1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Api publ 2517 1989 scan (american petroleum institute)

80 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Evaporative Loss From External Floating-Roof Tanks
Trường học American Petroleum Institute
Chuyên ngành Petroleum Engineering
Thể loại Publication
Năm xuất bản 1989
Thành phố Washington
Định dạng
Số trang 80
Dung lượng 24,1 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

26 17A-Tme Vapor Pressure of Refined Petroleum Stocks With a Reid Vapor Pressure .of 1-20 Pounds per Square J nch _.. l'7 17B-Equation for True Vapor Pressure of Refined Petroleum Stock

Trang 1

External F : loating-Roof Tanks

American Petroleum InsCltute

1220 L Slreet,orthweSI wa,",'gtoo D.C 2001lS lp

Trang 3

External Floating-Roof Tanks

Measurement Coordination, Departme ' nt

Trang 4

SPECIAL NOTeS

SHOULD BE REVIEW E D

ON-C E RNI G MEA ' TH A , D S AFET RISKS A D PRECAUTIONS, NOR

FEDERAL LAWS

MAN UF ACTUR E R OR SUPPLI E R O F THAT MA: E R I AL , OR THE

OTH E RWIS E OR T H E MANU F A CTU R E, SA E OR USE OF ANY

S G E E RALLY , API S T A DARD AR E REVIEWED AND R E VISED ,

[TELE PHO E (202) 682 - 8000) A CATALOG OF API P U B ICAT ONS AND

MA TE RIA SIS p BUSH E D ANN U A LL Y A D UPDATED Q U ARTERLY

Copyright © 1 989 Amlrrican P,l.trokl um l lis.titutol

Trang 5

[n 1957 , the API Evaporat i on Loss Committee init i a t ed an extens i ve effort to collect avai l able p etro l eum indus t ry data on evaporat i ve l osses from e · xte.rnal fioat-

ing-roof tanks An intensive study was made of tb ese data and resu lt ed in corre la tions for es tim ating evaporat i ve losses from external float i ng - roof tanks These results were pu blhhed in February 1962 as API Publication 2517

By the rnid-197Os, a.s a result of tbe nati onal energy cr i sis and increased concern for

the environmen t additional emphasis was pJace<J on the lIeed to re(!uce evaporative losses from petroleum storage tanks Accordin gly Ln 1 976 the API Committee on Evaporation Los~ Measurement began a revie,w and analysis of the prior API work and of mo r e recent work performed by o i l oomp ' lnies manu f actur e rs industry

groups, and regu [ a t ory agencies rom th i s analy s is an.d i n v i ew of the considerab l e improvement.s t hat had been made i n both the tecbMjOgy of float i ng - toof tank seals

and the lIlethods for measur i ng evaporative l osses tbe oommiuee recommended thaI the evaporative-loss data be updated and combined w i th n.ew data obta i ned f r om an

extens i ve test program API responded by sponsoring a broad program that iocluded

l<l boratory tesHank and fie.Jd-tank studies Flam ttlis intensi"e effort , the mecha

-n i sms of evaporative loss were id.ent i fred and the effects of th e rel evan I variab l e~ were more p r ecisely quant if ied The results were publir.hed in February 1980 as the

second ed i tion of APt Pub l ication 2517

fl oating- r oof rim se.al and the shell - Vl'etting loss fr om lowering tbe stock leve · l in exte rn al float i ng - roof tanks In 1 984 as the r esult of ollier rt l !lled API test program~

the Committee on E vaporat i on Loss Measurement be li eved that suff i cient evi d ence existed to warrant an additional tes t program to d£terrnine the magnitude of evapora-

t ve l osses from Hoating-roof fittings A SlI.nIey of tant mallufacturers an d owners was conducted to establish the type and numbe r of ty pical roof fittings used on ta nks of various diameters From this survey and an API-sponsored test program performed

in 1 984 , methods were developed for caleul ating tb e evaporative loss from the variolls

exlem.al floating -ro of fittings As a result, API Publication 2517 was updated with

this information, and I.his third edition was published

This edition conlains the f ollowi ng in fo rm a ti on :

a s«tion 2 c{)n t ains the equations necessary for es ti mating the evaporative loss or

t heequivalenl atmospheric hydrocarbon emissions frolll the generallypesofextemal float i ng - roof tankscurrentl available

b Sect io n 3 describes cu rr ent typ i cal e:xlental floating - roo f tanks, includin g types of

fl oat i ng roofs , rim-seal systems , and roof fi ttings

c Sec:ti.on 4 discusses tbe mec.hanismsof evaporative loss and the deve!opmentofthe loss oorre1a tion~

TIl e en ti re data base and the details of the da ta ana l ysis are On fi le at APt This

API publications may be used by anyone desirins to do so Every ef f ort bas been

made by th e Institute to assure t.he accuracy and rdiability of the data contained i.n

them; h oweye r, the I nsti lute makes no repre entation, wananty, or guarantee in connection w i th this publication and bereby expre sly dir.dairns any liability or responsib i lity for loss or damage resulting from it lLs.e or fo r the vio la t on of any

fe d era l , sta t e, Or munic i pal regulation w i th wh i ch tbis 1'\1 blic.atkm may conflict

Suggested revisions are in v ited and shou l d be submitted to the director of tbe Measllrerneot Coo r dination Department , Amer i can PetToleum lnst lute 12 20 L

Str"OOt, N W., Washington, D.C 20005

Trang 6

API COMM'lTTEE ON EV APORA TI ON l OSS MEASUREME NT (1 1 988)

Brian J Le vi , ha i nnan

exaco Tr(lding & Tra 11 porta t ion Inc

Denver, Colorado

American Petroleum Institute

PiUsburg/!, Pennsylvania

T ul~a , Oklahoma Eugene Wittner SbeU OiJ Company Houston , Texas E1Ien H, Zam pello Conoco 11lc

Houston , Texas

Trang 7

William Pipe Line Company Tulsa, Oklahoma

SheJl Oil Company

Houstoll Texas

STANDARD 251 7 ( F ITT I N I GS) WORKING GROUP

James R Arnold, Chajrman

Colonial Pipeline Company

Atlanta Georgia

James K Walters, Secreta.ry

American Petroleum lllsti tute

Was.hington, D C

J Mike Braden

Pitt-Des Moine' Inc

CD I III dustrie.~ J ne

Plainfield , Iii no is

B rea, Cal ifo rn ia

We ley S Watkins

W illiams Pipe Lill e Company

Tulsa Ok lahoma

Ellen H Zampello Conoco Inc

Houston I Te xas

Trang 9

SECTION 1 COPE , , , , , , " , 1

S ECT ION 2~PROCEDURES FO R CALCULATING LOSSES 2

2.1 Loss Equations , " , " " " " " 2 2.1 1 General " " , " " 2

2.1 2 Standing Storage Loss " " " 2

2.1 3 Witbdrawal Lo·ss , , , " , " "" 2 2.1.4 Total Loss " , " , , , " , " , , " , " , , , 3 2 2 Di~cussioll of Variables " " , " " 4

2.2 t GeneraL • 4

2.2.2 Standing Storage Loss Factors • 4

2.2.2.1 Rim-Seal Loss Factor " 4

2.2.2.2 Total Roof-Fitting Loss -aaor 6

2.2.2.3 Vapor Pres~ure Fun.ction 6

2.2.2 4 Vapor Mo l ecular Weight " " " 12

2.2.2.5 Product Factor , , , , , , , " 13 2.2.2.6 Density of Condensed Vapor 13

2.2.3 Witbdrawal loss FacloIs " , , , " 14

2.2.3.1 Signilicanct " " "" "" " " " " 14 2.2.3.2 Annual Ne! Througbput " " " " 14

2.2.3.3 Cl.ingage , " 14 2.2.3,4 Ave.rage Liquid Stock Density , " " " 15 2.3 Summary of Calculation Procedure " , " , " " , 15

2 4 Sample Problem " 15

2.'1.1 Problem " , 15

2.4.2 SoJution 16

2.4.2.1 StandiDg Storage Loss , , , , , , , , " 16 2.4.2.2 \Vilh d rawal Loss , , , 18

2.4.2.3 Total Loss " " " " " 19

SECTION 3-C OMPON ENTS O F EXTERNAL FLOATING-ROOF TANKS 34

3.1 ExterllaJ Roating-RoQf Tanks , " 34

3.2 Floating Roofs , , ' " 34

3.3 Rim Seals " 34

3.3.1 Ge : neral " , 34

3.3.2 Mechanical-Shoe Primary Seals , 35

3.3.3 ResilieJlt-FiUed Primary Seals 37

3.3.4 Flexible-Wiper Primary Seals 38 3.3.5 Secondary Se,al " " " 38 3.3.6 We.atller Shields " , , .• , • 39

3.4 Roof Fittings " " " " 39

3.4.1 General , " 39

3 4.2 Access Hatches , , " , 39

3.4.3 UlIslotted Guide-Pole Well~ , , , 39

3.4.4 Slotted Guide-Vole/Sample Wel ~ s 40

3.45 Gauge-Float WeUs 40

3.4.6 Gauge-Hatch/Sample Wells 40

3.4 "1 Vacuum Bre akers " 40

3 4 8 Roof Drains " 41

Trang 10

4.3 Data Base for Loss Correlations _ _ _ _ _ 45

4.3.1 Sta.nding Stor"dge Loss Data _ _ _ _ • _ _ _ • _ _ _ _ 45

4.3.2 Withdrawal Loss Dala _ _ 46 4.4 Development of Standing Storage Loss Correla t ion _ _ _ _ _ 46 4.4_1 General _ _ _ _ _ _ 4{) 4.4_2 Rim-Seal Loss Faclors _ _ • _ _ _ 46 4.4.3 Tank Diameter _ _ _ _ _ _ 46

4.4.4 Roof-Fitting Loss Factors _ • _ _ • 47 4.4 5 Vapo r Pre me FllDction _ _ 47

AIRFLOW RA T AND WIND SPEED 5 1

APPENDI C - D VE 0 'M E NT 0 DIAM.ETER FU GflON 53 APPENDIX D- DBVELOPME-~ T OF ROOF-FITIl GLOSS

ACTORS 55

F erIO i 57 APP E NDIX F~D E VELOPM E NT OF PRODUCT FACTO RS 59

APPENDIX H-DOCUME TATION RECORDS 63

Lgures

Primary Seal _ _ _ 7 2-Rim-Seal Loss Factor for a Welded Tank With a Liquid-Mounted

Rcsilient·FilJcd Primary Seal _ _ _ _ _ 8

3 R im ~ Seal Loss Factor for a Welded Tank With a Vapor-Mounted

Resilienl-Filled Primary Seal _ _ _ _ _ _ _ 9

Primar)' Seal _ _ _ _ _ a

5- Roof-Fitting Loss Factor for Access Hatches _ _ 4

6 Roof.Fitting Loss Factor for Unslotted Guide-.Pole Wells _ 15

7- Roof-Fitting Loss Factor for Sioned Guide-Pole/Sample Well 16 B-Roof-Fitting Loss Factor for Gauge-Floal Wells _ _ _ 17 9-Roof-Fiting Loss Factor for Gauge Hatch/Sample Wells _ 18

10-Roof-Fitting Loss Factor for Vacuum Breakers , _ , _ 19

ll- Roof-Fitting Lo ~ factor {or Roof Drain~ - - _ , _ -_ _ 20

12- Roof-Fittiog (ISS factor for Adjustable Roof Legs _ _ 21

Trang 11

Aoating Roof 24

15 Tolal Roof Fitting Loss Factor for Typica] Fittings on Double-Deck

Aoating Roofs _ _ 25

16 Vapor Pressure Function , 26

17A-Tme Vapor Pressure of Refined Petroleum Stocks With a Reid

Vapor Pressure of 1-20 Pounds per Square J nch _ l'7

17B-Equation for True Vapor Pressure of Refined Petroleum Stock

Wit.h a Reid Vapor Pres.u.re of 1-20 Pou[lds per Squ<lre Inch 29

18A-True Vapor Presmre of Crude Oils With a Reid Va pm Pre me of

2-15 Po unds per Square Inch _ _ _ _ _ _ 2.8

18B-Equation for True Vapor Press;ure of Crude Oils With a Reid

Vapor Pressu.re of 2- 15 Pounds per Square Inch _ 29

19-External Floating-Roof Tank With Pontoon Float ing Roof 35,

20-External Floating-Roof Tank With Double-De.ck Floating Roof 36

21- Mechanical-Shoe Primary Seal _ _ , 37

22- R e~il i en t - F i l]ed Primary Seal 37

23-Aexibk-Wipe r Primary Sea J 38

24-Mechanical-Shoe Primary Seal Wit.h Shoe-Mounted

31-Vacuum Breaker , 41 32-0verflow Roof Drain 42 33- Roof Leg , 42 34 Rim eut - , , 43

C -Calculated Loes as a unction of Dialllele,r xponelH _ 54

Tables

l-Summary of Procedure for Calculating Standing Storage Loss 3

2 ummary of Procedure for Calcu.lating Withdraw'al Loss _ 5

3 -Rim-Seal Lms Fac t o r , K , and f! •• • •• •• • • •• _ 5

Average nuual Wind pee,d (V) [or Selected U.S Location 11 5-Roof-Fining Loss Factors, K[ ~ K,., and m and Typica l Number of

Roof Finings If _ _ _ 13

6- Typi<:a I N u lnbe r of VaCcuum Brea ker ro an d Roof Drains f1 • • • 2J

7-Typica l Number of Roofeg Nrg 23

~Ph ica I Properties of Selected Petrochem ica I , 30 9-Average Annual Ambiem Temperature (T.) for Selected U.S

Locations 32

10 -A erage Annu al S lock Sto.rage Tempera.lll re (T ~ a a Funct ion of

Tank Pain [ Color 34

ll- A erage CJi.ngage FaC1ors, C 34

Trang 13

SECTtON 1-SCOPE

This publicatiorl cOlltains an improved method for

estimating the total evaporative losses or the eq uiva

-Ie At atmospheric hyd rocarb(lll e mi sions from extern al

floating-roof tanks that cOlltain mUltkomponent

hydro-croon mixtures (such as crude oi1~ and gasolines) or

single-componeAt stoch (sLlch as petrochemicals) lis

publication was developed by the· API Committee O'n

Evaporationoss Measurement The equations

pre-sented are base{! on recent 1 abora lory, test-tank, and

field-tank data These equations are illrellded to provide

loss estimates for general equipment types, since it is not

within ~he cope of thi publication to add ress specific

proprietary equipment designs

Typical currenll available types of Ooating roofs,

rim-selll systems, and roof fi t tings arc described for inform a·

tion only This publication is not intended 10 be used 3S a

guide for equipment design, se leCl:iOrl, or opera tion

The equations are intended to be Llsed to estimate

annual losses from cxtemal floating-mof tanks for var

-ious types of tank COllstruction, floatillg roofs, rim-seal

systems, and rccf fittillgs as well as for various liquid

stocks, stock vapor pr~ures tank sizes, and wind

speeds The equations are applicable to properly mai n

-tained equipment under lIormal working cOlldition

The equation, were cleve 100ped for liquids th at are nol

boiling, stoc;ks with a true vapOf pressure ranging from

approximately 1.5 to less than 1 7 pound per square

inch absolute, average wind speeds ranging from 2 to 15

mile per hour, and ta II k diameters gre·ater than 20 feet

Without detailed field information tbe e limalion

lecll-niques be.rome more approximate wben used to cal

cu-late Hosse for time periods shofter than I year

TIle equations are not intended to be used in the

following applications;

a To estimate losses from unstable or boilillg stocks or

from mixtures of hydrocarbons er petro.chemicals for

h icll the vaper pre!1.~lI re is net k no n or call.rlot readily

be predicted

b Toestirnale losses from tanh in whicb the materials

used in tbe rim seal, roof fittings, m both ha ",e either

de teriora ted Or been signific!lntly permeated by th e

tored stock Section 2 include a com pJete guide for esti mati II g evaporati e tock los or the equivalent total atmos-

pheriC emi ion from volatile tock "tored in external floating-roof ta nk

Note: T1tt ea l c u lale<l p(lU ll d ~ per >-ear o f L ot~1 ~) ' (lmc.~ r "oo 1 ~,e, may

ln Dlm k both , Teactivc ilnd nOl1o r e.a~li"e OOlnpoun d To Oblal n reaclive

t lte "apor mllS t he ap pl ic<l

Delai led eq ualion lI:re giyen in 2.1 and a description of how to delermine :>pecific values for the variable in-cluded in t.he equations is given in 2.2 Reference are

made to tables and figures that include informatioll about the most common ( t , pica.l) value to Il e when specific i II forma t on is not avai.a bic The loss-estimation proce.dures <Ire summarized in 23 (Tables 1 !lnd 2 • and a ample problem is presented in 2.4

Scction 3 describes the I.ypical equipment types oov

-ered in Section 2

Section 4 describe the hae ' and development of the

10 -estimation procedure presented in Section 2 The

e timatiOJl procedUie were developed to provide mates of typical loose from e temal floah.lIg-roof tanks that are properly maintained and in Ilormal working condition o:se: front poorly [1\ aintaincd eq uipmcnt may be greater Because the loss equatiorls are bas€d On

esti-eq u ipment condi lons tna l represellt a large popul alion

of tallks, a loss estimate for a groLlp of external floati.llg

-roof tanks wi.11 be more 8;crura!e I han a los~ estimate for all individual lank H is difficLllt to determine pre ~ cise

values of the loss-rei ated par!lmeters for 311 y individual

tallk

Equiplllent s.hould not be s.elected for use based soleI y

on evaporative-loss com,iderations MarlY other factors not addre~f>ed ill this pub I ieatioll, ~uch OlUan It ope rat.ion,

Ina'ntenaDoe, and sa.fety, are important in designillg and

!i.e lecting tank eq uipmen l for a given application

Trang 14

2 API PU~lION 2517

2 1 Lo s s Equ ations

2.1.1 GENEIRAL

total loss is approximately eq ual to tbe standing storage

2.1.2 STANDING STORAGE LOSS

The following minimum information is nee,ded to cal

-culate the t<lnding storage 10 s L , :

a The tTlle vapor pre.~~u r e of the stock (or t.he Reid

vapor pressure and average storage temperature of the

(l)

Where:

1-year,

year

p' '"' vapor pressure function (dimension less)

M v '" average molecular weight of stock vapor, in

pounds per pound-mole

I(., product factor (dimensionle s)

The tanding torage loss is converted from pounds

L (barrels per year) c:: L (pounds per ye~r) (2)

4 2Wy

Where:

gaUon,

equations can be use.d westim<lte the independent can

Where:

L = F rDP "Mvl<,;

L r = F r P3MvK

L , '" ril1l-seal 10 , in POUII.dS per year

Lt - IOta] roof- finillg loss in pounds per year

the liquid stock level in the tank)

The itbdrawal l(lss, L", pertains to the evaporation

is witbdrawn The wjtbdrawal loss can be estimated as

per year,

Trang 15

Table 1-Summary of Procedure for Calculating Standing Storage Loss

S U mdi na S t a ras" L "" Eq us li ons

L, (po.ui ll dll per year ) = (( F,D) + ( F.)]P+ M K

L ( b ,., . ) _ L, (pounds pe r )<cor)

, arr"~ per year - ~2W

= R 'm - s".1 l oss factor

= K ,V " ( q u atiofl 9)

= Rlm -.ea II OOl factOr

Avtiage wind speed

= Ri m-se"l - elated ' ; ru::I- spe<l<l

= }{ oaf -flu ' fl ,f: lo.;, factor

~ R oof · [ll lifl g kiss Lactor

= I, 2 _ k

a A>'erage Wind speed

= To t a l umb r or dirf ren t t yp"" ,,

roof fin ing s

P ound - mo les per foot - y ar

Pound-moles per (mite per

hour)" - f oot -year

lies per It",,,r

Fee t

J>Qu n d-m o l ~$ pcr year

( Dimensi<>nleS5 )

POWld - mote s per }"''''

PO II! D d - mote5 pe r )<c.ar Pou l1 d · mol •• per (m i es per hOur )~ -)'C-Il r

(Dimensionless) (Oi m n5 i on l •• ~ )

Ml les pet I>ou r

I ype a rid nl:l m ber of r.lt ln ~l a.ai lab l e :

igure 1 4 ro , • pon t Dan H oal l llg fool

Fi gur e 15 r"r a doub l e - d eck floo t llS roof

If pedfic i nf armiltion about Lbe Iype

an d n umber "I lil tin gs i s a" ' l a l e :

E q ual i o ll s 1 0 and 11 usi n g values

f to o l Tabli:;$ 5 - 7 O r Fig ure s 5- 13

W I ;: a ver age Jiqu i d to e de n sity atthe a \ r e ra ge s t or

-age temperature , in pound s per gall on _

D ;;; t.an k diameter , i n f eet Wt '" a erage liqu i d t ock den i ty at 6trF , i n pounds

p e r gallon

The constanl, 0.943, has dime n sio ns of (1000 (,"Ubi.c feet)

x [gallons p e r (b arr el squared» )'

The wilhdrawal oss is converted from pounds per year

to b arre ls per year as follows:

he procedure.s u.se,d to calculate withdrawal loss are

summar iz;e d in Table

2-2 1.4 TOTAL LOSS

The tOlal loss, L" i n pound per year and barr e l s p er

year, can be estimated as follow s:

Trang 16

- V~PO I press_Ire rucction ( Di me n sio n l e s ) , gUT< 16 (o r E;'1 wltion 12)

p = Tru< ""por press ure Pounds per ~ ua~ i n ch

;;)liiOhlte

FIgure 11 fo r r efi n cd peLrolell m ~t ucts

T.blo II for ,cloct~d pc t roc h em i c l s

R VP = Reid "apo, pressu '" (F'i gn r e~ 17

i!lld 1 8 )

Pounds p er 5lq1>a1'e i neb User specHJcd

M

= ' ''''''''8c ,joraS" temperal e of

s · lock ( F igu re:; 17 and 1 8)

• AVG rag e ImIIB C \lt:!.r w e j gh [ or s tock

VlIpOT

Use r spee;ili.ed or Thbtes 9 and 10

User ~ec;if.ied Or

64 f or sasoli nc

50 for [) S lIl id oont irw: " I "T\l d e oil

Thble (01 s e l ecte d petrocbem i ca l

= Prodllct f acto r ( Dimens io nle,, ) 1.0 f or r efined 8to<:ks

'0.4 [or m1de oil

1 0 fOT s io gl c- oom pon < BI s t od;

- DetlsilY of roDdensed -apor

= Litjlli d s L ock del15ity ro r p ure

oompo u d s

Pou n ds p er gaU o n User ~eCiified Or

L (poWlds pet year) = (L + Lw) (pounds pet )~ar) (7)

1 , (barrels per year) "" (L, + L ) (barrels per year) (8)

lnfomlation is summarized bdow on bow 10 deter

-mine pec i fk values for t.he variables in the loss equa

-tions given in 2 L Ta til es , figures, and the r a nge of value

· of the variab l e fo r wh i ch the loss equations are

applica-ble are ci red for re ference_

To obtain the mO " 1 accurate estimatet t h e detailed

quantities, i.ze , and other information pertinent to the

specific tank or lanies under C~1l ideration should be

u!>ed, The t}rpical quantities and shes included in the

la ble~and figu.res sho uld be useil ollly when actual

de-tailed informa tion is not available More detailed discu

-sions of t.he devel o pmeol , de fi nition , and dfeds of these

variables are given in Section 4 and tbe appendixes

OJI!l M ( or refi n ed poetf<;> lcli m tocks ~n d

cruOt <.>ils

TaOle 8 for sele«edpe t rocbcm k a l s

2.2.2 STANDING STORAGE LOSS FACTORS

2 2.2 _ 1 Rim-Seal loss Factor

The rim-seal los ~ factor F , call be estimated as follow s:

Wh e r e:

K , rim - ealloss factor, in pound.moles per mile per hour)" -foot-year

V average wind speed, in miles per hOUL

I! rim·:; ai- elated wind-speed exponent (dimen

sionless)

T11e run-seal10ss f actors, K , and 11, are gi en in Table 3

as a funct i on of t.allk cOllStruction and tim-se al system

There a re three basic types of primary seals: mecllanical

slloe, resilient fi lled , a nd flexible wiper Resilent-filled

primary seals can be eilher vapor mounted Or liquid mounted Vapor-mounted primary seals are mou.med on the noating roof SO Illat a vapor spaoe exists between the liq uid stock and the bottom of the primary seal Liquid-

mounted primary seals are mou.ntcd so that the bottom

of the primary seal touches tll liquid In addition to the

primary seal, SOme rim-seal systems are also equipped

Trang 17

Table 2 - Summary of Procedure for Calculaling Withdrawal l oss

= Aonu~ l n et tmrou gl lJJut (."""iatoo

w i h l owe r ing I he l q ui d 5locl( le ''tl

3\ 6O"F (Equation 6)

"" I

sea l s, the second ary eal can be eit.he r s hoe mOlln i e d or

r im mounted For resilient -filled primary s eals the sec

-ondary seal is only rim mounted

The factors for average-fitting eals are applicable for

typical rim-seal conditions and s houJd be IlscdclIcep t

User pc;cifl".d 0 ' 6.1 for g850 l ine ToN" S fQI' selected petrodtentkal~

U ser ' pcd fLOd USl:r pe~ e<I 0,

Table 11 for sdectod pet,.oro~mi~~1$

when a rim -ea l system is known to be consist.ently tight fitLing (that i s , when the re a r e no gaps more than 1/11 inch

wide between the rim seal and the lank shell), in which case the factors for tight-fitting seal s are applicable The d e\,e l o pment of the se aver a ge and tight factors is

described in Appendix A Average factors were devel

-Table 3-Rim·SeaJ Loss Faclors, K , and n

A verage - F ini n g Se~b TI gh t-Fit l ng Se.'\ 1 •

[ 1b- lll o L eI(mil hr) ~· fI.yrl (dlmea~iQnle " s)

Mecllan i c.I·! h (l~ ~ o al

Primary ollly

Rjrn - m o\m tod wco od ary

l.iquld-mouJl ted resment -fi Ll ed ,a l

1.3 1.4 0.2 Ole: T h e r m · eallo s fM'Q~ K r li d " rnB)' o l y b~ 11 5e<l ro, w i rul

• [f no specific i n forrn~HclI i available a dd(,.(J lank wilb an , , r"b <e

1.1

1.0

1 0 0.9

0.4

2.3 2.2

2 6

1.5 1.2 1.6

1.0 1.I

0 5

1.7

1.6 1.5

,

,

<

flui og me<: b n;';"!·shoe pr i m ary $C." o ly ~an be <iiS$Umt>d to represent

Ih m"'t com moo o r tn , ",,1 oo n M ruc li on R o d rim· seal 51 ' S te rn La 1iJSe

'/'oIQ "-"'Ilpor~liv~.I,," i nforma~;on i~ ava il able fOT ri"", (o d t an!!.i; w ill!

""n~,enl l y IJgI" foning ri m 4ea1 syslems

Trang 18

6 API PUBuCAroo 2517

oped because it was not possible to quantify para.meters

for all rim-seal conditions that affee-t loss It was thus not

pos-~i hie to de termi lie an exact relat ionship between the

rim·seal lo~~ and r i tIl·se al condit iOIl

The ri m-seal loss factor F r , can be caIeu lated u fig

Equation 9 or read direct! from igures 1-4

he im-seal 10 factors a re onl a pplicab le for wind

spee{j from 2 10 15 miles per hour If the average wind

speed, V, al the tank ite i ~ not available, wind- peed

data f om lne nearest local weatlle r I ation or values

iromable 4 may be used a an approximalion

11 no informacion is available on t.lte specific type of

!.ank con truction and rim-seal system, a welded tank

with a mechanical-shoe primary seal may be assumed to

represent Ihe most common type curre 11 Ily in use

How-ever, calcula tions based on such assumed data should be

used onl y as a prelimina ry indication of evaporative

losses Losses from spedfic tanks must be based on the

actual tan k characteristics

2 2 2 , 2 T o ta l Roof - Fitt in g lo s s Factor

If information is a~'ailabJe on the specific type and

nllmber of roof fittings, the total roof-fitting loss factor,

Fr, can be estimated as foUows:

Tile 10 factor for a particular type of roof flui ng, K{ I ,

can be estimated as follows:

(11)

K r i = loss factor or a partkular type of roof fi Uing,

in pound-moles per year

Kfb( = loss factor for a particular type of roof fi tting,

in pound-moles per (miles per hOluyn-year

tn, = loss factor for a particular type of roof fitting

(dimensionless)

j = 1 , 2 , , , k (dimensioniess)

V average ind speed, in m.il.e per hOUT

The most common fOof fittings are listed in Table 5,

along with the a.oociated roof fitting-related loss

fae tors, K ,., K fI>, and m, for various t ype$ of oonstM,l.;:tiOIl

details These factors are applicable for typical

roof-fitting conditions The r~f -f jtting loss f a~tors may ollly

be used for w'lId spe~ds frQJll 2 to 15 miles per flour The

loss factor for a particular type of roof fitting may be calculated u ing , quation 11 or read directly from Fig-

ures 5-l3

Since the number of each type 0 f roor fin ing can vary significandy from lank to tank, rvalues for each type of roof f tting hOllld be determi ne<! for the tank under

consideration If tbis iniormation is not available, lypical

Nr values are given in Tables 5, 6, and 7

If no inform.ation is availabJe about lile pecific type

and number of roof fittings, a typical total roof- itting loss factor, FI , can be read from Figur,e 14 or 15 Tbese figures show the lOlal roof-fitting loss factor F " a.s a function of lank diamCier D, for pontoon and double-dcck floating roofs respecti ve I y

2.2 2 3 vapor Pressure function

TIle \lapor pressure function, po- can be detennined

P = average atmospheric pressure at the tOluk loca

-tion, ill pounds per square inch absolule

Alternatively, P can be read directly from Figure 16,

which is based on an atmospheric pressure, P , of 14.7 pounds per square inch absolute

True vapor pressures l'.a.n be determined from Figure ~

17 A and 17B for refined stocks (gasolines and napll thas)

and from Figures 18A and 18B for crude oih by knowing the Reid vapor pressure, RVP , and the average stock sto(age temperature, T , in degreiCS Fall fell heit Vapor

pressure~ of selected petrochemical stocks are given ill Table 8

U t.he ave rage siock storage temperature, T., is not

known, it can be estimated from the average annual ambielll temperature, T" in degrees Fahrenheit (gi~'en fors.elected U.S locations in Table 9) and the tank paint color, u~ing TOibie lO

Th e 10 ~ eq u alions are a pplicable for non boiling

stocks down to a t:rue vapor pre sure of at least I

pounds per qu,lre inch absolute The loss equatioll can

be applied at lOwer vapor pressures with some small loss

(text con tinued 011 page 12}

Trang 19

Pr i m a ry a nd ri

m-mo l,.l ' ",d ~eoor>dary

N ol", So li d l ne i Ddi~~ to s ""ras o~ fi u i n g :ill ; b robn l ine i ndica t o s t ig b.t~ fi! t in8 •• a I " = K , V' ,

Ffgure 1-Rdm-Seal Loss Factor for a Welded Tank With a

Mechanical-Shoe Primary Sea l

Trang 20

Pri m ary alXl rim moun1eCl secondary

-Figure 2-R i m · Seal l lo s s F ac tor for a We ld'ed Tank WJth a

li q , ul d Mounted Resi l ent - Fil ed Pri mary S e a l

Trang 21

N.ot e : S ol i d li lle indicates average ·fi tting !.ea l ~ bro ken l illC i n katcs Iillht 6 i n g sea l ~ F = K V",

Figure 5-Aim-8eal Loss Factor f o r a Welded Tank With a

vapor -Mounte d Resillent·AIIed Prim ary Seal

Trang 22

Prim ary OI'1 l y

Pri mary and m 0 '

Trang 23

Table 4-Average Annual Wind Speed (V) for Selected U.S locations

6

6 4

6 4 6.2

lo 't\ ' ~ Des Moin-es

T 0l"1 k ~ Wic bila

Ci n l mil ti ir""r!

J ac ks on LG~ing t (\,f\

H n ghlon La k e Lansing

Muskeg.on

SuI t Sa in!" 1 a ri ~

M i nn eso t a

DU I \!th Illte rn atlo li lli Fallis

M i L es City

M is~la

N e braSKa

Gm"d Is l and U,\(.'O lo

Norfo L k North ?I ~ I I"

6.6 10.2

7.9

6.'

35 1

Trang 24

12 AP I F'lJeUCAJIOO 2517

Table 4 C onti n u e d

Locali01l (mlles pet b o" t) l ocaliO>l (miles pel b ur) LoealioJl (miles jl<:r oo ur )

N w J o""" , y 01o g,o m ( oontinued) Texa~ (<;Qlllin u~d)

P h i.L~ del p hJa 9 5

T il ls lOA

Brown.v i ti e 11 6 Wyoming

Asto ri a 8 5 Dalla~Fort Worl h 1 8 Cheyell!lo 1 9

P"ll d !eton 9 0 (ia"~to~ II ; 0

No t ~ : The da lA i n !lis t b l e are t aken from Comparariw CJi/ftllIjc Data T h rQugh 1984 , Na l:i cmal Qcrank

"Jl (l A tmQ~Jl h eric Adm i nistration ru ileviU" , No t1 h Carolina, I 9&)

in a CCUTacy, b ut they sbould Rot b e applied at vapo r

pressure at Whiell it is poss ibl e for t he stock to reach a

boilin g state a t the liq uid su rf ace The vapor p r essure o f

some mixtures o f byd£Ocarbons orpetroclJem icals

can-not b e r eadily pre dict ed ; i n t Ile!>e cases , tbe loss

equa-tions cannot be app l ied

The mo l ecu l a r ¥O'liighl o f the vapor M , can be de.e·r

mined by analysis of vapor samples or by cakuiation

from the composition of the liquid In the absence of th i s informat i on , a typical value of 64 pounds per pound

pounds pe r pound -m ole can be assumed for U.S mid·

continent crude oils (iRCltlding botb reactive and non·

weights has been observed in foreign cr u de oils , no

average value bas been developed for t nese s t ocks For

v a po r is eq u a l to t il e molecular weigh t f the l iq uid stock ,

whic h is given in Table 8 f o r selected pelrochemicals

Trang 25

Tab l e 5- Aoof · Fitting Loss Factors , K ", Kit >, and m and Typical Number of Roof F i Uings , N

Fittlllg Ty~ an d Con~ruction Delails

A"""ss hatc h (24-indl · dia m c1 cr well)

R <.>l tcd em,<;, r , 89!jl kc ted

Unbolted CO''ef, Illlgas}i;eted

Unoolted OO ' 'C: r , gaske r ecl

UIIliLoned guide-poLe well

(8· i ndl-d'.rm t ;:, u n.Loued pole 21";11<:h- d iilm.c1cr ",cll)

U~~.kolcd s l d' n g rovcr

GMketed sUding OQ\'~r

S J O!teJ gl.lide ~pol~l, ~Illple 11

(8· inch- cl ia mele-r $lolled po le 21 ·i ncb - d lameler ell)

Ungasketo<! ,filli n g am" wilho" t floa t

Ung9!jlkoted sMi o g COY." with 0001

Gask,ne d sliding co"el, ",ltb.out float

O"sk~ted 5 I j(lin ~ (lOYer i Lh (] ,m

G3u ge-iloR t v.dl (20 · inch diiune , ter )

Unbol1c d cover, ~n 8 tct«l

Unboll~ wver, g~skeled

Bo l ted ~"""r, g-dsketed

Ga"",<e bat chls:ample well (So;lnch di.meler)

Wc ig ht e.d me OO n iea l act U 3U.:m, gasle t ed

Weighted rnech~ n ica l act ua tion, unga.sl<cted

VllW~ m b r e;ake T (l(l.i D c h :liarncll!r wd l)

We i gilled fiie.: ha ~ iea l a«\I~"OJl , g1lsli.~ted

Wdg h tcd mlOChan i cal aClual i~n ungaskeLed

Roof drilln (3· i ncb d ia me t er)

O~n

90% clO<I"'d

Roof leg (J·jnc h di~ rnc t~ r)

Adj u stable, poo t OOll area

Adjustable, "" n ler lire

A dju Slable , dou bk-deck ronf"

Fixed

Roo l J eg (2 ~ i nch d tarnc IIIT)

AdjuSla bk: pontoon area

Adjustable, <:CDle - r area

Ad j ust.bk, d "m b lc · dccK roofs

Fi ed

Rim vent (6-inch dj~mete r)

Weill/hled mtC b nical ae[U~tloii gas~eled

Weisllied mec h anical aotua t ion , ung3sllc l ed

11

1.7

0.41 0.41

11

0.71

0.68 Ole ; The roof·fitting 10M (3C tm-S , K., K l!-lId m may oniy be ~d

fu r wind $peed f om 2 to IS mile s p ~r hout

, rf no specilic i"fcmna titm i availA b le, thi , l uc <'a" be 3.sumcd to

l'epresent [lie II1.Q I COmmQD Or t ypiClll rQOr (jUill~ cur rently i ll

u se

• A o l otted lIuid c pDlc { sarnp l e well is an optional fl tt i D g a D i s not

typ i cal1 ~ed

2 2.1.5 Product Factor

The product fa :tor, K •• accounts for the effect of dif

-fe ·rent type s oHiquid st()C k on evapora t ive loss Pro d uc t

fac t ors have been developed for multioomponent

hydro-ca r bon mixtures, i nclud ing refined stocks (such a

gaso-lioes and naphthas) a nd cru d e oiJs as well

assiogle-component stocks (such as petrocbemicals) :

0.9ll' 1.4

1.2 2.Q 1.2

< R()()i dra~ n 5 t h ai d rai o cx~e~s ra ill walrr iIllQ t h e p r oduct a r e 001 ~~ d

on ponloon floating roots Th ey ace , b OIVe''U used 011 dotll}le · deck

I1o.a t n g roofs a d are Iypically le-ft "pen

214-i n c bod i amelor roof kgs ar · e provid>ed (01 I!ISe jf t his ~lllaller i ~e JOor l eI! is use d on par t icu lar (loaling roof •

• Rimvc ; m15 are u5e d only with mcch3llical-shoe p rim or)' seals

Kr = 1.0 for r~ fined sto ck s

- 1.0 fur single-component s t Qcks

2.2.2.6 DeAsity of Condensed vapor

For r~tined petro leum sto ck s and crude oils , tbe de sity ofthecon d e n ~e d vapr,lf, W " is lower tban Ibe density

Trang 26

Figure 5-Roof-Fltling Lo$S Factor for Access Halct'les

of the stored liquid Slod<; If the dellsity of tbecon densed

vapor is not known, it cal) be appwxirnated from qua

-tion 1 3, which wa~ deve io pe(l pri mari l y fo r garoline :

pet rochemi ca \s

2 2 3 WlllIORAWA l L OSS F ACTORS

2.2 3.1 Slgnlflca.nce

T he ignificance of the withdrawal loss, L." , will vary

\ ith lank ope r a ti ng prdctioes Industry-wide, wit

relative (0 the s t and in g storage loss , L Howe ver, i n cas.es of extremel hig,h throughput that re su lt i n fre~

quent tank turnoverS, t he wi I hdrawal l oss rna b eco m e

so sigDifiamt that it s h ould be included in a calculation of

the total loss

use d ill th i pu bl ica tion, an Ilual net th roughpu t Q ,

t he ~a nk: filling and \ i hdrawal occu r equall y and

the ne t throughput i ze ro ,

2:.2.3.3 Clll1lgage

Table 11 gives dingage factors, C, for s teel ta nk s w i th

light rust, dense rust, and gunite lining in gasoline , sin gle-component stock, and crude oil service ·

Trang 27

-Sliding OCJIJer, ungl1lsl<.eted -

5 I id;~ cove r ,gasketed

OlO ~ ~~=r :: 5 t:~::~ ~ i- ~ ~ l o -J L- J- -L ~15 ~ 1- -L~~~ 20

Win(! speed V (mites pe r hour)

Rgure 6-Root-Fitting Loss Factor for UnslOtied Guide-Pole Wells

-cantly, particularly fer crude oils and single-component

per gall.on can b-e assumed

sallle as that presented in 2.1 and 2.2, but wi thout all of

the important d.escriptive qualifiers presented hi tho-~

sect i on~ Therefore, questions about the infonnation in

2.2 for more detailed information

Hcwever, as nmed in 2.2.3.1 the wit.hdrawal loss can

loss can be assl1med to be approximately equal to t he

2.4 Sam p i e Prob l em

2 • 4.1 PROBLEM

infor-m.aticn

a A di ameter of 100 f eet

c A pontDon floati.ng rocf

d A mechallkal- hDe primary seill

e Typical [OOr fittings

Trang 28

Wind $jl(l(l d I' (mi l es per h o r )

a, A Reid vapo r pressure of 10 pounds per squa r e in ch ,

b, A liquid stock densit y o f 6.1 pounds pe r gallon

c An ave r age net th r o ughpu t of 1 ,5 million barrels p er

year

Tile amb i ent conditions are as follows:

a, All average annualambie n t temperature of 6O"F,

b An atmospheric pressure of 14.7 pounds per s qu are

inch a bso lu t e

c, An average aDDua l wind speed of 10 miles per hour,

2.4.2 SOLUT I ON

2 4.2.1 Standin g Stora ge Loas

Calcula t e th e st a n d ing stor a ge 10 s from Equa tion I

= 38 poun d- mo l es per foot· yea r (f r om Eq uation 9

or from Figure 1 for an average-fittillg pr im ary sea l only, with V = 10 miles per hour )

Wher e

K, = 1.2 p(Jund-mo]cs pe r (miles pe r hour) l.5 · f oo t

ye ar (fr om Table :3 for a we -ld ed t ank w i th a

mecha n ieal ~ sboc primary seal)

V = 10 miles per h o ur (gil/eo),

Il = 1.5 (from Ta b le 3 for a we l ded tank \,.,itb a

mech an i cal·shoe p r imary sea l)

D '" 100 feet (given),

F t = [( nKn) + (NrJ(,.) + ,., + (Nf~K 'k I 782 pound-moles per yea r (from Equation 10 or fro m Figure 14, wi t h V = 10 m i es per h u r)

Trang 29

;;: 0 pound - moles per year (f.or aoce s hatches,

frOom Equation 11 and Table 5 Of from Fig

-ure 5)

Nt2Kt2 '" (l} [ (O) (67)(lOt~]

- 640 pound - mOoles per year (fo:runslo tted

guide-pole we.Jls, fro m Equation 11 and

N n K o - (no t t}'pically used)

0 pound - mOoles per year (fOor slotted

guide-po l e/sa mp l e wells, frOom E q uatioD 11 and

Tabl e 5 or from Figure 7)

Nr K' 4 == (1) [ (2 3} + (5.9)(lOt")

== 6 1 3 pound.mOoles pcr yea r (fer gauge - float

wells from E q uat i on 11 and Tab l e 5 or f rom

Figure 8)

NfSKfS = (1)[(0.95) (O.14)(lW~)

= 2 35 pound-moles per yea r ( or gauge

-hatch/sample "' 'ells from Equation 1 1 and Table 5 .or frOom igure 9)

Nrt.Kf6 (1)(1.2) + (0 17)(10)"~

b r eakers from Equation 11 and Table 5

" 0 pound-m oles pet yea r (f.or roof drains ,

from Equation 1.1 and Tables 5 and 6 or

from Figu r e 11)

fwm F i gu r e 1.2)

Nf'lKf9 = (1)(0.71) + (0.10)(1O}1.V]

"" 1.71 pound - mole.s per }'ear (for rim vent> from quation H and Tab l e 5 or ftom Fig - ure 13)

Trang 30

f

f 20

I-

-,

,

- i -

-

-

abso-lute from E q ua ti on 12 o r f.ro m Figure 16)

= 10 pounds per square i nch (given)_

P ;;:; 5.4 pounds per square inch a b solute (for ga~ ­

oline w i th RVP = 10 poun d s per q u are inch

and T = 62.5 °F , from Figure 17)

P ;; 1 7 pound per square i nch absolute (gillen)_

M = 64 pounds per pound - mole (fo r gaso l n e, from

2_2 2.4)_

K< = L O (for refilled s t ocks fro m 2.2.2 5)

Calculate the wilhd r awal l oss from Equations 5 and 6:

L (b arre l s pe r yea r ) _ L (pounds per year) ( 6)

The va ri abl es i n · quations 5 and 6 can b e de t ermined

as follows:

Trang 31

WI n d speed, V (miles per hour )

Figure 10-Roof-Rtting Loss Faoto,r for Vacuum Breakers

Q 1 5 X 106 barrels per year (given), 2.4.2.3 Total Loss

C == 0.0015 barrel per 1000 sq uare feet (for gasoline

in a lightly rusted tank from Table 11), Calculate the totaJ 1 s from Equar i o l'!s 7 an d 8:

W L = 6 1 pounds per gallon (given) L, (p.J und<; per year) '" (L + L (pounds per }~) (7)

D = 100 feet (given)

To calculate tbe withdraw'31 loss in pounds per yeal ' ,

substi t tl te the value above into £qua I ion 5:

L = [ (0 4 ) (1.5 x 1 cf)( o.OO15 )(6 1)]/100

= 129 potl.nd per year

To calclliatc withdrawal loss in barrels peryear,

substi-tute the value abo~ ' e into Equation 6;

= 1 7 barrels per y ear

Trang 32

AFtI F' U!!IJC A J ION 2511

Figure 11-Rool-Filting Loss Factor tor RooI Drains

Trang 33

Vl/'ind speed V (m i tes per hOur)

Trang 34

22

~ '"

f- f-

r-20 I-

r- I-

I-1 0

r-I-r-

- '

I

-

/ ['M ,,' Weighted mecl1anfcal actu lion --

-

Trang 35

and Roof Drains, M ,

D iameter , 1'01110011 Doublc>-D :k Roo r D['il i n ~, N n

Ie : This ! 1b le \\las deri\'ed f om <l s\lrvey (If uSc, a n d

ma[liLr.o-Im ' rs 11le a r t u al lIumbc of vacuum bre ak er rna! ' var) ' grea tly d

e-"" n di n g on th l"Ough p~' 00 m3I1 u fru:m ri ng pr~r(lg",j\~ T~e a<;C1!al

lIumber of mof d rai n s ma y a l vary greatly deperu l illg o n [ lie desi!l'l

taiala U lIOd m lI u:f ilauti ~gpr er<>ga t ivto _ ' For t iln ' 5 mo,e tlwn 300 ree t

n,ay be n~ed d lor !he Jl unlhe r of r(>Of d r~i " , Thi libt~ Il oul d no t

s~pel!e<k ioiorm3Tlon oosed O D ac1ua l 13nk dal •

" If I , he actual djamote, bel "' "" o Ihe d ,a me leJ , I ;" t ed t b e dosc:s t

diameter listed 000 be u sed If the s c t ua l d ia mete r is m i d w3) '

""' t ween tlte d io mcte; rs li, ted, IIe nC x I ", ger d i ame t er $nou l<l bc u e~ ­

b Roo f draio Iba! d nin excess rainwa t er into t bo: p roo"':1 = .101 us ed

O n pull loO n lloa li'l g roO I • They are Bow"""r used 0 0 dc>ut>le - deck

lloa t l1& roo fs and are Iypicall~ ' lef l ope n

Po n too n Roo f u mk r o r

D ia ", e te r , Number of Numb , of Do u ble-Dec k

D (fct t ~' PO ll t oon Lef,$ Center legs Roof

ufac-3ge, 1) ' e of fIoa t lng roof , loading $peclf",aliu ll o, and lI'la IJ uf acluring

prerogalh'e" T h i , table mould no t supe=.ck i nformal ion based on actual t a m dala

• IT Ihe ~ otu 31 di,amel<'J' is boeL\IIeell the di a mel er lisled, the c los~SI

d i arnete' tis t ed shc>uld be uscd I f t ne • c t llil J d ' meler ~ m i d.wilY

be t ween t lte d i me t o" lis t <d, th e o •• t La r gn d i ame t er ho ul d be use d

Trang 36

Q

]

OJ

I- I-

I-

I- 2000

!-

f- c-

I-1500 I-

I- l-

-

-

Tank diameter, D (teet)

FiQure 14-Total Root-Fitting Loss Factor lo r lYplcal Fittings on

Pontoon Floating Roofs

Trang 37

5 m ile s per hour

TilnI< diameter , D ~1 ee! 1

Figure 15 Total Roof-Fittingl Loss Factor for Typ'caJ Fittings on

Double-Deck Floa1ing Roofs

Trang 38

26

N o teS ;

i .0 0.9

-,

-§ ::;:

1 Broken ti oe iII u l r.Jt es mpl e prob l em fo r P = 5 4 P ' w~~ pc r

5qQ.llTe inoh IIb,,,luto

2 Cur'" i for a trno'J>he ric J>r«SlI rc, P , e qu.1 10 14 7 pou n ds pe r

Figure 16- Vapor Pressure Function

Trang 39

~ ()~:

1 S = " l ope of th e ASTM d is tiIJati(ln c~r''<1" ~t 10 percenl evaPO~I~ • i n degrees

Rlhre o heit per pcrtem

= WI ' at 15 percen t ) - at 5 perc.,ot) J f( 1O pO" ,OI)

Motor gawline - 3,O,

".iali"" gasolin e-2 0,

Ligh t ""phtha (RVP of 9-14 IX' L11I dI!o per $qu"" inch) 3.5

N p hl h ~ {RV P of '2 - 8 pounds per s u~re i ncb )-2,5

2 The broken li~e mlLSl r a t eS 11 S<intple problem rCIT a ga o ~ oe Ivcl<: (S = 3 O) v.'ilh a Reid \'apo r press u r c o 1 0 pounds pe r squa r e in c b an d Olc;:]c k"mpe r a tllTC' of 62 5·F

3 See Ig ure m fOf tile eq1l30on fOf (IX K true Vl!JlQr prcs~ ur< , P

4 This omnograp h was drB · n (ro m data of [ lie atton a! Bureau or Sta n dards

Figure 17 A-True Vapor Pressure of Refined Petroleum Slocks

Wf1h a Reid Vapor Pressur'e of 1- 20 Pounds per Square Inch

40

30

20

o

Trang 40

ote ! Scc Figure 18B for ' tb c equ 3Iion for Sloc l< true vapo r preo.UIC P

Figure l8A-True Vapor Pressure of Crude Oils With a Reid Vapor Pressure of 2-15 Pounds per Square Jnch

Ngày đăng: 13/04/2023, 17:36

TỪ KHÓA LIÊN QUAN