Bài tập Toán cao cấp 1 Trương Đại học Thương mại có lời giải chi tiết
Trang 12nh th c
a. Bi i v
VT =
= y (x + y) (x2+ z2) + xy (z + x) (y2+ z2) + zx (y + z) (x2+ y2) yz (x + z) (x2+ y2) zx (x+ y) (y2+ z2) xy (y + z)(x2+ z2)
= [xyz (z2+ x2) + y2z (z2+ x2) + x2y (y2+ z2) + xyz (y2+ z2) + xyz (x2+ y2) + z2x (x2+ y2)] [xyz (z2+ x2) + xy2(z2+ x2) + zx2(y2+ z2) + xyz (y2+ z2) + xyz (x2+ y2) + yz2(x2+ y2)]
Trang 14= sin( ) + sin( ) + sin( )
Trang 16C C C
D D C
Trang 172 2
C C D D D D
Trang 18b A =
100
01cos
4
0cos1
L i gi i.
a.
=
1sin
sin1
sin1
cos
11
sin
sin1
sin1
1
2 2
b.
Trang 19nh th c
cos41100
01cos
4
0cos1
2
1cos
2
1cos
2k32
2k3
k
A11 = ( 1)1+1
10
01
= 1 A12 = ( 1)1+2
10
0cos4
= 4cos
A13= ( 1)1+3
00
1cos4
= 0 A21= ( 1)2+1
10
0cos
= cos
A22= ( 1)2+2
10
01
= 1 A23= ( -1)2+3
00
cos1
= 0
A31= ( 1)3+1
01
0cos
= 0 A32= ( 1)3+2
0cos4
01
= 0
A33= ( 1)3+3
1cos
4
cos1
= 1 4cos2
A =
2cos410
0
01
cos
0cos
41
A =
2cos4100
01
cos
4
0cos
1
Trang 20nh th c
65
214
5
23
b
418
116
1263
2
1
21
2
11
3
c
171910
21461
13
241
532
21
; C =
38
63
214
2
45
23
X =
65
21
2
32
52 1
X =
45
23
b.
418
116
126
212
113
418
116
126
X =
4
14
54
14
14
1
418
116
126
X =
101
112
111
c.
Trang 21nh th c
171910
21461
1
3
24
1
53
2
X =
171910
2146
1
113
241
532
X =
171910
2146
36
536
73611
36
136
1336
718
1181
X =
132
351
d.
10
21
; B =
11
21
; C =
38
63
21
=
38
63
X =
11
0
2
1
38
6
11
21
X =
10
21
38
63
11
21
X =
38
019
11
21
X =
1911
3819
Trang 43X + Y (x 1 + y 1 , x 2 y 2 n + y n )
Trang 45M t h vector ch a hai vector t l PTTT.
Trang 47Bi u di n tuy
: M i vector c a m t h bi u di n tuyvector c a m c a h
6 Bi u di n tuy vector X ( 1, 4, 1) qua hai vector:
Trang 51vtuy
Trang 52S.Y hay Y S -1 X tuy
c hi c m i tuy bi n vector X sang bi n vector Y (hay
Trang 54L i gi i.
Theo t , ta th y:
4sinh b i
Trang 561 D NG 1: c l p tuy thu c tuy
H m vector n chi u {X 1 , X 2 m } c g ph thu c tuy n u t n t i m s
Trang 59-{ b.
A =
Ba vector a1, a2, a3
3 Cho:
Trang 603.(A1 X) 2.(A2 X) 5.(A3 X)
3.A1 2.A2 5.A3 6.X
Trang 63V i k 5 r 3 4 (s vector) H {X 1 , X 2 , X 3 , X 4 } l ph thu c tuy
vector {X 1 , X 2 , X 3 ph thu c tuy
Trong 4 cho h vector: u1= (1, 1, 1, 1), u2= (2, 3, -1, 0), u3= ( 1, 1, 1, 1)
u ki n c h vector u = (x 1, x 2, x 3, x 4 ) bi u th tuy c qua h u 1,
u 2, u 3
Trang 64A =
m x1 x2 x3+ x4 = 0ector u bi u di n c qua u1, u2, u3 x1 x2 x3+ x4 = 0
Trong 3cho h vector : u1 = (1, 2, 1), u2 = (2, 2, 1), u3= (3, 2, 2) (U)
Trang 71Trong 4 c l p tuy a h vector
v1= (1, 2, 2, 1) ; v2= (2, 5, 6, 5) ; v3= (4, 9, 10, m)
L i gi i.
A =
2 khi m = 7 {v 1 , v 2 , v 3 thu c tuy
r(A) = 3 khi m 7 {v 1 , v 2 , v 3 c l p tuy
ng c a ma tr n sau :
A =
L i gi i.
A =
Trang 75Trong 4 = (1, 1, 2, 4), u2= (2, 1, 5, 2), u3 = (1, 1, 4, 0), u4= (2, 1, 1, 6)
Trang 77a Ch ng minh r ng h con g m ba vector c l p tuy
b Ch ng minh r ng vector bi u di n tuy , ,
Trang 79+ h p tuy , , b.
Trang 85m2 1 m1
2 n 2n 2
22 1 21
1 n 1n 2
12 1 11
b x a
x a x a
b x a
x a x a
b x a
x a x a
Trang 86s k t lu n h p.
Cho h Cramer:
n n nn 2
n2 1 n1
2 n 2n 2
22 1 21
1 n 1n 2
12 1 11
b x a
x a x a
b x a
x a x a
b x a
x a x a
(2)
=
nn n2
n1
2n 22
21
1n 12
11
a
a a
a
a a
a
a a
i
n
2 1
b b b
Trang 87X = (x1, x2 n); A =Khi A kh ngh ch t n t i ma tr n ngh o c a A: A.X = B (*)
B c 1: ) A-1 c: A-1.A.X = A-1.B X = A-1.B
B c 2: n th A-1v i A-1= (A*= Aij= (Aij )
nn 2n
1n
n2 22
21
n1 12
11
*
A
AA
A
AA
A
AA
1m1)(nm 1
m1
11m
Trang 91V y h m
e.
Trang 9298 98
7 4 3
5 3
2
3 2
0 2
5
5 4
4 3
3 2
5 4 3 2 1
x
x x
x x
x x
x x x x x
Trang 9335)
Trang 106N u
Trang 128Bi n lu n theo m s nghi m c a h
=
Trang 134
Gi i h
=
= C
Trang 136(t
H
Trang 137IV: D
D
Trang 138
1.
;
Trang 140hay
Trang 146, vector
Trang 150
2 + 3x3
2 + 4x4
2 + 2x1x2 - 2x2x4
Trang 1542+ 6x3 2+ 6x2x4+ 10x4
2
f F(x1, x2, x3, x4, x5) = x12 4x1x2+ 5x22+ 6x32+ 6x2x4+ 10x42+ 2x1x5 x52
Trang 158F(x1, x2 , x3, x4) = -4(y1 + y2)(y1 y2) + 6y3(y1 y2) + 10y3y4
2 + 4x1x3
Trang 159k = 3; k = 3
F(y1; y2 ; y3) = y12+ y22 + y32
d.
Trang 173= (x1+ x2)2+ x22+ 4x2x3
= (x1+ x2)2 + (x2+ 2x3)2- 4x32
t c d c: x12 + 2x22 + 2x1x2+ 4x2x3 = y12+ y22 4y32
Trang 174+ x3 2
4x1x2+ 2x2x3= y1
2
y2 2
+ y3 2
Trang 1762 + 4x2x3)
3 x2
2+ 28
3x3 2
Trang 190, gi i h c
, tu
Trang 191, gi i h c
(f )(x) = f(x) g(x) (fg)(x) = f(x).g(x) (f/g)(x) = f(x)/g(x) (g(x) 0) p.
Trang 192, gi i h c
[f(x)] = x, x X -
u hai bi n x;y cho nhau c
Trang 193, gi i h c
arctan(tanx) = x, - tan(arctanx) = x,
arcsinx + arcsin(-x) = 0, arccosx +
arccos(-arctanx + arctan(-x) = 0, arccotx +
arccot(-4 Ch ng minh r ng: arccosx +
Trang 208c t m
Trang 222, gi i h c
= 2
= 2f(0) = 2 =
Trang 233, gi i h c
i h n sau:
-
Trang 241G i
L i gi i.
Trang 247t bi n
lny= (3x cosx).ln(2x + sinx)
= (3 + sinx).ln(2x + sin x) + = A(x)
Trang 250ph c t p Thay m t bi u th c d ng phi tuy n b i m t bi u th c d ng tuy
Trang 259t bi n
L i gi i.
a.
c t i :
Trang 274t bi n
F = f(x, y) =
= 2u ycos(xy) = 2sin(xy) ycos(xy)
= 2u xcos(xy) = 2sin(xy) xcos(xy)
Trang 2786 23
57 63
Trang 27990 108
150 165 187
Trang 280255 267 277