LATEX ĐỀ THI THAM KHẢO MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Rút gọn biểu thức M = 1 logax + 1 loga2 x + + 1 logak x ta được A M = 4k(k + 1) l[.]
Trang 1L A TEX ĐỀ THI THAM KHẢO MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 5 trang)
Mã đề 001 Câu 1 Rút gọn biểu thức M= 1
logax+ 1
loga2x+ + 1
logakx ta được:
A M= 4k(k+ 1)
logax . B M= k(k+ 1)
2logax . C M = k(k+ 1)
3logax . D M = k(k+ 1)
logax .
Câu 2 Tìm tất cả các giá trị của tham số m để hàm số y= (m + 2)x3
3 − (m+ 2)x2+ (m − 8)x + m5nghịch biến trên R
Câu 3 Trong hệ tọa độ Oxyz, cho A(1; 2; 1), B(1; 1; 0), C(1; 0; 2) Tìm tọa độ D để ABCD là hình bình
hành
A (1; 1; 3) B (1; −2; −3) C (1; −1; 1) D (−1; 1; 1).
Câu 4 Biết logab= 2, logac= 3 với a, b, c > 0; a , 1 Khi đó giá trị của loga(a
2√3 b
c ) bằng
2
3.
Câu 5 Cho hàm số f (x)= e
1
3x
3 −2x 2 +3x+1
Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (−∞; 1) và (3;+∞)
B Hàm số nghịch biến trên khoảng (−∞; 1) và (3;+∞)
C Hàm số đồng biến trên khoảng(−∞; 1) và nghịch biến trên khoảng(3;+∞)
D Hàm số nghịch biến trên khoảng(−∞; 1) và đồng biến trên khoảng(3;+∞)
Câu 6 Tính thể tích khối tròn xoay khi quay xung quanh trục hoành hình phẳng giới hạn bởi các đường
y= 1
x, x= 1, x = 2 và trục hoành
A V = π
2 .
Câu 7 Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = x2 − 4x+ 5, tiếp tuyến tại A(1; 2) và tiếp tuyến tại B(4; 5) của đồ thị (C)
A. 7
9
3
5
4.
Câu 8 Người ta cần cắt một tấm tôn có hình dạng là một elíp với độ dài trục lớn bằng 2a, độ dài trục bé
bằng 2b (a > b > 0) để được một tấm tôn có dạng hình chữ nhật nội tiếp elíp Người ta gò tấm tôn hình chữ nhật thu được thành một hình trụ không có đáy như hình bên Tính thể tích lớn nhất có thể được của khối trụ thu được
A. 2a
2b
4a2b
2a2b
4a2b
3√3π .
Câu 9 Tâm I và bán kính R của mặt cầu (S ) : (x − 1)2+ (y + 2)2+ (z − 3)2 = 9 là:
A I(1; 2; 3); R= 3 B I(1; 2; −3); R= 3 C I(1; −2; 3); R = 3 D I(−1; 2; −3); R= 3
Câu 10 Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình log3(x2 − 5x + m) > log3(x − 2) có tập nghiệm chứa khoảng (2;+∞) Tìm khẳng định đúng
Trang 2Câu 11 Cho tam giác nhọn ABC, biết rằng khi quay tam giác này quanh các cạnh AB, BC, CA ta lần
lượt được các hình tròn xoay có thể tích là 672π, 3136π
9408π
13 .Tính diện tích tam giác ABC.
Câu 12. R 6x5dxbằng
6x
6+ C D 6x6+ C
Câu 13 Tìm đạo hàm của hàm số: y= (x2+ 1)
3 2
A. 3
4x
−1
1
2(2x)
1
2(x
1
2
Câu 14 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1
1 = z −2
1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox
A (P) : x − 2y + 1 = 0 B (P) : y − z + 2 = 0 C (P) : y + z − 1 = 0 D (P) : x − 2z + 5 = 0.
Câu 15 Cho hình phẳng D giới hạn bởi các đường y= (x − 2)2, y= 0, x = 0, x = 2 Khối tròn xoay tạo thành khi quay D quạnh trục hoành có thể tích V bằng bao nhiêu?
A V = 32
5 .
Câu 16 Một hộp chứa sáu quả cầu trắng và bốn quả cầu đen Lấy ngẫu nhiên đồng thời bốn quả Tính
xác suất sao cho có ít nhất một quả màu trắng
A. 1
1
209
8
105.
Câu 17 Một hộp chứa 15 quả cầu gồm 6 quả màu đỏ được đánh số từ 1 đến 6 và 9 quả màu xanh được
đánh số từ 1 đến 9 Lấy ngẫu nhiên hai quả từ hộp đó, xác suất để lấy được hai quả khác màu đồng thời tổng hai số ghi trên chúng là số chẵn bằng
Câu 18 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là
Câu 19 Cho hàm số y= f (x) có đạo hàm liên tục trên R và thỏa mãn f (x)+x f′
(x)= 4x3+4x+2, ∀x ∈ R Diện tích hình phẳng giới hạn bởi các đường y= f (x) và y = f′
(x) bằng
Câu 20 Cho khối chóp S ABC có đáy là tam giác vuông cân tại A, AB = 2, S A vuông góc với đáy và
S A= 3 (tham khảo hình bên) Thể tích khối chóp đã cho bằng
Câu 21 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n3 = (1; 1; 1) B.→−n4 = (1; 1; −1) C.→−n2 = (1; −1; 1) D.→−n1 = (−1; 1; 1)
Câu 22 Có bao nhiêu giá trị nguyên của tham số a ∈ (−10;+∞) để hàm số y =
x
3+ (a + 2)x + 9 − a2
đồng biến trên khoảng (0; 1)?
Câu 23 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 24 Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình bên?
A y= x3− 3x − 5 B y= x4− 3x2+ 2 C y= x2− 4x+ 1 D y= x−3
x−1
Câu 25 Cho cấp số nhân (un)với u1= 2 và công bội q = 1
2 Giá trị của u3 bằng
Trang 3Câu 26 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng
A ln3
2
Câu 27 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:
A y′= 1πxπ−1 B y′ = πxπ C y′ = xπ−1 D y′ = πxπ−1
Câu 28 Cho cấp số nhân (un) với u1 = 2 và công bội q = 1
2 Giá trị của u3bằng
A. 7
1
1
Câu 29 Có bao nhiêu giá trị nguyên của tham số m để hàm số y = −x4+ 6x2+ mx có ba điểm cực trị?
Câu 30 Cho hàm số bậc ba y= f (x) có đồ thị là đường cong trong hình bên Giá trị cực đại của hàm số
đã cho là
Câu 31 Trên khoảng (0;+∞), đạo hàm của hàm số y = log3xlà:
A y′= − 1
xln3.
Câu 32 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa
độ là
A (−1; 2; 3) B (−1; −2; −3) C (1; −2; 3) D (1; 2; −3).
Câu 33 Phần ảo của số phức z= 2 − 3i là
Câu 34 Cho hàm số y= f (x) có bảng biến thiên như sau:
x
y′
y
−2
−∞
+∞
−2
Đồ thị hàm số y= f (x) có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Câu 35 Đồ thị hàm số y= −x3+ 3x2− 3x+ 2 có bao nhiêu điểm cực trị?
Câu 36 Điểm cực đại của đồ thị hàm số y= x4− 2x2+ 3 là
Câu 37 Khối đa diện nào trong các khối đa diện sau có tính chất: “Mỗi mặt của khối đa diện là một tam
giác đều và mỗi đỉnh của nó là đỉnh chung của đúng ba mặt ”?
Câu 38 Cho hàm số y= x+ 1
3 − x Tìm giá trị lớn nhất của hàm số trên đoạn [−1; 2].
Câu 39 Cho tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc nhau và OA= OB = OC = 1 Tính thể tích V của khối tứ diện OABC
A V = 1
2.
Trang 4Câu 40 Cho hàm số y= 2x − 3
−x+ 2 Trong các khẳng định sau, khẳng định nào đúng?
A Hàm số đồng biến trên khoảng (−2; 2) B Hàm số đồng biến trên khoảng (−2;+∞)
C Hàm số đồng biến trên khoảng (2;+∞) D Hàm số đồng biến trên tập xác định của nó Câu 41 Cho hàm số y= −x4− x2+ 1 Trong các khẳng định sau, khẳng định nào sai?
A Đồ thị hàm số có một điểm cực đại B Đồ thị hàm số không có tiệm cận.
C Đồ thị hàm số cắt trục tung tại điểm (0; 1) D Điểm cực tiểu của hàm số là (0; 1).
Câu 42 Trong các hình dưới đây, có bao nhiêu hình đa diện?
Câu 43 Cho m= log23; n= log52 Tính log22250 theo m, n
A log22250= 2mn+ 2n + 3
C log22250= 3mn+ n + 4
Câu 44 Tìm tất cả các giá trị của tham số m để đồ thị hàm số y = −x3+ 3mx2− 3mx+ 1 có hai điểm cực trị nằm về hai phía trục Ox
A m > 2 hoặc m < −1 B m > 1 C m < −2 D m > 1 hoặc m < −1
3.
Câu 45 Tìm tất cả các giá trị của tham số mđể đồ thị hàm số y= 3x
x −2 cắt đường thẳng y = x + m tại hai điểm phân biệt A, B sao cho tam giác OAB nhận G(1;7
3) làm trọng tâm.
Câu 46 Chọn mệnh đề đúng trong các mệnh đề sau:
A Nếu a > 0 thì ax = ay ⇔ x= y B Nếu a > 0 thì ax > ay ⇔ x< y
C Nếu a > 1 thì ax > ay ⇔ x> y D Nếu a < 1 thì ax > ay ⇔ x< y
Câu 47 Cho mặt cầu (S ) có bán kính bằng R= 5, một hình trụ (T)có hai đường tròn đáy nằm trên mặt cầu (S ) Thể tích của khối trụ (T ) lớn nhất bằng bao nhiêu
A. 125π
√
3
250π√3
400π√3
500π√3
Câu 48 Tính đạo hàm của hàm số y= log4√x2− 1
A y′ = x
(x2− 1) ln 4. B y
2(x2− 1) ln 4. C y
x2− 1 ln 4
(x2− 1)log4e.
Câu 49 Biết a, b ∈ Z sao choR (x+ 1)e2xdx = (ax+ b
2x+ C Khi đó giá trị a + b là:
Câu 50 Trong không gian với hệ trục tọa độ Oxyz, cho→−u = (2; 1; 3), −→v = (−1; 4; 3) Tìm tọa độ của véc tơ 2→−u + 3−→v
A 2→−u + 3−→v = (3; 14; 16) B 2→−u + 3−→v = (2; 14; 14)
C 2→−u + 3−→v = (1; 14; 15) D 2→−u + 3−→v = (1; 13; 16)
Trang 5HẾT