaintext To
solve this problem, many searchable encryption techniques have been presented since 2000
Searchable encryption does not only store users’ encrypted data securely but also allows
information search over ciphertext [26, 28, 29, 38, 40, 60, 71, 85, 102]
Searchable encryption for exact pattern matching is a new class of searchable encryption
techniques The solutions for this class have been presented based on algorithms for [26]
or approaches to [41, 89] exact pattern matching
As in retrieving information from plaintexts, the development of searchable encryption
with approximate string matching capability is necessary, where the search string can
be a keyword determined, encrypted and stored in cloud servers or an arbitrary pattern
[28, 40, 71]
From the above problems, together with the high efficiency of techniques using graph and
automata proposed by P T Huy et al for dealing with problems of exact pattern matching
(2002), longest common subsequence (2002) and steganography (2011, 2012 and 2013), as
well as potential applications of graph theory and automata approaches suggested by Late
Assoc Prof Phan Trung Huy in steganography and searchable encryption, and under
Trang 12the direction of supervisors, the dissertation title assigned is research on development
of methods of graph theory and automata in steganography and searchable
encryption
The purpose of the dissertation is to research on the development of new and quality
solutions using graph theory and automata, suggesting their applications in, and applying
them to steganography and searchable encryption
Based on results published and suggestions presented by Late Assoc Prof Phan Trung
Huy in steganography and searchable encryption, the dissertation will focus on following
four problems in these fields:
- Digital image steganography;
- Exact pattern matching;
- Longest common subsequence;
- Searchable encryption
The first problem is stated newly in Chapter 2, the three remaining problems are recalled
and clarified in Chapter 1 In addition, background related to these problems is presented
clearly and analysed very carefully in Chapters of the dissertation
For the first three problems, the dissertation’s work is to find new and efficient solutions
using graph theory and automata Then they will be used and applied to solve the last
problem
Introduction at the beginning and Conclusion at the end of the dissertation, the main
content of it is divided into five chapters
throughout the dissertation (strings, graph, deterministic finite automata, digital images,
the basic model of digital image steganography, some parameters to determine the
quality of digital image steganography, the exact pattern matching problem, the longest
concepts and results used and researched on development in remaining chapters of the
dissertation (adjacency list, breadth first search, Galois field, the fastest optimal parity
assignment method, the module method and the concept of the maximal secret data
ratio, the concept of the degree of fuzziness (appearance), the Knapsack Shaking
approach, and the definition of a cryptosystem)
graph theory and automata Firstly, from some proposed concepts of optimal and
near optimal secret data hiding schemes, this chapter states the interest problem in digital
image steganography Secondly, the chapter proposes a new approach based on the Galois
field using graph theory and automata to design a general form of steganography in binary,
gray and palette images, shows sufficient conditions for existence and proves existence of
some optimal and near optimal secret data hiding schemes, applies the proposed schemes
to the process of hiding a finite sequence of secret data in an image and gives security
analyses Finally, the chapter presents experimental results to show the efficiency of the
proposed results
Chapter 3 An automata approach to exact pattern matching This chapter
proposes a flexible approach using automata to design an effective algorithm for exact
pattern matching in practice In given cases of patterns and alphabets, the efficiency of
the proposed algorithm is shown by theoretical analyses and experimental results
Trang 13Chapter 4 Automata technique for the longest common subsequence
computing the length of a longest common subsequence of two strings in practice, using
automata technique Theoretical analysis of parallel algorithm and experimental results
confirm that the use of the automata technique in designing algorithms for solving the
longest common subsequence problem is the best choice
Chapter 5 Cryptography based on steganography and automata methods
for searchable encryption This chapter first proposes a novel cryptosystem based on
a data hiding scheme proposed in Chapter 2 with high security Additionally, ciphertexts
do not depend on the input image size as existing hybrid techniques of cryptography and
steganography, encoding and embedding are done at once The chapter then applies results
using automata technique of Chapters 3 and 4 to constructing two algorithms for exact
and approximate pattern matching on secret data encrypted by the proposed cryptosystem
These algorithms have O(n) time complexity in the worst case, together with an assumption
that the approximate algorithm uses d(1 − )me processors, where , m and n are the error
of the string similarity measure proposed in this chapter and lengths of the pattern and
secret data, respectively In searchable encryption, the cryptosystem can be used to encode
and decode secret data on users side and pattern matching algorithms can be used to
perform pattern search on cloud providers side
The contents of the dissertation are written based on the paper [T1] published in 2019,
the paper [T4] accepted for publication in 2020 in KSII Transactions on Internet and
Information Systems (ISI), and the papers [T2, T3] published in Journal of Computer
Science and Cybernetics in 2019 The main results of the dissertation have been presented
at:
- Seminar on Mathematical Foundations for Computer Science at Institute of
Mathematics, Vietnam Academy of Science and Technology,
- Seminar at School of Applied Mathematics and Informatics, Hanoi University of
Science and Technology
Trang 14CHAPTER 1
PRELIMINARIES
This chapter will attempt to recall terminologies, concepts, algorithms and results which
are really needed in order to present the dissertation’s new results clearly and logically,
knowledge re-presented here consists of basic structures (Section 1.1: strings (Subsection
1.1.1), graph (Subsection 1.1.2), deterministic finite automata (Subsection 1.1.3), and the
pattern matching (Section 1.3), longest common subsequence (Section 1.4) and searchable
encryption (Section 1.5)
1.1 Basic Structures
1.1.1 Strings
In this dissertation, secret data are considered as strings So, some terms related to
strings will be recalled here [11, 24, 83]
A finite set Σ is called an alphabet The number of elements of Σ is denoted by |Σ|
An element of Σ is called a letter A string (also referred to as a text) x of length n on the
alphabet Σ is a finite sequence of letters of Σ and we write
x = x[1]x[2] x[n], x[i] ∈ Σ, 1 ≤ i ≤ n,where n is a positive integer
A special string is the empty string having no letters, denoted by The length of the
string x is the number of letters in it, denoted by |x| Then || = 0
Notice that for the string x = x[1]x[2] x[n], we can also write x = x[1 n] in short
of the string x The prefix (resp suffix) p is called proper if p 6= x Note that the prefix
or the suffix can be empty
1.1.2 Graph
Besides some basic concepts in graph theory, this subsection recalls the way representing
a graph by adjacency lists and breadth first search [82] These are used in Chapter 2
A finite undirected graph (hereafter, called a graph for short) G = (V, E) consists of a
nonempty finite set of vertices V and a finite set of edges, where each edge has either one
or two vertices associated with it A graph with weights assigned to their edges is called a
weighted graph
Trang 15An edge connecting a vertex to itself is called a loop Multiple edges are edges connecting
the same vertices A graph having no loops and no multiple edges is called a simple graph
In a simple graph, the edge associated to an unordered pair of vertices {i, j} is called the
edge {i, j}
Two vertices i and j in a graph G are called adjacent if they are vertices of an edge of
G
A graph without multiple edges can be described by using adjacency lists, which specify
adjacent vertices of any vertex of the graph
Example 1.1 Using adjacency lists, the simple graph given in Figure 1.1 can be
Stego Image
Cover Image
Given a simple graph G, a subgraph of G that is a tree including every vertex of G is
called a spanning tree of G A spanning tree of a connected simple graph can be built by
using breadth first search (BFS) This algorithm is shown in pseudo-code as follows
Breadth First Search:
Output: A spanning tree T
Set L to be an empty list;
Trang 16For each adjacent vertex j of i
If (j is not in L and T ){
Add j to the end of L;
Add j and the edge {i, j} to T ;}
}Return T ;End
Example 1.2 For a graph given in Figure 1.1, a spanning tree of this graph is found byusing BFS as in Figure 1.2
Stego Image
Cover Image
Figure 1.2 A spanning tree of the graph given in Figure 1.1
A graph with directed edges (or arcs) is called a directed graph Each arc is associatedwith the ordered pair of vertices In a simple directed graph, the arc associated with theordered pair (i, j) called the arc (i, j) And the vertex i is said to be adjacent to the vertex
j and the vertex j is said to be adjacent from the vertex i
1.1.3 Deterministic Finite AutomataStudy on the problem of the construction and the use of deterministic finite automata
is one of objectives of the dissertation Hence, this subsection will clarify this model ofcomputation [44, 82]
Definition 1.1 ([44]) Let Σ be an alphabet A deterministic finite automaton (hereafter,
• A finite set Q of elements called states,
• A set F of final states The set F is a subset of Q,
• A state transition function (or simply, transition function), denoted by δ, that takes
as arguments a state and a letter, and returns a state, so that δ : Q × Σ → Q,
• The transition function δ can be extended so that it takes a state and a string, andreturns a state Formally, this extended transition function δ can be defined recursively by
Trang 17luan van hay luan van tot nghiep do an to nghiep docx 123docz luan van hay luan van tot nghiep do an to nghiep docx 123docz luan van hay luan van tot nghiep do an to nghiep docx 123docz luan van hay luan van tot nghiep
An alternative and simple way presenting an automaton is to use the notation “transition
given as follows [44]
a) Each state of Q is a vertex
vertex
d) States not in F have a single circle Vertices corresponding to final states are marked
by a double circle
diagram of A is shown in Figure 1.3
Stego Image
Cover Image
Figure 1.3 The transition diagram of A in Example 1.3
a state in F
will be used in Chapter 2
in the usual way and then reduce the coefficients modulo p at the end
7
Trang 18polynomials f1(x), f2(x) ∈ Zp[x] such that
unique
1.2 Digital Image Steganography
The interest problem in Chapter 2 is digital image steganography This section will
recall the concept of digital images, the basic model of digital image steganography, some
parameters to determine the efficiency of digital image steganography and lastly re-present
results researched on development and used in Chapter 2 such as the fastest optimal parity
assignment (FOPA) method, the module method and the concept of the maximal secret
data ratio (MSDR) [18, 20, 21, 39, 49, 50, 51, 53, 61, 63, 65, 76, 78, 104]
A digital image is a matrix of pixels Each pixel is represented by a non negative integer
number in the form of a string of binary bits This value indicates the colour of the pixel
[39]
Note that based on the way representing of colours of pixels, digital images can be
divided into following different types [78]
1 Binary image: Each pixel is represented by one bit In this image type, the colour of
a pixel is white, “1” value, or black, “0” value
2 Gray image: Each pixel is typically represented by eight bits (called 8-bit gray image)
Then the colour of any pixel is a shade of gray, from black corresponding to colour value
“0” to white corresponding to colour value “255”
3 Red green blue image: Each pixel is usually represented by a string of 24 bits (called
24-bit RGB image), where the first 8 bits, the next 8 bits and the last 8 bits corresponds
to shades of red, green and blue, specifying the red, green and blue colour components
of the pixel, respectively Then the colour of the pixel is a combination of these three
components
representing the pixel as for RGB images Instead, this number is a colour index of the
colour of the pixel existed in the colour table (the palette), an ordered set of values (strings
of 24 bits) which represent all colours as in RGB images used in the image and contained
in the file with the image The size of the palette is the same as the length of a bit string
representing a pixel and is limited by 8 bits For a string of 8 bits, call palette images 8-bit
palette images
The objective of digital image steganography is to protect data by hiding the data in
a digital image well enough so that unauthorized users will not even be aware of their
existence [21, 18] Figure 1.4 shows the basic model of digital image steganography, where
the cover image is a digital image used as a carrier to embed secret data into, the stego
image is digital image obtained after embedding secret data into the cover image by the
Trang 19function block Embed with the secret key on the Sender side For steganography generally,
the secret data needs to be extracted fully by the block Extract with the secret key on
the Receiver side [20, 61, 63, 76]
The total number of the secret data sequence bits embedded in the cover image is called
a Payload Corresponding to a certain Payload, to measure the embedding capacity of the
cover image, the embedding rate (ER) is used and defined as follows [104]
Stego Image
Cover Image
Figure 1.4 The basic diagram of digital image steganography
The peak signal to noise ratio (PSNR) is used to evaluate quality of stego image Based
on the value of PSNR, we can know the degree of similarity between the cover image and
stego image If the PSNR value is high, then quality of stego image is high Conversely,
quality of stego image is low In general, for the digital image, PSNR is defined by the
Green and Red components of a pixel at position (i, j) in the cover and stego image,
respectively For human’s eyes, the threshold value of PSNR value is 30dB [20, 53, 65, 104],
it means that the PSNR value is higher than 30dB, it is hard to distinguish between the
cover image and its stego image
of a pixel of G corresponding to the colour index i Each colour c in P is considered as a
vector consisting of red, green and blue components Suppose d is a distance function on P
where two conditions are satisfied for all c ∈ P as follows
Trang 201 d(c, Next(c)) = minv6=c∈Pd(c, v),
all arcs (v, Next(v)), the vertex v has the weightVal(v) for all v ∈ V The construction of
a algorithm determining F is the essence of the FOPA method
Algorithm for FOPA:
Output: A rho forest F = (V, E)
Choose a vertext c ∈ P , set V = {c}, and set C = P \{c};
SetVal(c) = 0; // Or 1 randomly
While (C is not empty) // Update F
{
a) Take one element v ∈ C;
h is a surjective function from I to U In the module method, d is considered as a secret
data, embedded in and extracted from the image block I with the key K by the blocks
Embed and Extract as follows [49, 51]
Trang 21The block Embed (embedding d in I):
Step 2) Case d = m: Keep I intact;
Case d 6= m: Find v ∈ U such that d + (−m) = v Based on v and h, determine
in an image block of N pixels by changing colours of at most k pixels in the image block,
where k, N are positive integers
colour of each pixel in an arbitrary image block of N pixels According to [49]
1.3 Exact Pattern Matching
This section will restate the exact pattern matching problem, and recall the concept of
the degree of fuzziness (appearance) used in Chapter 3 [24, 52, 68]
Let x be a string of length n Denote the substring x[i]x[i + 1] x[j] of x by x[i j]
p be a substring of length m of x, where m is a positive integer, then there exists i for
1 ≤ i ≤ n − m + 1 such that p = x[i i + m − 1] And say that i is an occurrence of p in x
or p occurs in x at position i
Definition 1.5 ([68]) Let p be a pattern of length m and x be a text of length n over
the alphabet Σ Then the exact pattern matching problem is to find all occurrences of the
pattern p in x
The following example uses the Brute Force (BF) algorithm [24] to demonstrate the
most original way solving this problem
Table 1.2 The performing steps of the BF algorithm
Trang 22Example 1.4 Given a pattern p = fah and a text x = dfahfkfaha Then there are two
occurrences of p in x as shown below: dfahfkfaha The BF algorithm is performed by the
following steps presented in Table 1.2, the bold letters correspond to the mismatches, the
underlined letters represent the matches when comparing the letters of the pattern and
the text We know that many letters scanned will be scanned again by the BF algorithm
because each time either a mismatch or a match occurs, the pattern is only moved to the
right one position
Chapter 3 uses the degree of fuzziness in [52] to determine the longest prefix of the
fuzziness will be replaced with the degree of appearance The concept of the degree of
appearance is restated as follows
Definition 1.6 ([52]) Let p be a pattern and x be a text of length n over the alphabet
Σ Then for each 1 ≤ i ≤ n, a degree of appearance of p in x at position i is equal to the
length of a longest substring of x such that this substring is a prefix of p, where the right
end letter of the substring is x[i]
Notice that obviously, if the degree of appearance of p in x at an arbitrary position i
equals |p|, then a match for p in x occurs at position i − |p| + 1 Figure 1.3 illustrates the
concept of the degree of appearance of the pattern p in x
Figure 1.5 The degree of appearance of the pattern p
1.4 Longest Common Subsequence
This section will recall the longest common subsequence (LCS) problem, and the
Knapsack Shaking approach addressing the problem studied on development in Chapter 4
[24, 47, 94, 101]
Definition 1.7 ([101]) Let p be a string of length m and u be a string over the alphabet
Definition 1.8 ([101]) Let u, p and x be strings over the alphabet Σ Then u is a common
subsequence of p and x if u is a subsequence of p and a subsequence of x
Definition 1.9 ([101]) Let u, p and x be strings over the alphabet Σ Then u is a longest
common subsequence of p and x if two following conditions are satisfied
(i) u is a common subsequence of p and x,
(ii) There does not exist any common subsequence v of p and x such that |v| > |u|
Trang 23Denote an arbitrary longest common subsequence of p and x by LCS(p, x) The length
of a LCS(p, x) is denoted by lcs(p, x)
By convention, if two strings p and x does not have any longest common subsequences,
then the lcs(p, x) is considered to equal 0
Example 1.5 Let p = bgcadb and x = abhcbad Then string bcad is a LCS(p, x) and
lcs(p, x) = 4
Let p and x be two strings of lengths m and n over the alphabet Σ, m ≤ n The longest
common subsequence problem for two strings (LCS problem) can be stated in two following
forms [24, 47]
Problem 1 Find a longest common subsequence of p and x
Problem 2 Compute the length of a longest common subsequence of p and x
The simple way to solve the LCS problem is to use the algorithm introduced by
Wagner and Fischer in 1974 (called the Algorithm WF) This algorithm defines a dynamic
programming matrix L(m, n) recursively to find a LCS(p, x) and compute the lcs(p, x) as
where L(i, j) is the lcs(p[1 i], x[1 j]) for 1 ≤ i ≤ m, 1 ≤ j ≤ n
Example 1.6 Let p = bgcadb and x = abhcbad Use the Algorithm WF, the L(m, n)
is obtained below Then lcs(p, x) = L(6, 7) = 4 In Table 1.3, by traceback procedure,
starting from value 4 back to value 1, a LCS(p, x) found is a string bcad
Table 1.3 The dynamic programming matrix L
From Definition 1.10, the subsequence u has at least a location in p If all the different
locations of u are arranged in the dictionary order, then call the least element the leftmost
[47]
Trang 24Example 1.7 Let p = aabcadabcd and u = abd Then u is a subsequence of p and has
seven different locations in p, in the dictionary order they are
(1, 3, 6), (1, 3, 10), (1, 8, 10), (2, 3, 6), (2, 3, 10), (5, 8, 10), (7, 8, 10)
Definition 1.11 ([47]) Let p be a string of length m Then a configuration C of p is
defined as follows
1 Or C is the empty set Then C is called the empty configuration of p, denoted by
that the two following conditions are satisfied
Set of all the configurations of p is denoted by Config(p)
Definition 1.12 ([47]) Let p be a string of length m on the alphabet Σ, C ∈ Config(p)
ϕ : Config(p) × Σ → Config(p) defined as follows
determined by a loop using the loop control variable i whose value is changed from t down
to 0:
a) For i = t, if the letter a appears at a location index in p such that index is greater
b) Loop from i = t − 1 down to 1, if the letter a appears at a location index in p such
c) For i = 0, if the letter a appears at a location index in p such that index is smaller
4 To accept an input string, the state transition function ϕ is extended as follows
Example 1.8 Let p = bacdabcad and C = {c, ad, bab} Then C is a configuration of p
In 2002, P T Huy et al introduced a method to solve the Problem 1 by using the
automaton given as in the following theorem In this way, they named their method the
Knapsack Shaking approach [47]
Theorem 1.1 ([47]) Let p and x be two strings of lengths m and n over the alphabet
Σ, where
• The set of states Q = Config(p),
Trang 25• The initial state q0 = C0,
• The transition function ϕ is given as in Definition 1.12,
following conditions are satisfied
1.5 Searchable Encryption
This section clarifies the term of searchable encryption (SE) and recalls the definition
of a cryptosystem They will be studied and used in Chapter 5 [26, 40, 60, 85, 88, 102]
Consider a problem to occur in cloud security as follows [60, 85, 102] Cloud tenants, for
example enterprises and individuals with limited resource including software and hardware,
store data with sensitive information on cloud servers Assume that these servers cannot
be fully trusted This means they may not only be curious about the users’ information
but also abuse the data received Then users wish to encrypt their data before uploading
them to servers Because of limitations of cloud users’ information technology system,
users also wish that cloud providers can help them perform information search directly
on ciphertexts However, encryption brings difficulties for servers to do search on the
encrypted data These lead to a problem that is to find a solution to satisfy the two wishes
of cloud users when they choose cloud storage service
main components, a cryptosystem is used to encode and decode on cloud users side and
algorithms for searching on encrypted data are done on cloud providers side [40, 102]
In cryptography, SE can be either searchable symmetric encryption (SSE) or searchable
asymmetric encryption (SAE) In SSE, only private key holders can create encrypted data
ciphertexts but only private key holders can generate trapdoors [26, 102]
Since the dissertation proposes a new symmetric encryption system for SSE in Chapter
5, the correctness of this system needs to prove In this dissertation, the components and
properties of a cryptosystem defined in [88] will be considered as a standard form to verify
Here recalls this definition
Definition 1.13 ([88]) A cryptosystem is a five-tuple (P, C, K, E , D) such that the
following properties are satisfied
1 P is a finite set of plaintexts,
2 C is a finite set of ciphertexts,
3 K is a finite set of secret keys,
each x ∈ P
Trang 26CHAPTER 2
DIGITAL IMAGE STEGANOGRAPHY BASED ON
THE GALOIS FIELD USING GRAPH THEORY
AND AUTOMATA
This chapter first proposes concepts of optimal and near optimal secret data hiding
schemes The chapter then proposes a new digital image steganography approach based
assumptions, where k, m, n, N are positive integers and p is prime, shows sufficient
conditions for existence and proves existence of some optimal and near optimal secret
data hiding schemes These results are derived from the concept of the maximal secret
data ratio of embedded bits, the module method and the FOPA method proposed by
application of the schemes to the process of hiding a finite sequence of secret data in an
image is also considered Security analyses and experimental results confirm that the
proposed approach can create steganographic schemes which achieve high efficiency in
embedding capacity, visual quality, speed as well as security, which are key properties of
steganography
The results of Chapter 2 have been published in [T1]
2.1 Introduction
In steganography, depend on the type of digital media there are many types of
steganography such as image, audio and video steganography [4, 5, 20, 61, 62, 75, 76, 96]
However, image steganography is used the most popularly because digital images are
often transmitted on Internet and they have high degree of redundancy Furthermore, the
technique of image steganography is mainly image steganography in spatial domain,
steganography is achieved by changing colours of some pixels directly in the image
[17, 57, 62, 76, 100] The chapter’s work focuses on steganography in digital images in
spatial domain
Digital image steganography studies the steganographic schemes, where each scheme
consists of an embedding function and extracting function The embedding function shows
how to embed secret data in the digital image and the extraction function describes how
to extract the data from the digital image carrying the embedded data [46, 87]
In digital image steganography, a few main factors must be taken in consideration when
we design a new secret data hiding scheme, which are embedding capacity of the cover
image, quality of stego image and security However, as well known, embedding capacity
of the cover image and quality of its stego image are irreconcilable conflict A balance
achieved of the two factors can be done according to different application requirements In
addition to the three main factors, speed of the embedding and extracting functions also
Trang 27plays an important role in steganographic schemes It is considered as a last constraint to
determine efficiency of schemes [46, 53, 65, 69, 87, 104]
The simplest and most popular spatial domain image steganography method is the least
significant bit (LSB) substitution (called LSB based method) For 24-bit RGB and 8-bit
gray images, in this method the data is embedded in the cover image by changing the least
significant bits of the image directly, therefore it becomes vulnerable to security attacks
[18, 62, 72, 75, 76, 97, 104] EZ Stego method for palette images is similar to the commonly
used LSB based method However, this method does not guarantee quality of stego images
[36, 37, 97] To alleviate this problem, in 1999, Fridrich proposed a new method based
on the parity bits of colour indexes of pixels in palette cover images, called the parity
assignment (PA) method Then EZ Stego method can be considered as an example of
PA method [36, 50] In 2000, Fridrich et al improved the method by investigating the
problem of optimal parity assignment for the palette and this version is called the optimal
parity assignment (OPA) method [37] To easily control quality of stego images, Huy et
al introduced another OPA method, called the FOPA method, in 2013 [50] Unlike the
colour and gray images, each pixel in binary images only requires one bit to represent colour
values (black and white), therefore, modifying pixels can be easily detected So, binary
block based method is usually used to maintain quality of stego images In this method,
the cover and stego images are partitioned into individual image blocks of the same size,
embedding and extracting secret data are based on the characteristic values calculated for
the blocks WL (Wu et al., 1998), PCT (Pan et al., 2000), modified PCT (Tseng et al.,
2001), CTL (Chang et al., 2005) schemes are all well known and block based for binary
images [21, 18, 48, 75, 92]
an arbitrary image block, and use the concept of the maximal secret data ratio of embedded
bits proposed by Huy et al in 2011 [49], the chapter introduces concepts of optimal
and near optimal secret data hiding schemes Actually, the optimality of steganographic
schemes has been considered in [37, 46] However, the authors used the time complexity
of embedding and extracting functions, or the concept of optimal parity assignment that
minimizes the energy of the parity assignment for the colour palette to determine whether
a steganographic scheme is optimal
By the block based method, call a secret data hiding scheme a data hiding scheme
(k, N, r), where k, N, r are positive integers, if the embedding function can embed r bits
of secret data in each image block of N pixels by changing colours of at most k pixels in
the image block The chapter’s work is concerned with the problem of designing optimal
or near optimal data hiding schemes (k, N, r) for digital images (binary, gray and palette
images)
Based on the module approach and the (FOPA) method using graph theory proposed
by Huy et al in 2011 and 2013 [49, 50], the chapter proposes a new approach based on the
Galois field using graph and automata in order to solve the problem By this approach,
optimal data hiding scheme (2, 9, 8) and the optimal data hiding scheme (1, 5, 4) for gray
schemes to the process of hiding a finite sequence of secret data in an image can avoid
Trang 28detection from brute-force attacks.
The experimental results reveal that the efficiency in embedding capacity and visual
indeed better than the efficiency of the HCIH scheme [104] The embedding and extracting
time of the proposed approach are faster than that of the Chang et al.’s approach [18] For
can be selected suitably to achieve acceptable quality of the stego images
The rest of the chapter is organized as follows Section 2.2 gives some new concepts
and states the chapter’s digital image steganography problem Section 2.3 consists of two
Subsections 2.3.1 and 2.3.2 Subsection 2.3.1 introduces mathematical basis based on the
m is a positive integer Subsection 2.3.2 firstly proposes a digital image steganography
k, m, n, N are positive integers and p is prime Secondly, the subsection gives sufficient
Subsection 2.4 proves that there exist the near optimal data hiding scheme (2, 9, 8) and
Section 2.5 shows experimental results in order to evaluate the efficiency of the proposed
data hiding schemes and approach Lastly, some conclusions are drawn from the proposed
approach and experimental results in Section 2.6
2.2 The Digital Image Steganography Problem
This section gives some new concepts and states the chapter’s digital image
steganography problem
Definition 2.1 A block based secure data hiding scheme in digital images (for short, called
a data hiding scheme) is a five-tuple (I, M, K, Em, Ex), where the following conditions are
satisfied
1 I is a set of all image blocks with the same size and image type,
2 M is a finite set of secret elements,
3 K is a finite set of secret keys,
Trang 29Definition 2.2 A data hiding scheme (I, M, K, Em, Ex) is called a data hiding scheme
(k, N, r), where k, N, r are positive integers, if each image block in I has N pixels and the
embedding function Em can embed r bits of secret data in an arbitrary image block by
changing colours of at most k pixels in the image block
The chapter’s digital image steganography problem Design optimal or near optimal
data hiding schemes (k, N, r) for digital images (binary, gray and palette images)
2.3 A New Digital Image Steganography Approach
This section introduces mathematical basis based on the Galois field for the digital
image steganography problem (Subsection 2.3.1), proposes a digital image steganography
approach based on the Galois field using graph theory and automata to design the data
k, m, n, N are positive integers and p is prime, shows sufficient conditions for existence and
proves existence of some optimal data hiding schemes (Subsection 2.3.2) Security analyses
and an application of these data hiding schemes to the process of hiding a finite sequence
of secret data in an image are considered in Subsection 2.3.2
2.3.1 Mathematical Basis based on The Galois Field
the digital image steganography problem, where p is prime and m is a positive integer
(Propositions 2.2, 2.4 and Theorem 2.1)
i = 1, n}, where n is a positive integer, with two operations of vector addition + and scalar
multiplication · are defined as follows
Trang 30Proof Suppose [x] ∩ [y] 6=
∅
, then there exists z in [x] ∩ [y] By Definition 2.5, z = ax = by.and hence [x] = [y]
i=1aivi]|
integer, then S does not depend on the choice of representatives of classes
To prove that S does not depend on the choice of representatives of classes, it suffices to
So, A = B
Definition 2.7 Let V be a vector space over a field K, S ⊂ V Then S is called a
k-Generators for V , where k is a positive integer, if the two following conditions are satisfied
Trang 31Proof Since S is a k-Generators for GFn(pm), then for all v, v0 ∈ S, there does not exists
The proof is complete
Proof This is deduced immediately from Lemmas 2.2 and 2.3
Propostion 2.4 Let c be the number of k-[Generators] of N elements for the set
depend on the choice of representatives of classes by Proposition 2.3, the number of ways
2.1
Graph Theory and Automata
This subsection firstly proposes a digital image steganography approach based on the
subsection gives sufficient conditions for existence of the optimal data hiding schemes
Trang 32(1,ppmnm −1−1, blog2pmnc) and (2,
pm−3
2 + (pm−3)24 +2(2 blog2 pmnc −1)
qcolour = pm− 1 (Theorems 2.3 and 2.4) Thirdly, the subsection shows that there exists
qcolour = 1, where n is a positive integer (Proposition 2.6) And finally, the subsection
Security analysis (2.27))
Let I be a set of all image blocks with the same size and image type and assume that
each image block in I has N pixels, where N is a positive integer For simplicity, the
structure of an arbitrary image block I in I can be represented by
values or indexes of pixels of I
Let K be a finite set of secret keys For all K ∈ K, also assume that the structure of
the key K is the same as the structure of the image block I So, we can write
Definition 2.8 A weighted directed graph G = (V, E) is called a flip graph over the Galois
1 V = C and for all v ∈ V , the vertex v is assigned a weight by a functionVal such
Assume that we build a flip graph G = (V, E)
From the way to determine the arc set E in Definition 2.8, assume that
Trang 33Definition 2.10 Let Σ2 = GFn(pm), N = {1, 2, , N }, 2N ×GF (p )\{0} - the set of all
Remark 2.1 For the case v 6= q, then v + (−q) 6= 0 Since S is a k-Generators for
0
Definition 2.11 Let I ∈ I, M ∈ M and K ∈ K The automaton A(I, M, K) is a
Remark 2.2 The set of states Q and the transition function δ given in Definition 2.11
A(I, M, K) is constructed accurately in Definition 2.11
Let an image block I ∈ I, a secret element M ∈ M, a key K ∈ K By using the
automaton A(I, M, K) and the flip graph G, two functions Em and Ex in the data hiding
scheme (I, M, K, Em, Ex) are designed as follows
The function Em (embedding M in I):
From Definition 2.1, the correctness of the data hiding scheme (I, M, K, Em, Ex) is
confirmed by the following proposition
Trang 34Propostion 2.5 For all (I, M, K) ∈ I × M × K, Ex(Em(I, M, K), K) = M
implementing (2.4) we consider two cases of q:
N = |S|
graph G is built, we offer the way to construct the data hiding scheme (I, M, K, Em, Ex)
Em changes colours of at most k pixels I to embed M in I for all I ∈ I, M ∈ M by
Definition 2.10 and Statement (2.5)
Em is used to embed b ∈ B in I as follows
b will be determined accurately based on f
Since B and M are finite sets, thus to exist the injective function f , we let |B| ≤ |M|, it
Trang 35bits of the secret data b can be embedded in I By Definition 2.2, the data hiding scheme
by the extracting function Ex as follows
of elements in S also affects the formula (2.11)) The number of choices for the key K
f, f : B → GF By (2.10), to decrypt the secret element M to the secret data b, we need to
for a brute force attack, an attacker has to try every possible combination of S, K and f
in the given data hiding scheme The number of combinations of S, K and f is
c(pm− 1)NN !pmNCp2mnblog2 pmnc2blog2 p mn c! (2.12)Theorem 2.3 Suppose that a flip graph G is built Then there exists the optimal data
mn− 1
So, by Definition 2.3, Theorem 2.2 and from Lines (2.1), (2.14) and (2.15), there exists the
Trang 36Propostion 2.6 For n is a positive integer, there exists the optimal data hiding scheme
images as follows
• V = C and for all v ∈ V , the vertex v is assigned a weight by a functionVal such
thatVal(v) = v;
• V = C and for all v ∈ V , the vertex v is assigned a weight by a functionVal such
thatVal(v) = v mod 2;
the same weight 1
notations throughout this dissertation, here changes the name of the functionVal in the
• Consider G to be the rho forest built by the algorithm for FOPA and assign the same
weight 1 to all arcs of G However, all colours of the rho forest are replaced with their
colour indexes
By Definition 2.8, it is not difficult to verify that the graphs G for binary, gray and palette
hiding scheme CTL [18] So, Proposition 2.6 shows that the data hiding scheme CTL
is found and a flip graph G is built Then there
Proof For the assumption of the theorem, by Theorem 2.2, there exists the data hiding
Trang 37Suppose the data hiding scheme (2, N, r) is optimal for qcolour = pm− 1, then
Trang 38Given an image F used as a carrier to embed a secret data sequence into, partition F
Let Jump be a bijective function used to determine the order of blocks in F in the
in the decimal system Then there exists a bijective function f, f : B → GF
the proposed approach to the process of hiding D in F , use the secret key set K,
t = 1;
{
}
Propostion 2.7 For a cover image F , a secret data sequence D, a bijective function Jump,
Trang 39Proof By (2.21) and (2.23), EmDF in (2.22) and ExDF in (2.24) use the same secret key
Jump(i) 6= Jump(j), it means that an arbitrary image block in F is only used at most
one time in the process of hiding By Proposition 2.5, M extracted by (2.24) is the same
the proof
Security analysis of process of hiding D in F : Assume that parameters k, N , Em, Ex,
Then for a brute force attack, an attacker has to try every possible combination of S, K,
Jump and f in the given process of hiding The number of combinations of S, K, Jump
and f is
c(pm− 1)NN !pmt1 Nt2!Cp2mnblog2 pmnc2blog2 pmnc! (2.27)
2.4 The Near Optimal and Optimal Data Hiding Schemes for
Gray and Palette Images
This section shows that there exist the near optimal data hiding scheme (2, 9, 8)
(Theorem 2.5 and Security analyses (2.45), (2.46)) and the optimal data hiding scheme
(1, 5, 4) (Corollary 2.1 and Security analyses (2.47), (2.48)) for gray and palette images
reduction modulo g(x)
Trang 40Notice that the polynomial g(x) is irreducible in Z2[x] Indeed, if g(x) has factors being
different from the constant, then the factors of g(x) are only polynomials of degree 1 and
their coefficients and then denote the sequence of any polynomial’s coefficients by a binary
string and a decimal number as in Table 2.1
Table 2.2 Operations + and · on the Galois field GF (22)
Next, consider the case k = 2 and for p = m = 2 and n = 4 the data hiding
scheme (2, N, 8) exists if the hypothesis of Theorem 2.2 is satisfied, it means that find