1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thpt (968)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 155,07 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

2

3√

3√ 3

a3√3

2 .

Câu 2. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?

Câu 3. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 4. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 1

2

Câu 5. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 6. Biểu thức nào sau đây không có nghĩa

A (−

−1

Câu 7. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = 3a3

√ 3

2 . B V = 3a3√

3 C V = 6a3 D V = a3

√ 3

2 .

Câu 8. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = [2; 1] B. D = R \ {1; 2} C. D = R D. D = (−2; 1)

Câu 9. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 10. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.

Câu 11. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 12. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 13. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 3 đỉnh, 3 cạnh, 3 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

Câu 14. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 15. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Trang 2

Câu 16. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 17. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 18. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

D Câu (II) sai.

Câu 19. Thể tích của khối lập phương có cạnh bằng a√2

A. 2a

3√

2

Câu 20. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 21. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 22. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 23. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 24. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

√ 2

3 .

Câu 25. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a

√ 3

a

√ 6

a

√ 6

3 .

Câu 26. Dãy số nào sau đây có giới hạn là 0?

A. 5

3

!n

3

!n

e

!n

3

!n

Trang 3

Câu 27. Hàm số f có nguyên hàm trên K nếu

C f (x) có giá trị nhỏ nhất trên K D f (x) có giá trị lớn nhất trên K.

Câu 28. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối bát diện đều B Khối 20 mặt đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 29. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 30. Khối đa diện đều loại {5; 3} có số cạnh

Câu 31. [4-1212d] Cho hai hàm số y = x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y = |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 32. [1] Giá trị của biểu thức 9log3 12

bằng

Câu 33. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 8

√ 3

√ 3

3 .

Câu 34. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 35. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. " 2

5;+∞

!

5

#

3

#

"

−2

3;+∞

!

Câu 36. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 37. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

A. 8

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Câu 38. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

√ 57

a√57

19 .

Câu 39. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Trang 4

Câu 40. Khối đa diện đều loại {3; 4} có số cạnh

Câu 41. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

6.

Câu 42. Tính lim

x→1

x3− 1

x −1

Câu 43. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 44. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 45. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 46. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√ 6

a3√ 3

a3√ 6

24 .

Câu 47. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)g(x)]= ab B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x)+ g(x)] = a + b D lim

x→ +∞[ f (x) − g(x)]= a − b

Câu 48. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 49. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 50. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 51. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Trang 5

Câu 52. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = logπ

C y = log√

2x D y = logaxtrong đó a= √3 − 2

Câu 53. Dãy số nào sau đây có giới hạn là 0?

A un= 1 − 2n

5n+ n2 B un = n2− 2

5n − 3n2 C un = n2+ n + 1

(n+ 1)2 D un = n2− 3n

n2

Câu 54 Phát biểu nào sau đây là sai?

A lim 1

n = 0

C lim un= c (un = c là hằng số) D lim qn= 0 (|q| > 1)

Câu 55 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 22 triệu đồng B 2, 20 triệu đồng C 2, 25 triệu đồng D 3, 03 triệu đồng.

Câu 56. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 57. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A. 1

2e

π

√ 3

2 e

π

√ 2

2 e

π

Câu 58. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng

a2+ b2

a2+ b2+ c2 B. b

a2+ c2

a2+ b2+ c2 C. a

b2+ c2

a2+ b2+ c2 D. abc

b2+ c2

a2+ b2+ c2

Câu 59. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm

đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 60. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

9 .

Câu 61. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 62. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 63. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 9

1

2

1

5.

Câu 64. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Trang 6

Câu 65. [2D1-3] Tìm giá trị thực của tham số m để hàm số y = tan x+ m

mtan x+ 1 nghịch biến trên khoảng



0;π

4



Câu 66. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 67. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 68 Trong các khẳng định sau, khẳng định nào sai?

A Cả ba đáp án trên.

B F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

C Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

Câu 69. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên n lần B Giảm đi n lần C Không thay đổi D Tăng lên (n − 1) lần.

Câu 70. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

√ 6

a

√ 6

2 .

Câu 71. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng

Câu 72. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 73. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 74. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 75. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

2.

Câu 76. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối tứ diện đều C Khối bát diện đều D Khối lập phương.

Câu 77. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

A. 5

7

2.

Câu 78. Tính limcos n+ sin n

n2+ 1

Câu 79 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z 1

xdx= ln |x| + C, C là hằng số

C.

Z

xαdx= α + 1xα+1 + C, C là hằng số D.

Z

dx = x + C, C là hằng số

Trang 7

Câu 80. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = −ey

− 1

Câu 81 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx B.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

C.

Z

f(x)g(x)dx=

Z

f(x)dx

Z

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0

Câu 82. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 83. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

2

a3√3

3√

3√ 2

4 .

Câu 84. [3-1214d] Cho hàm số y = x −1

x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng

Câu 85. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 86. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp tứ giác.

B Một khối chóp tam giác, một khối chóp ngữ giác.

C Hai khối chóp tam giác.

D Hai khối chóp tứ giác.

Câu 87. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

A. 2

3

√ 3

Câu 88. Hàm số y= x + 1

x có giá trị cực đại là

Câu 89. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 90. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A −3 − 4

Câu 91. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 92. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x +3trên đoạn [0; 2] là

Trang 8

Câu 93. Hàm số y= x3

− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 94. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

40

50.(3)10

20

50.(3)20

10

50.(3)40

20

50.(3)30

450

Câu 95. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 96. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 97. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. a

57

a√57

2a√57

√ 57

Câu 98. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4e+ 2. B m=

1 − 2e

4 − 2e. C m= 1+ 2e

4e+ 2. D m=

1+ 2e

4 − 2e.

Câu 99. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

Câu 100. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 101. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 102. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

Câu 103. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 104. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 1 B T = e + 3 C T = 4 + 2

e. D T = e + 2

e.

Câu 105. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 106. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là 4 B Phần thực là 3, phần ảo là 4.

C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là −4.

Câu 107. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Trang 9

Câu 108. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 109. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 110. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 111. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 1

2

2

3.

Câu 112. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 113. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= 1

e, m = 0 C M = e, m = 0 D M = e, m = 1

e.

Câu 114 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C

C.

Z

f(x)dx

!0

Z

k f(x)dx= kZ f(x)dx, k là hằng số

Câu 115. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 116. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3 .

Câu 117. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 118. Bát diện đều thuộc loại

Câu 119. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 120. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và

AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

a√2

√ 2

Câu 121. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 2

Trang 10

Câu 122. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 123. Khối đa diện đều loại {3; 5} có số mặt

Câu 124. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 18

11 − 29

21 C Pmin = 9

11+ 19

9 . D Pmin= 2

11 − 3

Câu 125. Tìm giới hạn lim2n+ 1

n+ 1

Câu 126. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= +∞ B f (x) có giới hạn hữu hạn khi x → a.

C lim

x→a + f(x)= lim

x→a − f(x)= a

Câu 127. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2√3 Thể tích khối nón đã cho là

A V = πa3

√ 6

6 . B V = πa3

√ 3

6 . C V = πa3

√ 3

2 . D V = πa3

√ 3

3 .

Câu 128. Khối đa diện đều loại {4; 3} có số cạnh

Câu 129. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 130. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

HẾT

Ngày đăng: 15/04/2023, 04:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN