1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Api report 82 45 1984 scan (american petroleum institute)

58 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Rheological Characterization of Fracturing Fluids
Tác giả Robert K. Prud'homme
Người hướng dẫn Dr. John Cameron, API Steering Committee Vice-chairman
Trường học Princeton University
Chuyên ngành Chemical Engineering
Thể loại Final Report
Năm xuất bản 1984
Thành phố Princeton
Định dạng
Số trang 58
Dung lượng 2,21 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

% polystyrene 900,000 molecular weight in carbon disulfide solution at temperature as indicated in each figure and run between parallel plates at 3% strain.Clark, et.al., Polym Preprin

Trang 1

Princeton University

Princeton, New Jersey 08544

Trang 2

V MATERIALS AND PREPARATION

V I RESULTS AND DISCUSSION

V I I KINETIC THEORY MODELING

VIII.RECOMMENDATIONS FOR FUTURE RESEARCH

I X RECOMMENDATIONS FOR INSTRUMENTATION

APPENDICES

A Wall S l i p Corrections f o r Coaxial C y l i n d e r Viscometer

B Impingement Mixer Schematic and P a r t s L i s t

C C a p i l l a r y Viscometer S c h e m a t i c a n d P a r t s L i s t

D Summary of Experiments P e r f o r m e d , p r e p a r e d by

D r John Cameron, API S t e e r i n g Committee Vice-chairman

Trang 3

S T D A P I / P E T R O 8 2 - 4 5 - E N G L O 7 3 2 2 9 U 0 5 7 7 b 8 2 8 2 2 E

2

I ,INTROD.$TION

T h i s is t h e f i n a l report on our research conducted under the American

Petroleum I n s t i t u t e ' s PRAC Project 82-45 e n t i t l e d " R h e o l o g i c a l C h a r a c t e r i z a -

t i o n of F r a c t u r i n g F l u i d s " The project was i n i t i a t e d by the American Petroleum

I n s t i t u t e (-1) because: 1) the e x p e n s e o f h y d r a u l i c fr a c t u r i n g makes it

d e s i r a b l e t o u n d e r s t a n d the process f u l l y , i n c l u d i n g the rheology of t h e f r a c -

t u r i n g f l u i d , t o e n s u r e a s u c c e s s f u l f r a c t u r i n g o p e r a t i o n , and 2 ) d u r i n g a round-robin t e s t i n g program by s e v e r a l l a b o r a t o r i e s t h e v i s c o s i t i e s reported

by t h e p a r t i c i p a n t s f o r i d e n t i c a l g e l f o r m u l a t i o n s v a r i e d by 1000%

The purpose of t h i s report t o t o p r o v i d e a working guide t o rheology of

guar g e l s We f i r s t provide, i n S e c t i o n 11, a summary of t h e s i g n i f i c a n t

r e s u l t s and conclusions from the f i r s t y e a r of t h i s i n v e s t i g a t i o n I n S e c t i o n

I11 dynamic o s c i l l a t o r y shear measurements, which are used t o study guar

r h e o l o g y a n d g u a r g e l s t r u c t u r e , are described Dynamic o s c i l l a t o r y s h e a r

measurements can be d i r e c t l y related t o t h e number of network c r o s s l i n k s

These measurements and their i n t e r p r e t a t i o n are d i s c u s s e d i n d e t a i l , s i n c e t h e y are probably less f a m i l i a r t o r e s e a r c h e r i n t h e o i l production research area

t h a n are steady shear measurements In Section I V we describe the r h e o l o g i -

c a l instruments used i n this s t u d y I n S e c t i o n V t h e p r e p a r a t i o n of guar

samples is d e t a i l e d The composition of the model g u a r g e l u s e d i n t h i s s t u d y

w a s s p e c i f i e d by the API S t e e r i n g Committee Our o b s e r v a t i o n s on t h e f a c -

t o r s c o n t r o l l i n g gel r h e o l o g y , in c l u d i n g c h e m i c a l e f f e c t s , sample p r e p a r a t i o n

e f f e c t s , a n d f l o w h i s t o r y effects are p r e s e n t e d i n S e c t i o n VI I n S e c t i o n V I 1 a model t h a t d e s c r i b e s t h e rheology o f g e l l i n g f l u i d s i s described The model i s based on the temporary network theories used t o d e s c r i b e t h e r h e o l o g y of

polymer melts and s o l u t i o n s To t h i s th e o r y we have incorporated the che-

m i c a l k i n e t i c s o f metal i o n a d s o r p t i o n o n t o the guar polymer backbone and

s u b s e q u e n t polymer-polymer c r o s s l i n k i n g I n t h e f i n a l s e c t i o n s recommendations

f o r r h e o l o g i c a l i n s t r u m e n t a t i o n a n d f o r f u t u r e r e s e a r c h are presented

A t the q u a r t e r l y m e e t i n g s w i t h t h e A P I Committee

s e v e r a l h u n d r e d p a g e s of e x p e r i m e n t a l data were

d a t a are n o t in c l u d e d in this report Rather the

drawn from t h o s e d a t a are p r e s e n t e d a l o n g w i t h

s u p p o r t t h o s e c o n c l u s i o n s The o r i g i n a l data are on

t i o n s d e p a r t m e n t and can be obtained through the API

have been used t o s t u d y

t h e r h e o l o g y of g u a r g e l s Dynamic o s c i l l a t o r y measurements have been used t o

s t u d y t h e slow h y d r a t i o n of g u a r polymer and t h e e f f e c t s of chemical composition and mixing on guar g e l s t r u c t u r e S t e a d y s h e a r measurements have been used t o

s i m u l a t e p r o c e s s c o n d i t i o n s Major c o n c l u s i o n s , p r e s e n t e d i n t h e body of t h i s report, i n c l u d e t h e f o l l o w i n g :

R e s u l t s from polymer k i n e t i c t h e o r y c a n be used t o r e l a t e the measured storage modulus, G ' , t o t h e c r o s s l i n k d e n s i t y i n t h e g u a r gel

Aged t i t a n a t e s o l u t i o n s p r o d u c e g e l s w i t h iower v a l u e s of G I ; and

t h e r e f o r e , dynamic o s c i l l a t o r y measurements can be used t o q u a n t i f y

t i t a n a t e r e a c t i v i t y

Trang 4

S T D - A P I I P E T R O 8 2 - 4 5 - E N G L 0 7 3 2 2 7 0 05'77b83 7 b 7

Adding d i k e t o n e ( t h a t is, a c e t y l a c e t o n e ) to modify the rate of r e a c t i o n

d o e s n o t j u s t s l o w down t h e r e a c t i o n , b u t it also p r e v e n t s t h e gel from

c r o s s l i n k i n g t o t h e same e x t e n t a t room temperature as g e l s w i t h o u t

added a c e t y l a c e t o n e Mixing i s shown to p l a y a crucial role i n t h e development of gel s t r u c -

t u r e Poor mixing appears t o produce microscopically inhomogeneous gel

networks that have h i g h e r l e v e l s of e l a s t i c i t y t h a n homogeneous gels

To P r o d u c e i n t i m a t e l y & x e d f l u i d s we have developed a novel impingement mixing device -

Measurements of the s t e a d y s h e a r v i s c o s i t y of gels i n d i c a t e t h a t wall

s l i p is occurring However, c o n v e n t i o n a l r h e o l o g i c a l t e c h n i q u e s f o r

c a l c u l a t i n g wall s l i p velocities h a v e g i v e n c o n t r a d i c t o r y r e s u l t s There i s a need f o r direct measurements of v e l o c i t y f i e l d s i n s h e a r flow t o c l a r i f y t h e mechanism of wall s l i p I n t h e next y e a r w e w i l l

be conducting laser doppler measurements t o address t h i s problem

Under q u i e s c e n t c o n d i t i o n s dynamic o s c i l l a t o r y measurements show t h a t

t h e g u a r c o n t i n u e s t o c r o s s l i n k o v e r a time scale of about 15 minutes The s t e a d y s h e a r measurements show t h a t s h e a r i n c r e a s e s the rate of

r e a c t i o n

A n o v e l network t h e o r y c o u p l e d w i t h c h e m i c a l r e a c t i o n k i n e t i c s is

proposed; material f u n c t i o n s c a n be expressed a n a l y t i c a l l y This model

p r o v i d e s a framework f o r modeling and p r e d i c t i n g r h e o l o g i c a l p r o p e r t i e s

of reacting g e l s

111 RHEOLOGICAL MEASUREMENTS

A Dynamic O s c i l l a t o r y Measurements

Dynamic o s c i l l a t o r y s h e a r e x p e r i m e n t s , which measure the l i n e a r visco-

e l a s t i c response of materials, are acknowledged t o be t h e most valuable probes

of g e l o r network s t r u c t u r e Though s t e a d y s h e a r measurements are necessary t o

d u p l i c a t e process c o n d i t i o n s , the o s c i l l a t o r y measurements give more i n s i g h t

i n t o the properties o f t h e g e l t h a n do s t e a d y s h e a r measurements When

i n t e r p r e t e d u s i n g classical n e t w o r k t h e o r y , l i n e a r viscoelastic measurements can

be used t o d e t e r m i n e t h e k i n e t i c s of g e l f o r m a t i o n , t h e c r o s s l i n k d e n s i t y of a gel, or t h e s h e a r d e g r a d a t i o n o f g e l s t r u c t u r e The g e l a t i o n of p o l y v i n y l alco-

h o l a n d g e l a t i n g e l s h a s b e e n s t u d i e d by a number of r e s e a r c h e r s ( 1 , 2 , 3 ) , and

a t P r i n c e t o n we have used these measurements t o study polyacrylamide gels used

as p e r m e a b i l i t y c o n t r o l a g e n t s i n enhanced o i l r e c o v e r y ( 4 , s ) For an introduc-

t i o n t o t h e f i e l d of l i n e a r v i s c o e l a s t i c i t y t h e reader i s r e f e r r e d t o t h e t e x t

by Ferry ( 6 )

I n a l i n e a r v i s c o - e l a s t i c measurement an o s c i l l a t o r y shear s t r a i n ,

y ( t ) , i s imposed on a sample,

Trang 5

S T D A P I / P E T R O 8 2 - 4 5 - E N G L PI 0 7 3 2 2 9 0 0 5 7 7 b A 4 h T 5 m

4

where Yo i s t h e maximum value of t h e s t r a i n

Experimentally this is accomplished by p l a c i n g a sample i n a cone and p l a t e geometry, a parallel plate geometry, o r between concentric cylinders i n a

Couette geometry, and then imposing a t o r s i o n a l o s c i l l a t i o n on one plate, cone,

o r cylinder The r e s u l t i n g stress on t h e s t a t i o n a r y plate, cone, o r c y l i n d e r

w i l l oscillate w i t h the imposed frequency w, b u t will be o u t of p h a s e w i t h t h e

f o r c i n g o s c i l l a t i o n The measured stress can be f a c t o r e d i n t o two components, one i n phase with the displacepent and one 90 d e g r e e s o u t of phase with the

displacement:

The in-phase stress d e f i n e s a s t o r a g e modulus G I t h a t gives information about

t h e e l a s t i c i t y and network structure, whereas the out-of-phase component d e f i n e s

a loss modulus G" t h a t gives i n f o r m a t i o n a b o u t t h e v i s c o u s o r d i s s i p a t i v e p r o -

p e r t i e s of t h e f l u i d The frequency and s t r a i n dependence of t h e s t o r a g e and

loss moduli, G I and G" r e s p e c t i v e l y , p r o v i d e i n f o r m a t i o n a b o u t t h e s t a t e of the

f l u i d For a n u n c r o s s l i n k e d g u a r s o l u t i o n b o t h G I and G" decrease with

decreasing frequency, w i t h G" l y i n g above G I As a g e l c r o s s l i n k s G I rises u n t i l

i t i s horizontal independent of frequency As an example, t h i s p r o g r e s s i o n i s

shown i n Fig 1 f o r t h e g e l a t i o n of a p o l y s t y r e n e / c a r b o n d i s u l f i d e s o l u t i o n as temperature is decreased As we will show i n S e c t i o n V I , G I can be monitored as

t h e a m p l i t u d e of t h e s t r a i n deformation i s i n c r e a s e d I f s t r a i n d e s t r o y s t h e

network s t r u c t u r e , t h e n G I will decrease with i n c r e a s i n g s t r a i n

Classical network theory ( 7 ) shows t h a t G ' , i n t h e low frequency region where G I i s independent of frequency, i s p r o p o r t i o n a l t o t h e number d e n s i t y of

c r o s s l i n k s i n t h e g e l :

where g i s a c o n s t a n t of o r d e r one, n i s t h e number d e n s i t y of c r o s s l i n k s , k is

t h e Boltzmann constant, T is the absolute temperature, and Ge is a c o n t r i b u t i o n

t o the modulus fram molecular entanglements For aqueous gels G e i s very small

It i s p o s s i b l e t o f o l l o w the k i n e t i c s of g e l formation by t a k i n g t h e time d e r i -

v a t i v e of Eq 3:

dn 1 d G '

d t kT d t

c = - -

Likewise, t h e d e s t r u c t i o n o f gel s t r u c t u r e by s h e a r can be monitored by

measuring G I a f t e r exposure t o steady shear The r e s u l t s c a n be i n t e r p r e t e d i n

terms of t h e breakdown i n t h e number of c r o s s l i n k p o i n t s

Trang 6

, Fig.1a-d Storage ((3') and loss (G") moduli as a function of frequency of a

: 8.5 wt % polystyrene (900,000 molecular weight) in carbon disulfide solution

at temperature as indicated in each figure and run between parallel plates

at 3% strain.(Clark, et.al., Polym Preprintrs 24,87( 1983))

- - -

Trang 7

5

I V ,EQUIPMENT

A Rheometrics System I V Rheometer:

Most of the measurements reported here were conducted on our Rheo-

metrics Inc System I V rheometer (Rheometrics, Inc., Piscataway, NJ) This

s t a t e - o f - t h e - a r t i n s t r u m e n t shown i n Fig 2 has s e v e r a l motor and transducer

o p t i o n s The i n s t r u m e n t i s f u l l y automated and a l l data a c q u i s i t i o n and manipu-

l a t i o n i s under computer control For measurements w i t h the Fluids Transducer

a c i r c u l a t i n g water bath i s a i a i l a b l e with a temperature range from -2OOC t o

8OoC

For most of the g u a r s o l u t i o n measurements a Fluids Transducer w i t h a

1 0 g-cm maximum t o r q u e and 100 g maximum normal force was used This F l u i d s Transducer allows s t e a d y shear measuremements of f l u i d v i s c o s i t y , dynamic

o s c i l l a t o r y s h e a r measurements, and, w i t h a some m o d i f i c a t i o n t o t h e d r i v e u n i t ,

s t e a d y shear followed by o s c i l l a t o r y shear For polymer s o l u t i o n s and g e l s t h e range of f r e q u e n c i e s and shear rates over which measurements can be made i s usually determined by t h e minimum torque range of the t r a n s d u c e r ( a b o u t 1/1000

t o 1/500 of the maximum t o r q u e ) F r e q u e n c i e s from 0.01 t o 100 rad/$ a r e

accessible and s t e a d y s h e a r rates from 0.01 t o 10,000 s-l The F l u i d s

Transducers can be run with cone-and-plate, parallel plate, or Couette

geometries

For dynamic o s c i l l a t o r y measurements on g u a r g e l s t h e 1 0 g-cm t r a n s -

d u c e r i s ideal; however, t h e t o r q u e r a n g e of this t r a n s d u c e r i s quickly exceeded

i f s t e a d y shear measurements are attempted on gels Therefore, f o r the bulk of

t h e gel measurements a Fluids Transducer with a 100 g-cm torque range was used

For our System I V rheometer we have a high temperature and pressure

c e l l t h a t allows measurement of f l u i d v i s c o s i t y and dynamic moduli under

p r e s s u r e s t o 4 5 0 p s i and t e m p e r a t u r e s t o 300'C However we generally found it more convenient to perform high temperature measurements on a Rheometrics

P r e s s u r e Rheometer, described below, rather t h e n on our System I V

B Rheometrics Inc Pressure Rheometer:

Measurements of gel properties a t e l e v a t e d t e m p e r a t u r e s were performed

o n a Rheometrics Pressure Rheometer located a t Rheometrics Inc laboratories i n

Piscataway, NJ The i n s t r u m e n t has a unique sealed sample chamber w i t h a C o u e t t e geometry Steady shear and dynamic o s c i l l a t o r y shear measurements over the same range of shear rates and frequencies spanned by the System I V Fluids Transducer

are p o s s i b l e The t o r q u e s e n s i t i v i t y of the P r e s s u r e Rheometer corresponds ap- proximately t o t h a t of the 100 g-cm Fluids Transducer It i s possible t o seal

a n d p r e s s u r i z e the sample c e l l t o run samples a t temperatures above the normal

b o i l i n g p o i n t of water It is somewhat awkward t o load and mount the sample cup the process takes 2-3 minutes Modifications t o allow o n - l i n e i n t r o d u c t i o n

of the sample t o the cup have b e e n s u g g e s t e d t o the manufacturer

Trang 8

Fig.2 S y s t e m I V R h e o m e t e r

Trang 9

S T D A P I / P E T R O B2-L.I5-ENGL m 0732270 0 5 7 7 b B d 2 4 0 SS

6

C Impingement Mixing Device:

The homogeneity achieved d u r i n g the mixing of the guar and t i t a n a t e

s o l u t i o n s and s h e a r h i s t o r y of the f l u i d as it c r o s s l i n k s d e t e r m i n e s the g e l properties The recommended p r o c e d u r e of mixing the g u a r s o l u t i o n a n d t i t a n a t e

s o l u t i o n i n a blender and then t r a n s f e r r i n g the preformed gel t o t h e v i s c o m e t e r

y i e l d s i r r e p r o d u c i b l e r e s u l t s T h i s will be discussed below To circumvent this problem, an impingement mixing d e v i c e was f a b r i c a t e d t h a t i n t i m a t e l y mixes the t

wo streams and i n j e c t s t h e m d i r e c t l y i n t o the rheometer t e s t c e l l (Fig 3 ) The

d e v i c e c o n s i s t s of a s t a i n l e s s ' s t e e l double a c t i n g p n e u m a t i c c y l i n d e r that is mechanically coupled t o a-microliter glass syringe The pneumatic cylinder i s

p r e s s u r i z e d w i t h n i t r o g e n at 200 p s i t o f o r c e g u a r s o l u t i o n i n the c y l i n d e r a n d

t i t a n a t e s o l u t i o n i n the syringe through an impingement mixing head; t h e mixture then flows through a packed bed mixing section The packed bed c o n s i s t s of t h r e e

i n c h e s of a 1/4" OD s t a i n l e s s s t e e l tube packed with 24-32 mesh (0.71 - 0.50 mm)

sand During i n j e c t i o n through the sand pack the Reynolds number is about one, based on a mean h y d r a u l i c radius f o r the sand pack and t h e v i s c o s i t y of t h e

uncrosslinked guar The c o n n e c t i o n s i n the device are made w i t h 1/8" t e f l o n

t u b i n g A three-way valve is used t o d i v e r t f l u i d either to waste or t o t h e rheometer cell The f l u i d fhws d i r e c t l y i n t o the rheometer c e l l and the dynamic

o s c i l l a t o r y measurement can be i n i t i a t e d e v e n b e f o r e t h e f l u i d f i l l s the gap The t o t a l time between the i n i t i a l c o n t a c t i n g of t h e g u a r and metal i o n s o l u -

t i o n s and t h e start of a dynamic o s c i l l a t o r y e x p e r i m e n t is on t h e order of 5 t o

1 0 seconds For a s t e a d y shear experiment the tube connecting the impingement mixer and the rheometer cup must be disconnected so that time t o i n i t i a t e a n experiment i s less t h a n 1 minute The schematic and parts l i s t f o r the impinge- ment mixer is g i v e n i n Appendix 8

D C a p i l l a r y Viscometer:

A p r e l i m i n a r y capillary viscometer has been designed and assembled The

s h e a r h i s t o r y d e p e n d e n c e of these gels, as shown i n S e c t i o n VI, convinced us

t h a t r a t h e r t h a n making a c i r c u l a t i n g loop u s i n g a pump, a better d e s i g n f o r o u r

v e r y small scale l a b work would be a l o n g c a p i l l a r y i n which the f l u i d i s pumped back and f o r t h I n t h i s way the f l u i d is u n d e r c o n s t a n t s h e a r ( e x c l u d i n g the

s h o r t times needed t o reverse t h e d i r e c t i o n of t h e f l o w ) The viscometer is

b e i n g c o n t r o l l e d by a n IBM p e r s o n a l computer with a Tecmar Inc A/D and D/A

board F u r t h e r d e t a i l s and r e s u l t s on t h i s d e v i c e will be p r e s e n t e d i n f u t u r e

p r o g r e s s r e p o r t s u n d e r n e x t y e a r ' s r e s e a r c h p r o j e c t The schematic of the

c a p i l l a r y v i s c o m e t e r i s g i v e n i n Appendix C

The e x a c t f o r m u l a t i o n of the guar g e l was s p e c i f i e d by the API Committee monitoring this project Special l o t s of hydroxypropyl guar and Tyzor AA t i t a -

n a t e were r e s e r v e d f o r this s t u d y by Celanese and DuPont, r e s p e c t i v e l y The

f o l l o w i n g f o r m u l a t i o n was used t o produce a 4 0 lb/Mgal g e l :

500 m l d i s t i l l e d water

2.4 g hydroxypropyl guar (Celanese SCN 9574)

Trang 11

0 6 g sodium d i a c e t a t e b u f f e r ( C e l a n e s e SCN 9744)

10 g a n a l y t i c a l g r a d e KCL ( F i s h e r l o t 722797)

0.1 25 m l 25% glutaraldehyde i n water ( E a s t n a n Kodak l o t

E l 1 A )

2 m l of ( 9 : l ) s o l u t i o n by volume isopropyl alcohol

( J T Baker) and Tyzor AA t i t a n a t e (DuPont)

The base guar ( w i t h & c r o s s l i n k i n g a g e n t ) is prepared using an Osterizer

blender s e t a t low speed, A timer and variac are connected with the blender i n series t o c o n t r o l mixing t i m e and speed The s o l u t i o n i s prepared i n t h e f o l -

lowing way The blender, w i t h 500 m l of water i n t h e p i t c h e r , is s e t a t a low

speed t o produce a shalluw vortex The hydroxypropyl guar is sprinkled slowly on

t h e f r e e s u r f a c e t o produce a uniform dispersion The potassium chloride, sodium

d i a c e t a t e and glutaraldehyde are q u i c k l y added The t o t a l mixing time i s three minutes The s o l u t i o n i s then t r a n s f e r r e d t o a n o t h e r c o n t a i n e r and allowed t o

mix f o r a b o u t 20 hours on a l o w shear tumbling mixer

To prepare crosslinked guars 'for rheological s t u d i e s two procedures were used During t h e f i r s t h a l f y e a r t h e s o l u t i o n s were mixed by hand, and i n t h e

l a s t half year the impingement mixing device was used In mixing by hand, 10 m l

of base guar solution i s placed i n a beaker, followed by a p r o p o r t i o n a l amount

of Tyzor AA ( d i l u t e d w i t h i s o p r o p a n o l ) The s o l u t i o n i s stirred vigorously with

a g l a s s s t i r r i n g rod for 30 seconds and t r a n s f e r r e d i n t o t h e rheometer cup The rheometer stage is t h e n c l o s e d t o s e t the proper gap and t h e t e s t begins This technique proved more r e p r o d u c i b l e t h a n mixing the guar and t i t a n a t e i n a

blender, The good r e p r o d u c i b i l i t y of dynamic o s c i l l a t o r y measurements f o r

samples mixed by hand i s shown i n Fig 4 However, v a r i a t i o n i n t h e hand mixing resulted in inadequate homogenization and t i m e delays which caused v a r i a t i o n s i n

s t e a d y s h e a r measurements This l e d t o our development of t h e impingement

mixer Subsequent studies with the impingement mixer have shown t h a t mixing

also influences dynamic o s c i l l a t o r y measurements (Section VI.B.la) Because it '

was n o t possible t o g e t the c r o s s - s e c t i o n s of the guar cylinder and t i t a n a t e

s y r i n g e i n e x a c t l y t h e correct ratios, extra isopropanol was added to t h e t i t a -

n a t e s o l u t i o n s t o o b t a i n the correct t i t a n a t e volume for the syringe The added isopropanol d i d n o t a f f e c t the g e l a t i o n k i n e t i c s ( S e c t i o n V.A.5) I n a l l cases

t h e Tyzor AA c o n c e n t r a t i o n i n the f i n a l g e l corresonded t o t h a t s p e c i f i e d i n t h e

r e c i p e above

F o r e x p e r i m e n t s l a s t i n g more than about 10 minutes, t h e f r e e l i q u i d s u r f a c e

is covered with mineral o i l t o prevent evaporation The mineral o i l i s

immiscible i n t h e g u a r s o l u t i o n and does n o t a f f e c t the t o r q u e s i g n a l s Between runs the rheometer tools are cleaned with water, followed by alcohol Thorough

c l e a n i n g i s required t o remove o i l films or the g e l will prematurely s l i p a t t h e

t o o l s u r f a c e s d u r i n g measurement,

Trang 12

F i g 4 Test of reproducibility of gel mixing and formation at diffent times

by different operators Samples were 48% HP guar (Gf K 3 N) mixed with Tyzor AA (.04%) by hand Tests 'began immediately after mixing at l.rad/sec 100% strain (runs 51983 3, 61083 4 8, 61583 1)

Trang 13

VI ,MSULTS - AND DISCUSSIOEJ

The properties of g u a r gels depend on the chemistry chosen, the mixing of

t h e components, and s h e a r h i s t o r y of the g e l I n this s e c t i o n we p r e s e n t the

r e s u l t s o f s t u d i e s on t h e s e effects

A summary of a l l of the measurements performed this y e a r and reported t o

t h e A P I Committee a t quarterly review meetings has been prepared by D r John Cameron, the Committee Vice-chairman (Appendix D l The s i g n i f i c a n t c o n c l u s i o n s are p r e s e n t e d h e r e

h y d r a t e the g u a r D u r i n g h y d r a t i o n m i c r o c r y s t a l l i n e c e l l u l o s e domains are

dissolved, t h e c e l l swells, and f i n a l l y t h e c e l l wall r u p t u r e s r e l e a s i n g t h e

guar The rate a t which this occurs depends on pH, temperature, and the osmotic

p r e s s u r e d i f f e r e n c e across the c e l l wall An experiment was conducted t o t e s t how l o n g it took t o f u l l y h y d r a t e t h e g u a r A g u a r s o l u t i o n was prepared and mixed i n the b l e n d e r f o r 30 minutes under strong agitation Immediately there-

a f t e r dynamic o s c i l l a t o r y laeasurements were run as a f u n c t i o n of s t r a i n ampli-

tude The r e s u l t s i n Fig 5 show that G I d e c r e a s e s as s t r a i n a m p l i t u d e i n -

creases This i n d i c a t e s t h a t there are t h r e e - d i m e n s i o n a l s t r u c t u r e s i n s o l u t i o n ,

p r o b a b l y a r i s i n g f r m association of the unhydrated guar domains, t h a t are

e a s i l y broken d m by shear This is not observed i f the guar i s allowed t o age

where, f o r t h e s o l u t i o n mixed 30 m i n u t e s , t h e s t e a d y s h e a r v i s c o s i t y i n c r e a s e s

a t es h e a r rates, whereas for t h e a g e d s o l u t i o n the v i s c o s i t y r e a c h e s a

Newtonian p l a t e a u This i n c r e a s e i n low s h e a r v i s c o s i t y a l s o i n d i c a t e s a g g r e g a -

t i o n a n d s t r u c t u r e i n s o l u t i o n I t i s i m p o r t a n t t o n o t e t h a t a t h i g h e r s h e a r rates t h e viscosities of t h e t m f l u i d s are i d e n t i c a l s i n c e moderate s h e a r

f i e l d s c a n d i s r u p t these weak a g g r e g a t e s We see t h a t dynamic o s c i l l a t o r y or low s h e a r r a t e measurements are s e n s i t i v e p r o b e s of s t r u c t u r e i n s o l u t i o n

2 Order of Addition

We were surprised t o f i n d t h a t the order of a d d i t i o n of i n g r e -

d i e n t s t o t h e o r i g i n a l base g u a r s o l u t i o n had an e f f e c t on t h e gels t h a t were

u l t i m a t e l y formed D r William S t i v e r s of Celanese ( 8 ) h a s s u g g e s t e d t h a t t h i s might be related t o t h e h y d r a t i o n of the g u a r , t h e o s m o t i c p r e s s u r e i n t h e s o l u -

t i o n d u r i n g h y d r a t i o n , and the number of cells t h a t f a i l t o r u p t u r e The o r d e r

of a d d i t i o n of t h e sodium diacetate b u f f e r (N), potassium c h l o r i d e (K), and guar

( G ) was v a r i e d i n a series of tests Though no d i f f e r e n c e s i n t h e r h e o l o g y of the g u a r s o l u t i o n s prepared u s i n g d i f f e r e n t o r d e r s of a d d i t i o n c o u l d be

measured, c e r t a i n orders of a d d i t i o n l e d t o gels with l o w e r l e v e l s of network

s t r u c t u r e (i.e., lower G I ) me r e s u l t s are shown i n Fig 7 f o r d i f f e r e n t

o r d e r s o f a d d i t i o n The d i f f e r e n c e s i n G' a r e q u i t e n o t i c e a b l e , though G" d a t a

Trang 14

0 96 strain 300 Fig 5- Storage(G') and loss (G") moduli as a function of strain of a 48%

HP War solution '(30 minutes agitation) at 10 rad/sec : (run 21 783 2)

Fig.6 Viscosity (Q) as a function of shear rate of 48% HP guar solutions

at different ages (runs 21683 and 21883 2)

Trang 15

Fig.7 Effect of order of addition on GJ am and G" of 48% I HP guar mixed with TYzor AA by hand Measurements began immediately after mixing

at 1 radlsec and 100% strain (runs 61583 1, 61583 2, 61583 5 & 7683 2)

Trang 16

S T D - A P I I P E T R O B Z - V 5 - E N G L M 0 7 3 2 2 9 0 0 5 7 7 b 9 5 480

98

are similar f o r a l l runs We ha7s not a t the time of this report d u p l i c a t e d

these runs with t h e impingement mixing technique For a l l s u b s e q u e n t s t u d i e s we

used the mixing order [G+K+N] F x t h e r work on t h i s phenomenon i s underway

3 Aging of Tyzor AA S o l u t i o n s

W z o r AA s o l u t i o n s change color from l i g h t y e l l o w t o o r a n g e or

brown o v e r a period of time D r Donald P u t z i g of DuPont has suggested three

mechanisms of Tyzor aging ( 9 ) :

a Photo-reduction of T i t a n i u m This will g i v e a green/blue

Color Keeping s o l u t i o n s i n brown b o t t l e s e l i m i n a t e s t h i s problem

b Oxidation of Acetylacetone by Oxygen This will g i v e an orange color However, D r P u t z i g d i d n o t t h i n k t h i s would a f f e c t t h e c r o s s l i n k i n g

smaller v i a l s and s e a l e d Brown vials were used and molecular seives (W.R Grace 3A) were added t o t h e v i a l t o scavenge water This worked w e l l and gave repro-

d u c i b l e r e s u l t s t h a t d i d n o t show the e f f e c t s of aging over a p e r i o d of months

4 Dike tone Addition The most s t r a i g h t f o r w a r d way of m e a s u r i n g g e l a t i o n k i n e t i c s i s t o measure the maximum slope i n t h e p l o t of G' v e r s u s time and t o a p p l y 4 4, as

w e have done p r e v i o u s l y i n o u r s t u d y o f p o l y a c r y l a m i d e / C r ( I I I ) g e l a t i o n ( 5 )

However, as can be s e e n from Figs 4, 7-9, and 13-14, t h e r e a c t i o n r a t e of t h e s e

g u a r / t i t a n a t e g e l s i s so f a s t t h a t t h e maximum r a t e cannot be determined with

c o n f i d e n c e it occurs a t t o o s h o r t a time

I t h a s b e e n s u g g e s t e d t h a t d i k e t o n e s c a n be used t o slow the rate

of c r o s s l i n k i n g ( 1 1 ) Our r e s u l t s , t a k e n a t room temperature, show t h a t n o t o n l y

does the a d d i t i o n o f a c e t y l a c e t o n e ( a d i k e t o n e ) s l o w t h e r e a c t i o n rate, b u t it

also p r e v e n t s t h e g e l from c r o s s l i n k i n g f u l l y With the a d d i t i o n of diketone,

a s shown i n Fig 9, t h e f i n a l v a l u e of t h e s t o r a g e modulus i s decreased It has

b e e n s u g g e s t e d t h a t i n c r e a s i n g t h e t e m p e r a t u r e of t h e s e s o l u t i o n s m i g h t a c t i v a t e

c r o s s l i n k i n g Further s t u d i e s of delayed crosslinking are being pursued

Trang 17

-~

S T D - A P I / P E T R O 82-45-ENGL D 0 7 3 2 2 9 0 0577b9b 317 Bp

Fig.8 Storage (G‘) and loss {G”I ,.moduli of HP guar gel (.48% guar

(G + K + N) and 04% Tyzor Aqmade from a newly opened bottle of Tyzor AA and from a bott1.e that had been used for several months Impingement device

was used and tests began immediately after mixing at 10 rad/sec 100% strain (runs 121583 1 & 122983 31

Trang 18

Fig.9 Effect of diketone on G' and G" of HP guar gel (.48% guar

(G -I .K+ N) and 04% Tyzor AA) Tests began immediately after mixing by hand at I radisec and 100% strain (runs 52483 2, 52483 4 4% 6 1583' 1)

Trang 19

could be varied within reasonable limits as long as t h e same t o t a l amount of

t i t a n a t e was delivered This A k e s matching t h e cross s e c t i o n s of the guar

syringe and t h e t i t a n a t e s y r i n g e i n the impingement mixer less c r i t i c a l

6 Temperature The data reported here were taken a t room temperature (2352OC)

T e s t s were run on the Rheometries Pressure rheometer a t 110'and 1 2OoC, but

e r r o r s fran wall s l i p c a u s e us t o q u e s t i o n t h e v a l i d i t y of t h e i n i t i a l d a t a I n

t h e next year extensive experiments a t elevated temperatures are planned

.%eology of .Gyar

In this s e c t i o n w e p r e s e n t the main r e s u l t s on the rheology of guar

g e l s i n dynamic o s c i l l a t o r y and steady shear flows The dynamic o s c i l l a t o r y measurements a r e used t o c h a r a c t e r i z e the network s t r u c t u r e , whereas the steady

s h e a r measurements a r e i n t e n d e d t o measure g e l v i s c o s i t y under process con-

d i t i o n s

1 Dynamic O s c i l l a t o r y Measurements

a Mixing The degree of homogenization a t a microscopic level i s cru-

c i a l i n determining the f i n a l gel s t r u c t u r e The problem of mixing r e a c t i v e titanium and guar solutions is i n many ways analogous t o problems encountered i n

reaction i n j e c t i o n molding of polyurethanes in the p l a s t i c s i n d u s t r y ( 1 2, 1 3 )

Thorough mixing i n the impingement mixing d e v i c e r e s u l t e d i n g e l s with lower values of G' t h a n g e l s made with hand mixing For example, t h e t o r q u e s i g n a l i n

a dynamic o s c i l l a t o r y test €or a g e l mixed by hand would be 1.1 g-cm, whereas

f o r a g e l made i n the impingement mixer the torque would be 0.6 g-cm Guar polymer chain s c i s s i o n d u r i n g flaw through the mixing device is i n s i g n i f i c a n t

W believe the e higher levels of e l a s t i c i t y noted f o r t h e hand mixed samples a r e caused by the inhomogeneous gel s t r u c t u r e t h a t is produced by incomplete mixing

During hand mixing i n t e r f a c e s are developed between s t r i a t i o n s o r l a y e r s of bulk guar solution and t h e v e r y c o n c e n t r a t e d t i t a n t a t e s o l u t i o n The r e a c t i o n rate i n

t h e s e i n t e r f a c i a l r e g i o n s is very h i g h w i t h t h e r e s u l t t h a t r e g i o n s of dense

c r o s s l i n k s t r u c t u r e are developed The f i n a l g e l formed contains microscopic

threads or sheets of more h i g h l y c r o s s l i k e d g u a r t h a t are e l a s t i c , imparting t o

t h e g e l a higher level of G' t h a n would be predicted i f t h e c r o s s l i n k s were homogeneously d i s t r i b u t e d C h a r a c t e r i z a t i o n of the s t a t e of mixedness during the production of g e l s i n t h e l a b o r a t o r y o r f i e l d i s critical

Trang 20

0 time(min.1

Trang 21

S T D A P I / P E T R O 82-45-ENGL 0 7 3 2 2 7 0 0 5 7 7 7 0 0 b 7 8

11

b Storage Modulus Versus S t r a i n Amplitude Figure 11 shows t h e e f f e c t of s t r a i n on guar gels produced i n

t h e impingement mixer, i n t r o d u c e d i n t o t h e gap between parallel plates, and

allowed t o s i t f o r 1 5 m i n u t e s b e f o r e t h e dynamic o s c i l l a t o r y test a t 10 rad/s was begun A t l o w s t r a i n s the v a l u e of G I i s above G" As t h e s t r a i n amplitude

i s i n c r e a s e d G' d r o p s d r a m a t i c a l l y i n d i c a t i n g t h a t the g u a r g e l s t r u c t u r e is

b e i n g d i s r u p t e d by s t r a i n or t h a t wall s l i p i s occurring In this experiment

t h e s t r a i n i s f i r s t i n c r e a s e d fo 500 % and t h e n decreased Hysteresis can be

obgerved i n d i c a t i n g t h a t i n the time scale of t h e s e e x p e r i m e n t s t h e gel does n o t

r e h e a l The n e c e s s i t y of having adequate t o r q u e s i g n a l s r e q u i r e s t h a t most of

our experiments were run at 100 % s t r a i n I t should be k e p t i n mind that a t

t h e s e s t r a i n s some d i s r u p t i o n of g e l network s t r u c t u r e o c c u r s I n t h e n e x t y e a r

o f t h i s s t u d y a new sensitive t r a n s d u c e r will be a v a i l a b l e t o a l l o w measurements

a t lower s t r a i n s The s t r a i n s e n s i t i v i t y of guar gels is i n s h a r p c o n t r a s t t o

t h e p e r f e c t l y e l a s t i c behavior of polyacrylamide gels formed with chromium

c r o s s l i n k s ( 5 ) shown i n Fig 12 The value of GI i s unaffected by s t r a i n s as

l a r g e as 500 % f o r p o l y a c r y l a m i d e g e l s

C Storage Modulus Versus Frequency The storage a n d l o s s moduli of guar gels produced i n t h e impingement mixer, allowed t o s i t f o r 20 minutes, and measured a t 100 % s t r a i n

are as shown i n Fig 13 The s t o r a g e modulus, GI, is above t h e loss modulus,

G " , and GI becomes c o n s t a n t at l o w frequencies as is i n d i c a t i v e of a c r o s s l i n k e d gel

d S t o r a g e Modulus Versus Time: Chemical K i n e t i c s

As d e s c r i b e d i n S e c t i o n 111, by measuring t h e time depen- dence of t h e s t o r a g e modulus d u r i n g c r o s s l i n k i n g it is p o s s i b l e t o f o l l o w t h e

c h e m i c a l k i n e t i c s of the g e l a t i o n r e a c t i o n The equilibrium modulus, which i s

e q u a l t o t h e s t o r a g e modulus G' a t zero frequency and z e r o s t r a i n , is propor-

t i o n a l t o t h e number d e n s i t y of c r o s s l i n k s From t h e data showing t h e s t r a i n and frequency dependence of these guar g e l s it should be remembered t h a t a t 10 rad/s t h e a c t u a l v a l u e of G' a t z e r o s t r a i n i s h i g h e r t h a n t h e measured value

A second e f f e c t acts i n o p p o s i t i o n t o t h e decrease i n G' w i t h s t r a i n t h e

measured G I a t 10 rad/s i s a c t u a l l y h i g h e r t h a n t h e e q u i l i b r i u m modulus of the

g e l as can be s e e n from Fig 13 Most measurements were taken a t 10 rad/s and 100% s t r a i n b e c a u s e t h o s e v a l u e s y i e l d e d a d e q u a t e t o r q u e s i g n a l s and a f a s t d a t a

a c q u i s i t i o n time so t h a t r e a c t i o n dynamics could be followed

A series of measurements of t h e s t o r a g e modulus v e r s u s time

were made while varying guar a n d t i t a n a t e c o n c e n t r a t i o n s ( F i g s 14 and 1 5 ) The

g e l s were produced i n t h e impingement mixer and introduced directly into the gap

between p a r a l l e l p l a t e s The time between t h e mixing of t h e g u a r and t i t a n a t e streams and t h e f i r s t datum p o i n t i s approximately 10 8 Measurements were con- ducted a t 1 0 rad/s and 100% s t r a i n The s u r p r i s i n g t h i n g a b o u t t h e r e s u l t s is

t h e speed of t h e r e a c t i o n W e were unable t o measure a n i n d u c t i o n p e r i o d b e f o r e

t h e network formed The maximum rate of r e a c t i o n (i.e maximum s l o p e i n GI vs t )

occurs b e f o r e t h e f i r s t data p o i n t Using t h e e n t i r e shape of the G' versus

time c u r v e , a n d i n t e r p r e t i n g this curve using the polymer k i n e t i c t h e o r y model developed i n S e c t i o n V I I , it s h o u l d be p o s s i b l e t o d e t e r m i n e r e a c t i o n k i n e t i c s

Trang 22

1 oa

1

FiQ.11, Effect of 8train on 0' and 0" of HP guar Qel (.48% guar

( 0 -t- K 4- N) and 04% fyror AA) produced in the impingement device

Mixture was allowed to 8it for 15 minutes before tests began at

10 tadhec (tun 113083 l)* Arrow indicates the direction of strain sweep

Trang 23

Fig.12- Effect of strain on 0' and 0" of polyacrylamide

formed withchromhm /Erocrslinks.(5)

- ~ - - - ~ -

oels

Trang 25

S T D A P I / P E T R O 82-45-ENGL W 0 7 3 2 2 9 0 0 5 7 7 7 0 4 2 1 3

immediately after mixing in the implngement device Only the values of

0" of HP guar (.0.48%) with -04% Tytor AA is shown because 0" are

the same for all runs.(runs 122883 2, 122803 1, 122803 4, 122883 3,

-

122983 2,& 122983 3)

-

Trang 26

S T D A P I / P E T R O 82-45-ENGL = 0 7 3 2 2 7 0 0 5 7 7 7 0 5 L 5 T

Fig.15, Effect of HP guar (Gf K+N) concentration on gel formation at

a constant fyzor AA concentration, .08% Tests began immediately after mixing in the impingement device (runs 122883 4, 1484 3, 1484 1,

& 1584 1)

- - _ " _ ,

Trang 27

S T D - A P I I P E T R O 8 2 - 4 5 - E N G L m 0 7 3 2 2 9 0 0 5 7 7 7 0 b 0 7 b

12

These data can be used t o show the sensitivity of guar gel

p r o p e r t i e s t o guar and titanium concentrations It i s possible t o obtain the same values of G' from s o l u t i o n s having d i f f e r e n t compositions However, these

g e l s may show d i f f e r e n t time, temperature, and shear stabilities

2 Steady Shear kasureme.nt.s

a Gels Mixed by Hand

Our i n i t i a l ' steady shear experiments were on guar gels

mixed by hand and introduced to the rheometer t e s t c e l l This process takes on the order of 2 minutes t o accomplish The quiescent period before steady shear

is imposed, we now believe, has a dominant e f f e c t on the viscosity that i s

measured The s t r e s s versus time behavior f o r gels being sheared a t 100, 500,

and 1000 s-l ,respectively were investigated Several series of t e s t s were run

where the gels were allowed to s i t 2.5, 3.5, and 4.5 minutes before shear was

i n i t i a t e d I n a l l of the steady shear experiments the asymptotic s t r e s s a t

long times ( 1 5 0 0 s) i s roughly the same - independent of shear rate When the

s t r e s s d a t a i s divided by shear r a t e t o obtain a viscosity, n,.,,, a log-log p l o t of viscosity versus shear rate has a slope of -0.96 shown i n Fig 16 This slope

i s u n r e a l i s t i c f o r a polymer f l u i d (which normally has a slope between -0.6 and

-0.31, and i s much more suggestive of wall s l i p Each qco datum point on Fig 16 represents a new experiment Stepping up or down i n shear rate to obtain nco a t several shear rates for the same gel introduces shear h i s t o r y e f f e c t s and will produce d i f f e r e n t r e s u l t s A standard procedure t o t e s t for the presence of

w a l l s l i p i s t o take two sets of measurements w i t h d i f f e r e n t gap s e t t i n g s I f ,

a t the same shear stresses, the shear rates are the same w i t h both gaps, then

w a l l s l i p i s thought not t o occur; b u t i f , a t the same shear stresses, the shear

r a t e i n t h e narrower gap i s greater, then s l i p is occurring We performed steady

shear measurements a t 25 s-' w i t h gaps of 0.75 m m , 1.5 mm, and 3.0 mm as shown

i n Fig 17 I n a l l cases the s h e a r s t r e s s e s a t long times were identical within experimental uncertainty This i n d i c a t e s s l i p is not occurring The interpreta-

t i o n of these observations is uncertain Resolution will require direct measure- ment of the velocity field We consider t h i s a major research need a t t h i s

point

b Impingement Mixing: Effect of Shear on Reaction Rate

B y using the impingment mixer it i s possible t o introduce solutions i n t o the rheometer and begin measurements before the f l u i d completely gels A s e r i e s of measurements a t 25, 100, and 500 s-' were run and the results

of s t r e s s versus time a r e shown i n Fig 18 I n the r u n s a t 25 and 100 s-l the stress increases linearly for 100-200 s as the guar network gels A t the gel

p o i n t t h e f l u i d can no longer flow and the stress rises sharply I t then f a l l s

j u s t as sharply, as would be observed i f the gel broke away from the p a r a l l e l plate surfaces and began to slip After the drop i n s t r e s s i t remains essen-

t i a l l y constant for 1500 S The location of the rise i n s t r e s s and also the

slope of the stress versus time p l o t s f o r 25 and 100 s-' increases w i t h i n -

creasing shear rate The conclusion i s that shear increases the rate of reac- tion We may assume t h a t f o r t h e measurement a t 500 the jump i n s t r e s s a t very short times corresponds t o the gel point which i s seen more c l e a r l y a t the lower shear rates

Trang 28

S T D A P I / P E T R O 8 2 - 4 5 - E N G L SS 0 7 3 2 2 9 0 0 5 7 7 7 0 7 T 2 2 iass

= * a

Fig.16 Effect of shear rate on viscosity ( r) ) of 48% HP guar

(0 t K + N) gels with 04% Tyror AA produced by hand mixing Tests began after the gels were allowed to sit 2.5 , 3.5 and 4.5

0

minutes Solid line is a least squar fit of these points (runs

Trang 29

Fig.17, Steady shear measurements with parallel plates geometry with gaps

Of 0.75mm 1.5mm a 3.0mm on $8% guar (G t K f N gels (.04% Tyzor AA) produced in the impingement device Tests began 'immediately aftter mixing

at 25/sec.(runs 1 1084 1, 1 1 184 1 S 1 1 184 2)

- , _ _

Ngày đăng: 13/04/2023, 17:45

🧩 Sản phẩm bạn có thể quan tâm