? Solver requires some technical knowledge of linear optimization concepts and terminology, such as reduced costs and shadow prices giá mờ-see note.. ? Reduced costs: how much the unit
Trang 1Chapter 14 Applications of Linear Optimization
Lecturer: Nguyen Van Dung Ph.D.
Slides are based on slides accompanied the book “Business Analytics: Methods, Models, and Decisions”, with improvement from the lecturer
Trang 2Applications of Linear Optimization
Trang 3🞂 Building optimization models is more of an art
than a science.
◦ Learning how to build models requires logical thought facilitated by studying examples and observing their characteristics.
🞂 Key issues:
◦ Formulation
◦ Spreadsheet implementation
◦ Interpreting results
◦ Scenario and sensitivity analysis
◦ Gaining insight for making good decisions
Building Linear Optimization Models
Trang 4🞂Simple Bounds (giới hạn)
◦ Constraints on values of a single variable
◦ Ensure the flow of material or money is accounted for at
locations or between time periods: input = output
Types of Constraints in Optimization
Models
Trang 5🞂 Process selection models generally involve
choosing among different types of processes to produce a good.
◦ Example: make or buy decisions
Process Selection Models
Trang 6🞂 A mill that operates on a 24/7 basis produces three types
of fabric (vải) on a make-to-order basis.
🞂 The key decision is which type of loom (khung cửi dệt
vải) to use for each fabric (vải) type over the next 13
weeks.
🞂 The mill has 3 dobbie looms and 15 regular looms.
🞂 If demand cannot be met, the fabric is outsourced.
Example 14.1: Camm Textiles
Trang 7🞂 Model Formulation
🞂 Di = yards fabric i to produce on dobbie loom
🞂 Ri = yards fabric i to produce on regular loom
🞂 Pi = yards fabric i to outsource
🞂 Limitations: Production on each type of loom cannot
exceed the available production time
🞂 Nonnegativity
Example 14.1 Continued
Trang 9🞂 Loom capacity limitation constraints
🞂 First convert yards/hour into hours/yard.
E.g., for fabric 1 on the dobbie loom:
hours/yard = 1/(4.7 yards/hour) = 0.213 hours/yard
🞂 Capacity of the three dobbie looms:
(24 hours/day)(7 days/week)(13 weeks)(3 looms) = 6,552 hours
🞂 Constraint on available production time on dobbie looms:
0.213D1 + 0.192D2 0.227D3 ≤ 6,552
🞂 Constraint for regular looms:
0.192R2 + 0.227R3 ≤ 32,760
Example 14.1: Continued
Trang 10🞂 Full Model
Example 14.1 Continued
Trang 11🞂 Camm Textiles model
🞂 Decision variables
🞂 Objective
Spreadsheet Design
Trang 12Solver Model
Set cell C14 to zero as a constraint because
fabric 1 cannot be produced on a regular loom Whenever you restrict a single decision variable
to equal a value or set it as a ≤ or ≥ type of
constraint, Solver considers it as a simple bound
Trang 13🞂 Answer Report
Example 14.2: Interpreting Solver
Reports for the Camm Textiles Problem
Trang 14🞂 Sensitivity Report
Example 14.2: Interpreting Solver
Reports for the Camm Textiles Problem
Trang 15🞂 Solver requires some technical knowledge of
linear optimization concepts and terminology, such
as reduced costs and shadow prices (giá mờ-see note)
🞂 Data visualization can help analysts present
optimization results in forms that are more
understandable and can be easily explained to
managers and clients in a report or presentation
Solver Output and Data Visualization
Trang 16🞂 Camm Textiles
Answer Report Visualization
Trang 17🞂 Reduced costs: how much the unit production or
purchasing cost must be changed to force the value of a variable to become positive in the solution
Sensitivity Report Visualization
Trang 18🞂 Unit cost coefficients: use an Excel Stock Chart (see text
for details)
◦ A stock chart typically shows the “high-low-close” values of daily stock prices; here we can compute the maximum-minimum-
current values of the unit cost coefficients
Visualizing Allowable Ranges
For those lines that have
no maximum limit (the blue dash) such as with Fabric 1 Purchased, the unit costs can increase to infinity; for those that have no lower limit (the red triangle) such
as Fabric 1 on Dobbie, the unit costs can decrease indefinitely.
Trang 19🞂 Shadow prices show the impact of changing the right-hand side of a binding constraint Because the plant operates on a 24/7 schedule, changes in loom capacity would require in “chunks” (i.e., purchasing
an additional loom) rather than incrementally (gia tăng, tăng thêm)
🞂 However, changes in the demand can easily be assessed using the shadow price information
Visualizing Shadow Prices
Trang 20🞂 Stock Chart
Visualizing Allowable Ranges for Shadow Prices
Trang 21🞂 Blending problems involve mixing several raw
materials that have different characteristics to
make a product that meets certain specifications
◦ Dietary planning, gasoline and oil refining, coal and
fertilizer production, and the production of many other types of bulk commodities involve blending
🞂 We typically see proportional constraints in
blending models.
Blending Models
Trang 22🞂 BG Seed Company is developing a new birdseed
(hạt dùng cho chim ăn) mix.
◦ Nutritional requirements specify that the mixture contain
at least 13% protein, at least 15% fat, and no more than 14% fiber.
◦ BG’s objective is to determine the minimum cost mixture that meets nutritional requirements.
Example 14.3: BG Seed Company
Trang 23🞂 Formulating the model
🞂 Define Xi = pounds of ingredient i in 1 pound of mix
🞂 Objective function
🞂 minimize 0.22X1 + 0.19X2 + 0.10X3 + 0.10X4 + 0.07X5 + 0.05X6 + 0.26X7 + 0.05X6 + 0.26X7 + 0.11X8
Example 14.3 Continued
Trang 24🞂 Protein constraint
🞂 Total pounds of protein provided/total pounds of mix ≥
0.13
◦ (0.169X1 + 0.12X2 + 0.085X3 + 0.154X4 + 0.085X5 + 0.12X6 + 0.18X7 + 0.119X8)/(X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8) ≥ 0.13
🞂 Add constraint X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 = 1
◦ Protein constraint simplifies to
◦ 0.169X1 + 0.12X2 + 0.085X3 + 0.154X4 + 0.085X5 + 0.12X6 + 0.18X7 + 0.119X8 ≥ 0.13
Example 14.3 Continued
Formulate other nutritional
constraints in a similar way.
Trang 25🞂 Complete model
Example 14.3 Continued
Trang 26Spreadsheet Implementation of BG Seed Company
Trang 27Solver Model for BG Seed Company
Trang 28🞂 Solver solution shows the model is infeasible!
🞂 Solver Feasibility Report
Dealing with Infeasibility
A conflict exists in trying to meet both fat and fiber constraints Only sunflower seeds and safflower contain enough fat but they also have a lot of fiber.
Trang 29🞂 Lower the fat requirement or raise the fiber
Optimal Cost per pound:
$0.148 if fat requirement lowered
$0.152 if fiber limitation raised
Trang 30🞂 Many types of financial investment problems are
modeled and solved using linear optimization
🞂 Such portfolio investment models problems have
the basic characteristics of blending models.
Portfolio Investment Models
Trang 31🞂 Innis Investments manages 6 mutual funds A client
wants to invest a $500,000 inheritance The objective is
to minimize risk.
🞂 Constraints:
🞂 Invest no more than $200,000 in any one fund.
🞂 Invest at least $50,000 each in the multinational and balanced funds
🞂 Invest at least 40% combined in the income equity and balanced funds
🞂 Achieve an average return of at least 5%.
Example 14.4: Innis Investments
Trang 32🞂 Model Formulation
🞂 Define X i = dollar amount invested in fund i
◦ The total risk would be measured by the weighted risk of the portfolio, where the weights are the proportion of the total investment in any fund (Xj/500,000)
Example 14.4 Continued
Trang 33🞂 Constraints
◦ Invest all money:
◦ Achieve required return:
◦ Have at least 40% in income equity and balanced funds:
◦ At least $50,000 in each of multinational and balanced funds:
◦ Restrict each investment to $200,000, and include nonnegativity:
Example 14.4 Continued
Trang 34Spreadsheet Implementation for Innis Investments
Trang 35Solver Model for Innis Investments
Trang 36🞂 Innis Investments
◦ Allowable Increase and Allowable Decrease values for the
weighted return are very small, 0.00906 and 0.00111,
respectively; so any changes in the target return will require solving the model
re-Example 14.5: Risk versus Reward
Trang 37🞂 A poorly scaled model is one that computes values of
the objective, constraints, or intermediate results that
differ by several orders of magnitude.
🞂 Poor scaling can cause Solver engines to return
messages such as “Solver could not find a feasible
solution,” “Solver could not improve the current solution,”
or even “The linearity conditions required by this Solver
engine are not satisfied,” or it may return results that are suboptimal
◦ In the Solver options, you can check the box Use Automatic
Scaling
◦ The best way to avoid scaling problems is to carefully choose the
“units” implicitly used in your model so that all computed results are within a few orders of magnitude of each other
Scaling Issues in Using Solver
Trang 38🞂 Little Investment Advisors is working with a client on
determining an optimal portfolio of bond funds The client has $350,000 to invest and wants to achieve the largest weighted percentage return and keep the weighted risk measure no greater than 5.00.
Example 14.6: Little Investment
Advisors
Trang 40🞂 Premium Solver solution without scaling, resulting in an
incorrect solution!
Example 14.6 Continued
Trang 41🞂 Solver solution after scaling the variables
Example 14.6 Continued
Trang 42🞂 The transportation problem involves
determining how much to ship from a set of
sources of supply (factories, warehouses, etc.) to
a set of demand locations (warehouses,
customers, etc.) at minimum cost.
Transportation Models
Trang 43🞂 GAC produces refrigerants at 2 plants and ships to 5
distribution centers.
🞂 Define the decision variables as: Xij = amount shipped
from plant i to distribution center j
🞂 The objective is to minimize the total cost of shipping
between plants and distribution centers.
◦ minimize 12.60X11 + 14.35X12 + 11.52X13 + 17.58X14 + 9.75X21 + 16.26X22+ 8.11X23 + 17.92X24
Example 14.7: General Appliance
Corporation
Trang 45GAC Spreadsheet Implementation and
Solver Model
Trang 46🞂 Depending on how cells in your spreadsheet model are
formatted, the Sensitivity report produced by Solver may
not reflect the accurate values of reduced costs or
shadow prices because an insufficient number of
decimal places may be displayed.
🞂 We highly recommend that after you save the Sensitivity
report to your workbook, you select the reduced cost and shadow price ranges and format them to have at least two or three decimal places.
Formatting the Sensitivity Report
Trang 47Example: GAC Sensitivity Report
Original Sensitivity Report Reformatted Sensitivity Report
Trang 48🞂 Reduced costs tell how
much the unit shipping
cost would have to be
infeasible problem The
shadow prices reflect the
cost savings that would
occur for a unit decrease
in demand at one of the
distribution centers.
Example 14.8: Interpreting Sensitivity Information for the GAC Model
Trang 49🞂 The GAC solution exhibits a phenomenon called
degeneracy (sự thoái hoá) A solution is degenerate if
the right-hand-side value of any constraint has a zero
Allowable Increase or Allowable Decrease
◦ Degeneracy can impact the interpretation of sensitivity analysis information For example, reduced costs and shadow prices may not be unique, and you may have to change objective function coefficients beyond their allowable increases or decreases before the optimal solution will change
Degeneracy
Trang 50🞂 The basic decisions are how much to produce in each
time period to meet anticipated demand over each
period
🞂 Although it might seem obvious to simply produce to the
anticipated level of sales, it may be advantageous to
produce more than needed in earlier time periods when production costs may be lower and store the excess
production as inventory for use in later time periods,
thereby letting lower production costs offset the costs of holding the inventory.
Multiperiod Production Planning
Models
Trang 51🞂 K&L Designs makes hand-painted jewelry boxes.
🞂 Forecasted sales are 150 in autumn, 400 in winter, and 50 in
spring
🞂 Unpainted boxes cost $20 and each box takes 2 hours to
complete
🞂 The cost of capital is 6% per quarter.
🞂 Holding cost per item = 0.06(20) = $1.20/quarter
🞂 Labor rates are $5.50, $7.00, and $6.25 per hour during autumn, winter, and spring, respectively
🞂 Minimize the combined cost of production and inventory
holding costs.
Example 14.9: K&L Designs
Trang 54🞂 Constraints
◦ Satisfy demand using production in a quarter and the inventory held from the previous time quarter Any amount in excess of the demand is held to the next quarter
◦ Therefore, the constraints take the form of inventory balance
equations:
Example 14.9 Continued
Trang 55🞂 Complete model
Example 14.9 Continued
Trang 56Spreadsheet Implementation for K&L Designs
Trang 57Solver Model for K&L Designs
Trang 58🞂 To ensure that demand is satisfied, we can set the
cumulative production in each quarter to be at least as great as the cumulative demand.
◦ This eliminates inventory variables
Example 14.10: An Alternative
Optimization Model for K&L Designs
Trang 59Alternative Spreadsheet Model
Trang 60Alternative Solver Model
Trang 61Comparison of Sensitivity Reports
Trang 62🞂 Người quản lý tài chính của công ty cần đảm bảo rằng có đủ tiền để thanh toán chi phí nhưng vẫn cần tối đa hóa thu nhập
từ đầu tư.
🞂 Ba khoản đầu tư ngắn hạn đang được xem xét như sau:
🞂 Chứng chỉ tiền gửi 1 tháng trả 0,25%
🞂 Chứng chỉ tiền gửi 3 tháng thanh toán 1,00% khi đáo hạn
🞂 Chứng chỉ tiền gửi 6 tháng thanh toán 2,30% khi đáo hạn
🞂 Chi phí ròng trong 6 tháng tới được dự đoán là $50.000,
Trang 63🞂 Phát triển mô hình
◦ Ai = số tiền ($) để đầu tư vào CC tiền gửi 1 tháng vào đầu tháng i
◦ Bi = số tiền ($) để đầu tư vào CC tiền gửi 3 tháng vào đầu tháng i
◦ Ci = số tiền ($) để đầu tư vào CC tiền gửi 6 tháng vào đầu tháng i
Ví dụ 14.11 tiếp theo
Trang 64🞂 Mô hình tối ưu hoá
Ví dụ 14.11 tiếp theo
Trang 65Bảng tính - mô hình của D.A Branch
& Sons
Trang 66Bảng tính - các công thức của
mô hình D.A Branch & Sons
Trang 67Mô hình Solver của D.A Branch & Sons
Trang 68🞂 Solver có cách xử lí các giới hạn dưới đơn giản (VD:
C>=500) và giới hạn trên (VD: D<=1000) khác so với các ràng buộc thường trong báo cáo độ nhạy.
🞂 Giới hạn dưới và giới hạn trên cũng tương tự như loại
ràng buộc không tiêu cực, không xuất hiện rõ ràng dưới dạng các ràng buộc trong mô hình.
🞂 Điều này khiến cho việc giải thích thông tin về độ nhạy
trở nên khó, vì ta không còn giá bóng và mức tăng giảm cho phép được liên kết với các ràng buộc
Mô hình với Biến Ràng Buộc
Trang 69🞂 J&M Manufacturing sản xuất 4 mẫu bếp nướng gas.
🞂 Xác định số lượng bếp nướng cần sản xuất để tối đa
hóa lợi nhuận.
Ví dụ 14.12: J&M Manufacturing
Trang 70(300-🞂 Ràng buộc bao gồm sự hạn chế về số giờ sản xuất của
mỗi bộ phận, yêu cầu về doanh số tối thiểu, doanh số tối
đa giới hạn tiềm năng.
◦ Cẩn thận khi xem xét các dimensions.
Ví dụ 14.12 tiếp theo
Trang 71🞂 Ràng buộc:
◦ Khả năng của bộ phận:
◦ Yêu cầu doanh số tối thiểu và doanh số tối đa tiềm năng
Ví dụ 14.12 tiếp theo
Trang 72Triển khai bảng tính cho J&M Manufacturing
Trang 73Bảng tính Công thức mô hình của J&M Manufacturing
Trang 74Mô hình Solver của J&M
Manufacturing
Trang 75Báo cáo trả lời của J&M Manufacturing
Trang 76Báo cáo độ nhạy của J&M
Manufacturing
Chú ý rằng không có giới hạn ràng buộc nào xuất hiện trong mục Constraints.
Trang 77🞂 Đối với sản phẩm B, giới hạn ràng buộc dưới là B ≥ 0 Cần có lợi nhuận bao nhiêu hơn nữa trên sản phẩm B để có lợi nhuận kinh tế trong việc sản xuất số lượng sản phẩm nhiều hơn số lượng tối
thiểu yêu cầu?"
◦ Đáp án đưa ra bởi: Chi phí giảm Lợi nhuận đơn vị trên sản phẩm B phải giảm ít nhất là -1,905 đô la (tức tăng ít nhất là 1,905 đô la) để có thể sản xuất số lượng sản phẩm nhiều hơn số lượng tối thiểu yêu cầu với lợi nhuận kinh tế.
🞂 Sản phẩm D ở giới hạn trên của nó.
◦ Chi phí giảm 19,29 đô la cho biết lợi nhuận đơn vị phải giảm bao nhiêu trước khi không còn kinh tế để sản xuất số lượng tối đa.
Hiểu biết về Độ giảm chi phí