1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thpt (647)

13 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 13
Dung lượng 156,06 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Giá trị cực đại của hàm số y = x3 − 3x + 4 là A 1 B −1 C 6[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Giá trị cực đại của hàm số y = x3− 3x+ 4 là

Câu 2. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 3. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 4 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Bát diện đều B Nhị thập diện đều C Thập nhị diện đều D Tứ diện đều.

Câu 5. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 6. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 7 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

Câu 8. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 9. [4] Xét hàm số f (t) = 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 10. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4 − 2e. B m= 1 − 2e

4 − 2e. C m= 1 − 2e

4e+ 2. D m=

1+ 2e 4e+ 2.

Câu 11. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

D.

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

Câu 12. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số đồng biến trên khoảng (1; 2).

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số nghịch biến trên khoảng (0; 1).

Câu 13. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Trục thực.

Trang 2

B Trục ảo.

C Hai đường phân giác y= x và y = −x của các góc tọa độ

D Đường phân giác góc phần tư thứ nhất.

Câu 14. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 15. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 16. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

9

3

4.

Câu 17. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

2.

Câu 18. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {0} B. D = R \ {1} C. D = R D. D = (0; +∞)

Câu 19 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

C Cả ba đáp án trên.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Câu 20. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = logπ

C y = log√

2x D y = logaxtrong đó a= √3 − 2

Câu 21. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối 12 mặt đều C Khối bát diện đều D Khối lập phương.

Câu 22. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 23. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 24. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

-2

Câu 25. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 26. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

√ 26

Câu 27. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −1

2;+∞

!

2

!

2;+∞

!

2

!

Trang 3

Câu 28. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3 ] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 29. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A. 2

Câu 30. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0

Câu 31 Hình nào trong các hình sau đây không là khối đa diện?

Câu 32. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 33. Khối đa diện đều loại {5; 3} có số cạnh

Câu 34. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 35. Dãy số nào có giới hạn bằng 0?

A un= 6

5

!n

B un = n2− 4n C un = n3− 3n

n+ 1 . D un = −2

3

!n

Câu 36. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 37. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 38. Khối đa diện đều loại {4; 3} có số cạnh

Câu 39. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là 3, phần ảo là −4 B Phần thực là −3, phần ảo là 4.

C Phần thực là 3, phần ảo là 4 D Phần thực là −3, phần ảo là −4.

Câu 40. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

A 8

Câu 41. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

58

3a

√ 38

a

√ 38

3a

29.

Câu 42. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

B Nếu

Z

f0(x)dx =

Z

g0(x)dx thì f (x) = g(x), ∀x ∈ R

Trang 4

C Nếu f(x)dx= g(x)dx thì f (x)= g(x), ∀x ∈ R.

D Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

Câu 43. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 44. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 45. Khối đa diện đều loại {3; 4} có số cạnh

Câu 46 Phát biểu nào sau đây là sai?

A lim 1

n = 0

Câu 47. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

√ 2

2 e

π

√ 3

2 e

π

2e

π

3

Câu 48. Tính lim

x→1

x3− 1

x −1

Câu 49. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 5 đỉnh, 9 cạnh, 6 mặt.

Câu 50. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 51. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 52. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 1

2

Câu 53. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. 2a

57

a√57

√ 57

19 .

Câu 54. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (II) đúng B Chỉ có (I) đúng C Cả hai đều sai D Cả hai đều đúng.

Trang 5

Câu 55. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2

)?

Câu 56. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 57. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 11

9

Câu 58. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :

x= t

y= −1

z= −t

và hai mặt phẳng (P), (Q)

lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)

A (x − 3)2+ (y + 1)2+ (z + 3)2= 9

2+ (y − 1)2+ (z − 3)2= 9

4.

C (x+ 3)2+ (y + 1)2+ (z + 3)2= 9

4. D (x+ 3)2+ (y + 1)2+ (z − 3)2= 9

4.

Câu 59. Tìm m để hàm số y= x4

− 2(m+ 1)x2

− 3 có 3 cực trị

Câu 60. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 61. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 ln 2x

x3ln 10 . B y

0 = 1 − 2 log 2x

x3 C y0 = 1 − 4 ln 2x

2x3ln 10 . D y

0 = 1 2x3ln 10.

Câu 62. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

Câu 63. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 64. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2

a2+ b2 C. ab

a2+ b2 D. √ ab

a2+ b2

Câu 65. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→af(x)= f (a) B f (x) có giới hạn hữu hạn khi x → a.

C lim

x→a + f(x)= lim

x→a + f(x)= lim

x→a − f(x)= +∞

Câu 66. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 67. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Trang 6

Câu 68. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A. a

2

√ 2

√ 2

Câu 69. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R \ {1} B. D = R C. D = (−∞; 1) D. D = (1; +∞)

Câu 70. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A a

√ 6

2 .

Câu 71. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 72. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (2; 2; −1) B ~u= (3; 4; −4) C ~u= (2; 1; 6) D ~u= (1; 0; 2)

Câu 73. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp tứ giác.

B Hai khối chóp tam giác.

C Hai khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 74. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

2a3

√ 6

a3

√ 6

a3√3

2 .

Câu 75. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 2

3√

3√ 2

12 .

Câu 76. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.

Câu 77. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a√2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√6

a3√6

a3√2

6 .

Câu 78. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 79 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z 0dx = C, C là hằng số

C.

Z

dx = x + C, C là hằng số D.

Z

xαdx= α + 1xα+1 + C, C là hằng số

Trang 7

Câu 80. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 9

2

1

1

10.

Câu 81. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số đỉnh của khối chóp bằng 2n+ 1

B Số mặt của khối chóp bằng 2n+1.

C Số cạnh của khối chóp bằng 2n.

D Số mặt của khối chóp bằng số cạnh của khối chóp.

Câu 82. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 83. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 84. Giá trị của lim

x→1(2x2− 3x+ 1) là

Câu 85. [4-1213d] Cho hai hàm số y = x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y = |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 86. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 87. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 3

3√

3√ 3

3 .

Câu 88. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 89. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 90. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 91. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 5a

3√

3

a3√3

4a3√3

2a3√3

3 .

Trang 8

Câu 92. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 23

13

9

5

16.

Câu 93. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

1

3.

Câu 94. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A a3

3√ 15

a3√ 6

a3√ 5

3 .

Câu 95. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 96. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 97. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 98. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 99. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

2

a3√6

a3√3

a3√3

24 .

Câu 100. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 101. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 102. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 103 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Trang 9

Câu 104. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = 1

e, m = 0 B M= e, m = 0 C M = e, m = 1

e. D M = e, m = 1

Câu 105. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3√ 3

a3√ 3

a3

4 .

Câu 106. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

a3

√ 3

a3

√ 2

12 .

Câu 107. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= 1

loga2. C log2a= − loga2 D log2a= loga2

Câu 108. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 3 B T = 4 + 2

e. C T = e + 2

e. D T = e + 1

Câu 109. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 110. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 111. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?

Câu 112. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m < 1

1

1

1

4.

Câu 113. Tính lim

x→3

x2− 9

x −3

Câu 114. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±1 C m= ±√3 D m= ±3

Câu 115. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= 2 B P= −1 − i

√ 3

√ 3

Câu 116. Thể tích của khối lập phương có cạnh bằng a

√ 2

A. 2a

3√

2

3√

2

Câu 117. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên khoảng (−2; 1).

B Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

Trang 10

Câu 118. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1 C xy0 = −ey+ 1 D xy0 = ey+ 1

Câu 119. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 120. [4-1212d] Cho hai hàm số y= x −2

x −1 + x −1

x+ 1 +

x+ 1

x+ 2 và y= |x + 1| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 121. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 122. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = S h B V = 1

3S h.

Câu 123. Tính lim

x→−∞

x+ 1 6x − 2 bằng

1

1

6.

Câu 124. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 125. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

15

a3√5

a3

a3√15

25 .

Câu 126. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 127. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

7

a2

√ 2

11a2

a2

√ 5

16 .

Câu 128. Tính lim

x→ +∞

x −2

x+ 3

A −2

Câu 129. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Một hình chóp tứ giác và một hình chóp ngũ giác.

B Hai hình chóp tứ giác.

C Hai hình chóp tam giác.

D Một hình chóp tam giác và một hình chóp tứ giác.

Ngày đăng: 13/04/2023, 19:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN