TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tính lim x→2 x + 2 x bằng? A 0 B 3 C 2 D 1 Câu 2 [2] Phươn[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Tính lim
x→2
x+ 2
x bằng?
Câu 2. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 3. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 4. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có f0(x)= F(x)
B Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ [a; b], ta có F0(x)= f (x)
Câu 5. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
Câu 6. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 7. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 8. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
A −1
1
1
Câu 9. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3
− 2x2+ 3x − 1
Câu 10. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 11 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0
C.
Z
( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
Câu 12. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = (1, 01)3
(1, 01)3− 1 triệu. B m = 100.1, 03
3 triệu.
Trang 2C m = 100.(1, 01)3
(1, 12)3− 1 triệu.
Câu 13. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 14. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 15. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3
a3√3
3√ 3
2 .
Câu 16. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
B Cả ba câu trên đều sai.
C F(x)= G(x) trên khoảng (a; b)
D G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
Câu 17. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 18. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 19. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục ảo.
B Đường phân giác góc phần tư thứ nhất.
C Trục thực.
D Hai đường phân giác y= x và y = −x của các góc tọa độ
Câu 20. Hàm số y= x + 1
x có giá trị cực đại là
Câu 21. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 22. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4
2x+ 12 log2
2x log2 8
x
Câu 23. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. √ ab
a2+ b2 C. ab
2
√
a2+ b2
Câu 24. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 25. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A.
√
√ 3
Trang 3Câu 26. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số cạnh của khối chóp bằng 2n.
C Số mặt của khối chóp bằng 2n+1.
D Số đỉnh của khối chóp bằng 2n+ 1
Câu 27. Tính lim7n
2− 2n3+ 1 3n3+ 2n2+ 1
-2
3.
Câu 28. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
ln 2
2 .
Câu 29. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
2
a3√3
3√
3√ 3
2 .
Câu 30. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 3ac
3b+ 2ac
c+ 3 .
Câu 31. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là
A 50, 7 triệu đồng B 3, 5 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.
Câu 32. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 33. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln x B y0 = 2x ln 2 C y0 = 1
0 = 1
2x ln x.
Câu 34. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tứ giác và một hình chóp ngũ giác.
B Hai hình chóp tứ giác.
C Một hình chóp tam giác và một hình chóp tứ giác.
D Hai hình chóp tam giác.
Câu 35. Khối đa diện đều loại {4; 3} có số mặt
Câu 36. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1
x
! Tính tổng S = f0
(1)+ f0
(2)+ · · · + f0
(2017)
2016
4035
2018.
Câu 37. Tính lim n −1
n2+ 2
Câu 38. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
Trang 4A. 14
√
3
√
√ 3
√ 3
Câu 39. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 40. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
Câu 41. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 42. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 43 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
Câu 44. Khẳng định nào sau đây đúng?
A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
C Hình lăng trụ đứng là hình lăng trụ đều.
D Hình lăng trụ tứ giác đều là hình lập phương.
Câu 45. [1] Giá trị của biểu thức 9log3 12bằng
Câu 46. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 5
7
Câu 47. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 48. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 49. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A a
√
√ 57
a
√ 57
2a√57
19 .
Câu 50. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 51. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A a3
√
3√ 6
a3√6
2a3√6
3 .
Trang 5Câu 52. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 53. [1] Đạo hàm của làm số y = log x là
A y0 = 1
1
0 = ln 10
0 = 1
xln 10.
Câu 54. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 55. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành
d0?
Câu 56. Khối đa diện đều loại {3; 5} có số mặt
Câu 57. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 58. Tính lim
x→5
x2− 12x+ 35
25 − 5x
5.
Câu 59. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11+ 19
9 . B Pmin = 9
√
11 − 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 2
√
11 − 3
Câu 60. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 61. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
A 2 và 2
√
√
√
2 và 3 D 2 và 3.
Câu 62. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√3 B m= ±1 C m= ±√2 D m= ±3
Câu 63. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x
2 = y −2
3 = z −3
x −2
2 = y+ 2
2 = z −3
2 .
C. x
1 = y
1 = z −1
x −2
2 = y −2
3 = z −3
4 .
Câu 64. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√
2 D 3+ 4√2
Câu 65. Khối đa diện đều loại {3; 3} có số mặt
Trang 6Câu 66. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3√
3
4a3
4a3
√ 3
2a3
3 .
Câu 67. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 68. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
2a√3
√
√ 3
2 .
Câu 69. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√
√
√ 13
13 .
Câu 70. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là 4 B Phần thực là −3, phần ảo là −4.
C Phần thực là 3, phần ảo là −4 D Phần thực là 3, phần ảo là 4.
Câu 71. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 72. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng √24
A m = −3 B −3 ≤ m ≤ 4 C m= −3, m = 4 D m= 4
Câu 73. Khối đa diện đều loại {3; 3} có số cạnh
Câu 74. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
1
1
8.
Câu 75. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
3√
3√ 15
a3√ 5
3 .
Câu 76. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 77. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 78. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Trang 7Câu 79. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
√ 3
2 e
π
√ 2
2 e
π
2e
π
3
Câu 80. Tìm giá trị lớn chất của hàm số y= x3
− 2x2− 4x+ 1 trên đoạn [1; 3]
A. 67
Câu 81. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
A 0 < m ≤ 3
9
3
4.
Câu 82 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 20 triệu đồng B 2, 22 triệu đồng C 2, 25 triệu đồng D 3, 03 triệu đồng.
Câu 83. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
A. 1
1
Câu 84. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.
Câu 85. Tứ diện đều thuộc loại
Câu 86. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x
là
Câu 87. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 2
5n − 3n2 B un = 1 − 2n
5n+ n2 C un = n2− 3n
n2 D un = n2+ n + 1
(n+ 1)2
Câu 88. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3
4 .
Câu 89. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác
S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là
A. a
3
3
a3
24.
Câu 90. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√ 2
Câu 91. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các
số tự nhiên Tính S = m2+ 2n3
Câu 92. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Trang 8Câu 93. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:
A.
√
3
√ 3
3
√ 3
2 .
Câu 94. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 3
12 .
Câu 95. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 96. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 97. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
1
8
8
3.
Câu 98. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 99. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 100. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
a3
√ 3
a3
√ 6
2a3
√ 6
9 .
Câu 101. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó
A Giảm đi n lần B Tăng lên n lần C Tăng lên (n − 1) lần D Không thay đổi.
Câu 102. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 103. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3
4a3
√ 3
a3
3 .
Câu 104. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1
là
Câu 105. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
A. 2
1 2e3
Câu 106. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
C lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) D lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b)
Trang 9Câu 107. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x)g(x)]= ab B lim
x→ +∞[ f (x) − g(x)]= a − b
C lim
x→ +∞
f(x)
g(x) = a
Câu 108 Trong các khẳng định sau, khẳng định nào sai?
A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
C Cả ba đáp án trên.
D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
Câu 109. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 110. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
√ 3
a
a
2.
Câu 111. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 3
Câu 112. Tìm giới hạn lim2n+ 1
n+ 1
Câu 113. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 4 đỉnh, 8 cạnh, 4 mặt B 6 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 6 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.
Câu 114. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 5a
8a
a
2a
9 .
Câu 115. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 116. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A.
√
Câu 117. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. a
2√
7
a2√ 2
11a2
a2√ 5
16 .
Câu 118. Khối đa diện đều loại {4; 3} có số cạnh
Câu 119. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3√3
a3√3
a3
4 .
Trang 10Câu 120. [2-c] Giá trị nhỏ nhất của hàm số y = (x2
− 2)e2xtrên đoạn [−1; 2] là
Câu 121. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Một khối chóp tam giác, một khối chóp tứ giác.
B Một khối chóp tam giác, một khối chóp ngữ giác.
C Hai khối chóp tam giác.
D Hai khối chóp tứ giác.
Câu 122. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
1
3.
Câu 123. Khối đa diện đều loại {5; 3} có số cạnh
Câu 124. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 125. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 126. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 127. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 128. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối 20 mặt đều.
Câu 129. Trong không gian cho hai điểm A, B cố định và độ dài AB= 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
A. 3
9
2.
Câu 130. Tính lim 2n
2− 1 3n6+ n4
HẾT