1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Astm stp 91 a 1963

94 2 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề A Guide For Fatigue Testing And The Statistical Analysis Of Fatigue Data
Tác giả F. B. Stulen, Miss Mary N. Torrey, George R. Gohn, H. N. Cummings, D. H. Shaffer, R. E. Peterson, H. F. Dodge, D. P. Gaver, R. Hooke, W. T. Lankford, R. B. Murphy, W. C. Schulte, P. R. Toolin, M. B. Wilk, J. T. Ransom, E. W. Ellis, F. A. McClintock, E. H. Schuette, E. J. Ward, S. M. Marco, H. E. Frankel, C. A. Moyer, W. N. Findley, R. A. Heller, J. H. K. Kao
Trường học University of Michigan
Chuyên ngành Fatigue Testing and Statistical Analysis
Thể loại Hướng dẫn
Năm xuất bản 1963
Thành phố Philadelphia
Định dạng
Số trang 94
Dung lượng 25,49 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

"Standard" tests constant ampl itu e or classical Wohl er m ethod.. Relati ng to Stati sti cal An ly si s: 2.. Relati ng to Stati sti cal An ly si s o Fati gue Data: 4... In g en eral, t

Trang 4

© BY A M ERICA N SO C IETY F O R T EST I NG A D M ATERIAL S 193

Library ofCongress C atal o g C ard N u m ber: 63 -163 31

Pr i nt ed in Bal t imor , Md

Trang 5

T he Fi rst E di on o this Gui de was the c omp os i te work o many

peo l e who contri buted a great deal o tme to the dis c us s io n and writ

-i ng o the tex t under the g ui dance o T as k G roup L eader, F B Stul en

A m ajor p rton o the stati sti cal s e c tio n was w rit t en by Mis s Ma ry N

Torey Ge orge R G ohn not onl y contributed to the dis c uss io n an pl

an-ning , but also ed ed and arranged fr the printing o the ad anc e co p i e s

o the tex t T he co rdi nati on o contributons an dis c us s io ns was done by

H N Cummi ng s Appre i abl e contributions to the stati stic l parts o the

Guide w ere als o made by D H Sh af r In ad i ti on to the a ove, R E

Peterson, H F Dodg e, D P Gaver, R H ooke, W T La n kford, R B

Mu rph y , W C Sch l te, P R Toolin, an M B Wilk contributed to the

di scus si ons at vari ous conference

T he o ri gi nal T as k Grou p was org ani zed under the l eadershi p o J T

Ransom, an a fi rst roug h dr aft was prep red i n 19 4 an re vis ed i n 1955

Oth er contributors to the e d r aft s were E W El l i s , W T Lankford, F A

Mc Cl i nto ck, R E Pe te rs o n, E H Sch e tte, F B Stulen, an E J Ward

I n 1956, F B Stul en be ame L eader o the Tas k G roup an the Gui de was

c ompl eted under hi s di re ti on

Up n the f rm a tion o S bcommi tte VI on the Stati sti cal Aspe ts o

Fati g ue, this subcommi tte was asked to re vi e w the Fi rst E di ti on and to

make any re vis i o ns ne ce s sary to brin g the Gui de up to date As a re ul

o f this study , extensi ve revi si o ns have be n made i n vari ous s e c tio ns as

prin t ed i n this Second E di ti on They include: ( 1) revi si ons i n the defini tions

( Se ti on I) an thei r s parate publ i cati on as AST M Tentative Definitons

E 206,

1

(2) an e xp ans i o n o fSe c ti o n I V on the n u m ber o test s pe c i me ns ,

( 3) changes i n Se ti on V on te ts o sig nificance, a d ( 4) the preparation

of a new s ecti on, Ap en i x IV, on the use o the Wei bu distribution fu

c-ton for fa t igue Me

T hi s w ork was c ari e d out by f ur Task Groups headed by S M Marco,

H E Franke M i ss M N Tor ey, and C A M oyer, re pe ti vel y Oth ers

who ass i s te d i n the preparation o the Se c o nd Edi on w ere W N Fi ndl ey,

R A.H el l er, J H K Kao, H N Cummi ng s, W S H yler, B Ruley, an

G R Goh , Chairman o S bcommi tte VI

1

Defi ni tions o T erms Relatin g to Fatig ue g and the Stati sti c A nalysi s o Fatig ue Data

(E 2 6), 19 S p l ement o Boo k o fAST M Stadards, Par t 3

Trang 6

NO TE.—The Society i s not resp onsible, as a b o dy, fr the statements

an opinions ad anced in this p ub licato n

Trang 7

P AGE

IV Min im um Nu m be o f Test Sp ec imens an Their Selection 16

Appendi ce

Additional T e c hni que fo r Distribution S ap e Not As sumed 6

1.—Alo c atio n ofTest Specimens for "Pro i t" Method of Test 1

2.—M inimum Numbe o Sp ecimens Nee ded fr Detemi ni ng 9 Per C ent C o

n-fi denc Interv a ls o Stated W idth fr a Po ul ati on Mean, p 19

3.—M in im um Num be o Sp ec imens Needed fr Detemini ng 9 Per Cent C o

n-fi denc In tev als o Stated W idth fo r a Po ul ati on Stan ard Devi ati on, a 19

4.—M inim um Nu m be o Sp ec ime ns Needed to Dete t i f the Standard "Dev i ation

o f a Po ul ati on I s a Stated Pec ntag e o f a F ixe d Val ue 2

5.—M inim um Nu mbe o Sp ec ime ns Nee de d i n Each Samp l e to Dete t i f a Stan

-ard Devi ation o One Po ul ation I s a Stated M ul ti pl e o the Standard D e

6.—M i ni mum Nu mbe o Sp ec ime ns Ne e de d to Dete t a Stated Dif ren ce Between

7.—M inimum Num be o Sp e c ime ns Ne e ded to Dete t a Stated Dif ren ce Betwe n

14 —Pe rc enta es Surv i ving 10

8

16.—Computati ons fr Fitting a Re s p o ns e Curv e by Method o Le as t S uares 35

18.—Method o Computin g 9 Per Cen t Co fidence L i mi ts fr Per Cent S rvi val

19 —Metho d o Computing 9 Per Cen t Co fi denc L i mi ts fr Fati g ue Strng th

2 1.—R R M oor Rota t in g Bea m ; Ste p Tests o f4 2 Sp e c imens 5

Trang 8

T ABL E PA G E

2 —M inimum Per Cent o fPo ul ati on E xc e di ng M edian o Low Ra nking P int s 5

2 —Pe rc enti l e s o fthe x

3 —k Fac to rs fr S-N C urve ( Normal Di stri buti on A ssum ed) 6

3 —Ordi nate Locati ons Cor sp n ing to Pe Cent F aied Val u 7

3 —Me an-Ran Esti mate o f the Pe r Cent Po ul ati on F ailed C or s po ndi ng to

37 —Typical F atg e Test D ata

LIST OF FIGURES

F I G U RE

1.—P ro b ab i lity-Stre s s -C yc l e (P-S-N) Curv e fo r P ospho r-Bronze Stri p 10

4.—Reprs ntati on o "Step "Te stin o Single Sp ec imen 14

8.—Per Cent o f Sp ec imens H aving at Least the I ndi cated Fatig ue Streng th at 10

7

13.—C o nstruc ti on o Weibu Pro a i l i ty P ape r fr om Lo g- Log Pap e r 73

14 —Es timatio n o f Wei bu Di stri buti on F ncti on Parametes fo r Data i n Table 3 7

16.—Estimation o f Weib ul D is trib uto n F ncti o n P arame te rs fr D ata i n Table 39 7

Abstracts o fArti cl es o n Fatig ue (STP 9)

F atigue M an al (STP 91) (199)

Stati sti cal Asp ects of Fati gue (STP 121) )

Fa tigue, w ith Emphasi s o n Stati s ti cal h (STP 13) (1952)

Papers on Metals (S TP 19) (196)

Fatig ue o fA ircra ft Structure (STP 2 03) (195 6)

L arge Fati gue T e s ting Machi ne s an T he i r Re u s (STP 216) (19 57 )

B asic Mec hanisms o F atigue (STP 2 7) (19 8)

Fati gue o fA ircra ft Structurs (S TP 2 4 ) (19 9)

Aco usti cal Fati g ue (STP 2 4) (19 0)

Fati g ue ofA ircraft Structure (S TP 3 8) (19 3)

7

Trang 9

GUI D E F O R F AT IGUE TESTING AND

A bou t 15 years ago , AST M Commi tte E -9 on Fati g ue prepared a Ma n u a l

o Fati g ue T e s ti ng

1

That Ma nual a t t em pt ed to standardiz e the s ymbo l s

an nomenclature used i n f t i u e te ti ng, des crib ed the pri nci pal type o

te ti ng machi ne s t h en in us , pre ented de tai l ed instructons f r the prepa ra

-tio n o fte s t specimens, o utli ne d test pro cedures an te c hni que s , an gave

some suggesti ons f r the pre entation and interpretation o fa t igu e da ta

Si nc e the Ma n ua l was firt prep red, a n um ber o new te hniq e have b e e n

de ve l o p e d fr evaluating the ft igu e pro ertie o materi al s Furth ermore,

the a pl i cati on o stati sti cal methods to the anal ysi s o the te t re u s o

s amp le s ofrs a means f r esti mati ng the characteri sti cs o the p pulation

from whi ch the s ampl es were taken To t a ke c o gni zanc e o the e de ve l o p

-me nts , thi s g i de has b e e n prep red

I PURPOSE S OF FATIGUE T E ST I NG

The purp s s o fa t igu e te ti ng are ( 1) to e ti mate the relationship

be-tween s tre s s - ( l oad-, strain -, defle ton-) am pltude and c yc l e lf -t o-fa ilu re

fr a give n mate ri al or c o mp o ne nt, an ( 2) to c o mp are the fa t igu e pro erti es

o two or more materi al s or comp nents I n order to spe i fy the rel i abil i ty

o f the s e e s timate s , they must b e based o n the re s ults o f te s ting a sample o f

fa t igu e spe i mens whi ch have be n draw n at ra n dom from a p pul ati on o

p o s s ib le ft igu e spe i mens and te ted i n ac ordanc wit h acc ptabl e te tng

proc d res The principal ac epta l e proc d re di s c us s e d i n this g uide a re:

A "Standard" tests (constant ampl itu e or classical Wohl er m ethod)

2

1 Sin le te t s p e c i me n at each stre s l evel

2 A group o test s p e c ime ns at each s tre s s l e ve l

B Re s p o ns e tests ( constant ampl u e)

1 "Pro it" m et h od

2 Staircase method

3 Modified stai rcas m et hod

C I ncreasi ng ampl ude te ts

1 Ste p m et hod

2 Prot m et h od

The prim a ry purp s s o the stati sti cal anal ysi s o f t igu e da t a are: ( 1) to

e ti mate c rtai n f t igu e pro ertie o material or a comp nent (togeth er

wi th measure o the re l i abi l i ty) fr om a gi ven set o fa t igu e da ta , o tai ned

by te ti ng a sampl e o fa t igu e s p e c ime ns i n accordanc w it h one o the

previ-ous te s t pro c ed re s , an ( 2) to p ro vi de o b je c ti ve proc d re f r c o mp ari ng

two or m ore s ets o fa t igu e data to determ in e whet her or not the da t a c ome

fr om s imil ar p pul ati ons Statisti cal t h eory also provi de inform a tion on ( a)

Trang 10

the mo s t efi ci ent us o a limite d number o f te s t spe imens an (b) the

num-ber o test s p e c i me ns required to gi ve a spe ci fi ed de gre o confi denc i n the

te st re s ul t

Eve n w it h s o me b as ic training, i t i s d ificu lt to l ocate the te hniq es pa

r-ticularly useul i n f t igu e testi ng i n the statistic l lt era t ure The purp se o

this guide is to descri be some stati sti cal t rea t m en t s t h at are suiable f r the

anal ys i s o ft igu e data o tained i n an one o the foreg oing test m eth ods

and to present the s e statisti cal treatments in a for m u seu l to the test

en-gi ne r Defini tions o c rtain stati stic l term s are i ncl uded, but onl y enough

o f the basic c onc ep ts o f s tatis ti c s are inc lude d to make the methods

under-stan dable; theory is let to the references

Test p ro c e dure s are discused hi S ecton III whi l e te c hni que s fo r anal

yz-i ng the data o tai ned i n the se tests are g i ven i n Se c ti on V and the

Appen-dic s

I DEFIN ITION S, SYM BOL S, A N D A BBRE V IA TION S

Relati ng to Fati gue Te sts and Te st Meth ds:

T o e nc o ura e unifrmity o f te rmino lo gy, the terms dealng p ri mari l y wi th

fa tigue testi ng and test methods are also publ i shed i n ASTM Defi ni ti ons

E 6

3

T he s ymb o ls us e d are, hi g enera thos e re ommen ed i n the A m eri

c an Standard Lett er S mb o l s fr Mechani cs o S old Bo die s

4

1 Fati gue (No te 1) —The proc s of progressive localzed permanent struc

-tural c han e oc uri ng in a material su je ted to co di o s w hich produce

fluctu-atn s tre ss e s an strai ns at so me p in t or p i nts an which may culminate in

c rac ks or c ompl e te fr act u r e at er a sufficien t n mber o fluctuations ( Note 2)

N T E 1.—The term fa t igue i n the materi al s testing fi el d, h s —i n at least one c ase

glass te h ol og y—be n used fr s tati c te s ts o considera le du ra tion ,a t yp o test g

ener-aly des i gnate d as stres-rupture

NO T E 2.—Fl uc tuati o ns may occur b th i n stres an wi t ti me (freq ency), as in the

case o f"an om v i brati on."

2 Fati gue L i fe, N.—Th e n mber o fcycles o fstress o r s train o fa sp ecified

char-a ter t h a t a g i ven s p e c ime n sustai ns befre fa ilu r e ofa s p e c ifi e d nat u r e oc ur

De fi ni ti ons 3 to 19, inc lusive, ap l y to thos e c as e s where the

con-d i o ns i mpo s e d u o a s p e c ime n resul t or are as s ume d to resul t i n

u i axi al p ri nc i p al s tre s s e s o r strai ns whic h fluctuate i n magni t de

Mul ti axi al s tre s s , s e que nti al lo ading,an random lo adin req i re more

rigo ro us de i ni ti ons whic h are , at present, bey n the scope of this

s e c tio n

3 No minal Stres s , S.—The stres s at a t cal cul ated o the net c ro s s - s e c tio n

b simple e las t theory, w ithout taki ng into ac ou t the efct o the s tre s s

pro-d c e d b y geome tri c di sc onti nu i e s suc h as holes, g ro v es,'fi ets, e tc

4 Stre s s C ycle.- ^- The smalest s e gme nt o fthe stres -i me fun ct ion whi ch i s re

-p e ate d periodicaly

3

Dei ni ti ons o Term s Rel ati ng to Methods o M echanical T esti ng , 19 62 Su ple me nt

to 19 61 Bo k ofA TM Sta dards ( E 6), Part 3

Trang 11

5/ Ma xim um Stre s s , S

max

- — The s tre s s havin the hi g hest al g ebraic value in the

s tre s s cycle, te ns i l e s tres s bei ng c o ns i de re d p s i ti ve an co mpre ss i ve s tre ss n ega tiv e

I n thi s deinition, as we l l as i n oth er t h a t flow, the n minal stre ss i s use d m ost

commo l y

6./ M inimum Stres s, S

m,

n — The s tre s s hav ing the l o we s t alg ebraic value in the

cycle, te ns il e s tre s s bei ng c onsi de red p si ve an c o mpre s s i ve stres negatve

? Mea n Stre s s ( or Stead Componen t of Stres ), S

m — The alg ebraic av erage

o the m ax im um an minimu m s tre s s e s i n o e cycle, t hat is,

8 Rang e ofStress,S

r — The algebraic di ffrenc b e twe e n the m a x im um an

min im um s tre s s e s i n o e c yc l e, that i s

9 Stre s s A mpltude ( or V ariable Component o Stre s ), S

a — One half the

rang e of s tre ss, t hat s

10 Stre s s Rato, A or R — The al g ebraic ratio of two s p e cifie d stre ss val ues i n a

stres cycle Two commo l y us e d s tre s s ratios a re:

The rati o o fthe stre s ampl i tu e to the me an stres, that is ,

an the ratio of the minimum s tre s s to the maximum s tre s s , tha t is,

1 S-NDiag ram — A pl ot of s tre s s ag ai ns t the n u m ber of c yc le s to fa ilure T he

s tre s s c n be S

ma, S

m

i, or S

aThe di ag ram indic tes the S-N rel ato shi p for a

s pec i fi e d val ue ofS

m, A, or R an a s p e cified pro abi ty of survi val F r N a lo

scle is almost always us ed Fo r S a li e ar scle is used mo s t o te b ut a lo g sc le

i s s o me ti me s used

12 Stre s s Cycl es Endured, N — T he n um ber of cycles o fa s p e c ifi e d chara ter

(that pro uc fluctuatn s tre s s an strain) whi ch a s p ec ime n has en ured at an

tme i n i ts s tre s s history

1 Fati g ue Streng th at TV Cyc l e s , SN — A h p the ti cal val ue of s tre s s for

fil ure at e xactly N cycles as de te rmi ne d from an S- N diagram T he val ue o f

SN thus determined i s subje t o the s ame c o ndi ti o ns as tho s e whic h ap l y to the

S-Ndiagram

NOTE — T he v alue o SN which is commonly fo n in the lt era t u re is the h y pothetical

value o Smai ,-Sm t ^ror S

a,at which 5 per ce nt o the sp ecimens o a gi ven s amp l e c o ul d

survi ve N stress cycles i n whi c h Sm = 0 This i s also kn wn as the median fatig ue stren g th

at N cycles (se de fi ni ti o n 4 7)

14 Fatig ue Li mi t, S / — T he lmi n val ue o fthe median fa t igu e streng th as N

b e c o me s very l arge

Trang 12

Val ue tabulated as ft igu e lmitsu the ltera ture are frequ en t ly (but not al wa s) v l ue s

6 SN fr 50 ~p e r c nt survival at N cycles o s tre s s i n which S

m

= 0

15 Cycle Rato, C — T he ra tio o the n mber o stres s cycles, n, o a s pe c i fi e d

character to th e hypothetic l fa t igu e lfe, N, o ta in ed fr om th e S-Ndia gra m , for

s tres s cycles of the s ame ch a ra ct er, t ha t i s,

Theoretcal Stre ss Conc ntration Factor (o r Stre ss Concentration Factor,

Kt — The rati o o f the g reatest stress i n the region o fa n tch o r other stress

concen-tra t or, as determined b the theory of el asti ciy ( or b ex perimental proc d res

t hat gi ve eq ivalent v alues), to the coresp n in nominal s tre s s

N TE — T he theory o plasticity s ho uld not b usd to d et er m in e K

t

17 Fati gue N otch Fa tor, K/ — T he ratio o the fa t igu e stren gth o a s pe c ime n

wit h n stre s s concentratio to the fatig ue streng th at the s ame n u mber of cycles

wih s tre s s concen tratio for the s ame condi ons

N T E — In spe i fyi ng Kj i t i s nec essary to s p e c i fy the geom etry ad the v alues o

S

m

ax , S

m

, and N fr whi c h it is com puted

18 Fati g ue Notch Sensi ti vi ty, g — A me sure o the de g re o ag re ment b

e-twe n Kfa d Kt fr a p rti cul ar spe i men o a g i ven si z e a d materi al co tai ni ng

a stres s co c ntrator o f a give n siz an s hap e

NO T E — A common deinitio of fa t igu e notch s nsitiv ity is q = (Kf— i )/(K

t

— 1\ in

whi ch q may v a ry b etwe e n zero (whe re Kf = 1) an one (w h ere Kf = t).K

19 Co stant Lif Fati g ue Di ag ram — A pl o t ( us ual l y o n re tang ular co rdi

-nate s ) o f a family o f curves , e ch o f whic h i s fo r a sin le ftg ue l i fe, N, re lati ng

n

to the me n s tre s s S

m The co stant l if ftigu e diag ram is

ge ne rall y derived fr om a fa m ily o S-N curves, e c h o w hich represents a d ifer ent

s tre s s ratio, A or R,for a 50 per c nt pro abi ty of surv iv al

Relati ng to Stati sti cal An ly si s:

2 Po pul ati o n (o r Uni ver e) — The hypothetical c o llec tio n o fall p os s ib le te t

sp ec imens that could be prepare d i n the sp ecifie d way fr om the ma terial u n der

co siderati on

21 Sample — T he speimens sele ted from the po pul ati o n fo r test p urp oses

NO T E — T he method o selec ting the samp l e determine the p pulati on a bout w hich

s tati s ti c al in feren ce or geneal i zati on can be made

2 Gro p — T he s p e c ime ns tested at o e tme, or c ons ecuti vel y, at o e s tre s s

le ve l A g roup may co mpri s e o e or m ore sp ec ime ns

2 Frequency Distrib ti on — T he way n whi c h the frequen cies o oc urenc o

m em ber of a p p l ati on or s amp le are distributed a cordi ng to the val ues of the

vari ab l e under c o ns i de rati o n

24 P arame te r — A co ns tant (usualy u k own) de nning some pro erty o f the

frequen cy distrib to of a p p lato , s uc h as a p p l ati on median or a p p latio

standard devi ati on

2 Stati sti c — A sum m ary val ue c l cul ated fr om the ob s erved val ues in a

s amp le

Trang 13

numerical value s o f one or m ore u nk nown p p lato pa r a m et ers fr om the o

-s e rve d val ue s in a sample

2 E stmate.—The pa rticula r val ue, or val ue s , of a pa ra m et er com pu t ed b an

esti mati on proc dure for a g iven s ampl e

2 P o i nt E stmate.—The estimate of a pa ra m eter gi ve n b a s i ngl e statistic

2 Sampl e M edi an.—-T he mi ddl e value w hen al l o served values in a sample

are arang ed in order o m a gnit u de ifan od nu mber o s pe c i me ns are tested If

the s amp le siz i s even , i t is the averag e of the two mid lemost val ue s I t i s a p in t

estim a te of the p pula tio m edia n , or 50 per c nt p in t

30 Sampl e A v erage (A rithmetic Mea n).—Th e sum ofal l the o b s e rve d values i n

a s ampl e di vi ded b the s ampl e size It is a p int estimate of the p p lato mean

31 Sampl e V a rian ce, s

2

.—T he sum o fthe sq ares ofthe dif rences betwe n

each o b s e rve d val ue an the s amp le averag e divided b the s amp le siz m inu s o e

It is a p i nt estimate ofthe p p lato v arianc

NOT E —T hi s v alue of s* prov ides b th an u bi ase d p in t estim a te of the p pulation

v aria nce an a statisti c that i s use d i n c m putin g interv al e s timate s an several test

sta-tis ti c s (see defin ition s 34 a d 4 ).So me t ext s defin e s

2

as "the s um o the sq ares o the

dif ren ces b tw een e ac h o s erved v alue and the sampl e averag e divided by the sample

s i ze ," but this stati sti c is not as u seul

— 3 Sampl e Stan dard Dev iatio , s.—The sq are ro t o the sampl e vari anc

I is a p in t estimate of the p p lato standard deviatio , a measure ofthe

"s p re ad" of the frequ en cy dist ribu tio ofa p pulation

NO TE.—This val ue o f 5 p ro vide s a statstic that i s used in c o mputi ng i nterval e s timate s

an s e ve ral test s tati s ti c s (see defin it ion s 3 an 4 ).For s mal l s amp le sizs, j

underesti-mates the p pulation sta n da rd devi ati on (Se the ASTM Manual on Qualty Con t rol o

Mate rials

5

or tex ts on stati sti cs fr an u bi ased esti mate o the stan da rd devi ati on o a

N ormal p pul ation.)

3 Sampl e Perc ntag e.—The perc ntag e o fo se rve d val ue s betw een two sta ted

val ue s o f the vari ab l e u n der c o ns i de ratio n I t i s a p int estmate o f the perc ntage

o the p p lato between the s ame two stated val ue s (O ne stated val ue may be

— ° o r + ° )

34 In terv a l E stmate.—The estmate of a parameter gi ven b two statsti cs,

den i ng the e nd p ints o fan interval

3 Con fiden ce Interv a l.—A n in terv al estmate of a p p lato para m eter

comp ted so that the statement, "the p o p ulatio n pa ra m eter les i n thi s interval,"

will be true, o the averag e, i n a stated pro orto of the tmes s uc h statements

are m ade

36 Con fiden ce Limi t —T he two s tati s tic s t h a t define a co nfi de nc e interval

3 Con fiden ce L ev el ( or Co ficient).—The stated pro orto ofthe tmes the

c o nfi de nc e interv al i s e xpe c te d to i nc l ude the p p l ati on pa ra m eter

38 T o le rance Interval.—An i nterval comp ute d s o th at it wi inc lude at east a

stated perc ntag e of the p p lati on w ith a stated pro abi ty

39 Tol eranc Limi t —T he two s t h a t define a tol e ranc interval (One

val ue may be — « or + °.)

4 Toleranc L e ve l —T he stated pro abi ty th at the to l e ranc interval i

n-c l ude s at least the stated perc ntag e of the p p lato I t i s n t he same as a

con-fi de nc e level b ut the term c onfidence level i s freq ently asociated with to le rance

intervals

41 Sig ni f ant.—Stati sti cal l y si gni f ant An e e t or diferen ce between po

Trang 14

pu-lato s i s said to b e prese nt i f the v alue o f a teststatstc i s sig nificant, t h at i s, lies

outside o predetermined li mi ts

N OT —An e et which is statistic ly si g ni f a t may or may not hav e eng i ne ri ng

s i gni f a c

42 T estStati sti c.—A fu n ct ion of the o b s e rve d val ue s in a s ampl e t h at is used

i n a test o fs ignific anc e

43 T est o fSi g ni f anc —A test w hich, b y us e o f a teststati sti c, pu

r-p rts to provide a test o the h p thesis that the efe t is absent

NOT E.—T he re je cti on o the h p thesi s i ndi cates t ha t the e et i s pre se nt

4 Sig nificanc Leve —T he stated pro abi ty ( risk) th a t a gi ven te s t of

sig-ni ficanc wi l l reje t the h po the s i s that a s p e c ifi e d e e t is absent w h en the

hy-p thesi s i s true

Relati ng to Stati sti cal An ly si s o Fati gue Data:

4 Media n Fatg ue L i fe —T he mi ddlemost of the ob s erve d fa t igu e l if val ue s ,

arang ed in order of m agnitude, of the in div idua l s pe c i me ns in a g ro p tested u d er

i denti cal co di ti ons I n the case where an e ve n n u m ber of spe ci mens are tested i t

is the average of the two mid le mos t values

N T E 1.—The us o the s amp l e m edia n, i nste d o the a rith m et ic m ean (th a t i s, the

a erage), i s usually preferred

NOT E 2.—I n th e lt era tu re, the a brevi ated t erm "fa tigu e lfe" usually h as m ea n t th e

medi an fa tigue lf df the g roup However, when ap p lied to a col l ec t n o da t a w it h out

fu r t her q al i fi cati on the term "ftig ue l i fe" i s amb i guo us

4 Fatig ue Life fr p Per Cen t S rvival.—An estimate o the fa t igue lf

that p

per c nt of the p p lato w ould a t ta in or exc e ed at a gi ve n s tre s s le ve l T he o

-s e rve d val ue o the medi an fa t igue lfe estmates the ft i u e lfe f r 5 p r c nt

survi val Fati g ue lf fr p p r c nt survival val ues , w here p is any n um ber, such as

95, 9 , e tc , may also be e s ti mate d fr om the in i vi dual fa t igu e l ife val ue s

47 Median Fati gue Streng th at NCycl es —An estmate of the s tre s s le ve l at

which 50 pe r c nt ofthe p p l ati on would survive N cycles

NOTE 1.—The esti mate o the medi an fa tigue stren g th i s deri ve d fr om a pa rticula r

p int o the fa tig ue l if distri bu on, s inc e there i s no te s t proc d re by whi ch a frequ en cy

distribution o fa tigue streng ths at N cycles can be dirctl y o s rved

NOT E 2.—T hi s i s a s p e cial case o fthe more geneal defin itio 4

48 Fatg ue Streng th for p Per Cent Surv iv al at N Cycl es.—An estmate ofthe

stres s le vel at which p per c ent of the p p lati on wo l d surv iv e Ncycl es ;p may

b e an n u mber , such as 95, 9 , etc

NOT E.—T he e sti mate s o the fa t igu e streng ths fr p per c nt surv i v al val ue are deri ved

from particular p i nts o the fa tigu e lf distribu on, since th ere is no tes t proc dure b

whi ch a frequency distribution o fa tigue s at N cycles can be di re tl y ob se rved

49 Fati g ue L i mi t for^ Per Cen t S rvi va —T he lmitin g value of fa tigu e

streng th for p per c nt survi val as Nb e c o me s very larg e; p may be any nu m ber,

such as 95, 90 , etc (S ee N ote, deini o 14

50 S-N Curv e for 50 Per Cen t S rvi va —A curv e fi ed to the median val ues of

ft i u e lf at e ach of s e ve ral s tre s s levels I t i s an estimate of the relati onshi p

be-twe en ap plied stress an the n mber o f c yc les - to- failure that 50 p e r c e nt o f the

Trang 15

NOT E 1.—This i s a sp ec ial c as e o fthe mor e g eneal defin it io 51.

NOT 2.—In t h e ltera t ure, th e a bbrv ia ted t erm "S-N Curv e" usua lly h a s m ea n t

either the S-N curve d raw n t h roug h the means ( aveage s) or he medians (5 per c nt

val ue ) fr th e fa t igu e lf val ue Sin ce th e t erm "S-N Cu r ve is a m biguous, it sh ould be

usd i n te h i cal pa pers onl y w h en adequately de sc ri b e d

51 S-N Curv e fr p Per Cent S rvival.—A cu rve fitted to th e fa t igu e l if fr p

per c nt survival v l ues at e ac h of se ve ral stres le ve ls I t i s an esti mate of the rel

a-tio ns hip b e twe e n applied stress an the number o f c yc le s - to - failure that p pe r c ent

o the p pul ati on wo l d surv iv e; p may be any n mber , s uc h as 9 , 90, etc

N OT —Cautio s houl d be us d in dra win g concl usi ons fr om ex tra ol ated p rtions of

the S-N curves In g en eral, th e S-N curv es shoul d not be extrapolated bey ond o bs rved

lf val ue

5 Resp nse Curv e f r NCycl es.—A curv e fi ed to ob served v l ue s o

per-c e ntage surv iv al at Ncycles for s e ve ral stres leve ls , where N is a p re as s i gne d nu

m-b e r s uc h as 10

6

, 10

7

, etc It i s an esti mate o fthe rel ati onshi p betwe n a pl i e d stres

an the perc ntag e of the p pul ati on th a t w ould survive N cycles

N T E 1.—Values o the median ftg e stren gth at Ncycles and the fa t igu e strength

fr p per c nt surv iv al at N c yc le s m ay be de ived from the re sp o ns e curv e fr N c yc les,

i f p fls w ithin the rang e o the per c nt survi val val ue s a ctually o b se rved

N T E 2.—Cautio sho ul d be us e d in dra wing c oncl usi o ns fr om ex trapolated p rtion s

o the re s p o ns curve s I n genea the curve shoul d not b ex trapola ted to othe val ue

o p

LI ST OF SYM BO LS AND ABB E VI AT IONS

The fl l owi ng term s are fr eq u en y us e d i n l i eu o or alo ng w it h the term s

c ove re d by the pre edi ng defini ons In g eneral the symb ol s are those

re ommen ed in the A meri can Standard Let t er Symb ols fr M echanics o

S olid Bodi es ( s ee fot n ot e 4) For s tre s s , the us o S w it h a propriate

low er cas e subscri pts is preferred for g eneral purp ses; for m a th em a tica l

anal ysi s the use o G re k s ymb o l s i s g eneral l y preferred

or ki ps per sq are i nch

Trang 16

Pou ds per sq are i nch

Pro abi l i ty of f iu r e; Per c nt fa ilu re;

Pro abi ty o survi val ; Per c nt survi val

Fatigue notch s nsi ti vi ty

Stre s s ratio

Samp le standard devi ati on

Sample vari anc

Nomi nal s tre s s

Standard deviati on; Stre ss

E stmate o st a n da rd dev iation

U nti re ently, there was onl y one ac epted method o conductng l ab

ra-t ory fa t igue tests on a material or comp nent T hi s " tan ard" test, usi ng

Trang 17

Ma n u a l on Fatig ue T esti ng (STP9 1) E xpe ri e nc showed, however, that

thi s test m eth od did not give adeq ate in form at ion f r m a n y o the

pur-p ses f r whi ch fatigue data are ne e de d Therefre, wi t i n the last ten year ,

a num ber of new m ethods for perf rm in g m ore m eaningful fa t igu e tests

have be n introd c d, each m ethod havi ng c rtain advantag es

T he choice o fte st me tho d de p e nds up on the o bje c ti ve o f the te st an the

n u m ber o avai l abl e test s p e c ime ns W h en the o je tiv e i s to determine an

S-N curve, t he " tandard" tests (Se tons I Al an d A 2) are g enerall y t he

most su a l e To det erm ine the l ong -li fe fa t igu e strength or the f tgue

lm it, re spo ns e tests ( Se cti ons I Bl, B2, and B3) or i ncreasi ng a m plt ude

tests ( Se ti ons I Cl and C2) are re ommended The la t ter m eth ods als o are

us e d for comparing the long -l if ft igu e pro erties of d ifer ent materials or

d ifer ent methods of pro c e s s i ng Al l s e ve n of these ex perim ental fa t igu e

testing techniques are descri bed i n the fo owi ng paragraph s For anal ysi s o

the da ta , s e Se c ti on V

A "ST ANDARD" TESTS (C N STA N T AMP L I T UD E )

1 Si ngle Test Spe i me n at Ea h Stres Lev el

In the " tandard" test method descri bed in ST 9 1, e ac h fa t igu e s pe c

i-men is c yc le d at a d ifer en t constant s tres (or strai n) ampli t de until fr

ac-t u r e oc ur T he s tres le vels are usuall y s e le c te d to cover a series o s tre s se s

rang ing fr om hi g h val ues, at which failure wi oc ur wi thin a l i mite d num ber

o c yc le s , to l ow val ues at which no fa ilu re wi l l oc cur (run outs) or at which

f iu r e wi l l oc ur onl y a t er an ex t rem ely l arg e n u m ber of c yc l e s I f the

pri-mary i nterest i s i n the l o ngl i fe e nd o the S- Nre l atio ns hi p ( often caled the

ftg e lm it ), the i nvesti g ator usual ly has some pre onc pti on o thi s v a lue

fr the m aterial or comp nent o be tested In this c as e, the fi rst s tre s s le ve l

i s s e le c te d som ew h a t ab ove the esti mated fa t igu e l i mi Depen i ng up n the

results o the fi rst test, suc e di ng s p e c ime ns are then tested at stres le ve ls

either a ove or bel ow thi s val ue, unt il a stre ss level is reached at w h ich the

sp e ci me n do e s not fa il w it h in the prescri bed n u m ber o c ycles Nea r the

f t igu e l i mi t, some sp e c ime ns must be ru at s tres l e ve ls hi g h enoug h to

produce fa ilu res in order to hav e data fr om w h ich th e fa t igu e lm it m ay be

esti mated

This method o fte s t is used whe n the inve s tigato r has avaiab le only a

rel ati vel y smal n u m ber o s p e c ime ns fr test S ch i s g enerall y the situation

when ( 1) the fa t igu e s p e c ime ns are expensi ve, ( 2) the sup l y o material i s

l imi te d, o r (3) mac hine p rts, full size sections, o r assemblies are b e ing te s te d

2 Grou o Spe i mens Te sted at Ea h Level

Si nc e the " ta dard" test, usi ng onl y one s p e c ime n at e ach s tre s s l e ve l,

gives v ery ltt le in form a t ion concerning the v a ria bi ty o the m a teria l or

component an test proc dure, i t i s m ore sa t isfa ctory to test s e ve ral

speci-mens at e ac h o a n u m ber o d ifer ent s tre s s levels I n t his proc d re, e ac h

group s ho uld c o ns is t o at l east fo r s p e c i me ns i n order to esti mate the vari

-abi ty o the data Ten or more s p e c ime ns are preferable to o tai n some

i ndi cati on as to the sha e o the distribution o f t igu e lf val ues Thre or

Trang 18

S-N curves fr p per c nt survi val (see F ig I

6

Ge ne ral l y, at le ast fou r or

five stress levels are used i n a test o fthis nature T o de te rmine the fatig ue

l i mi t o the m aterial, a number o g roups also s ho uld be te ted at s tre s s

levels i n the vi ci ni t o the fa t igue l i mi t Thi s woul d i ncreas the total n u m

-b e r re qui re d to at least s ven gro up s F rthermore, to o b tai n ap p ro ximate ly

an eq al deg re o p re c i s io n t h rough out the rang e o the S-N curve, more

s p e c ime ns s ho uld be te s te d i n the lo g -l if than i n the short-l i fe rang e

FIG 1.—Probabilty- Stress- C ycle (P-S-N) Curv e fr P ospho r-Bronz e Stri p

B RESP O NSE T S TS (C N STA N T AMP LI T UD E )

1 "Pro i t" Meth d:

In the "Pro i t" method, one or more g roups o s pe cime ns are te ted fr a

fix ed nu m ber o c yc l e s at fo r or fiv e d ifer ent stre s le ve ls dist ributed a bout

the stres s o i ntere t T his te t has be n us e d primariy fr e ti mati ng t

he-fti g ue limit o fa mate ri al , that i s , the s tre s s at whi ch 5 p e r ce nt o fthe te s t

specimens wi l l fail prior to, an 5 per c nt wi ll s urvi ve , the preas i g ned

cycle lf, N The te st i s not l i mi ted to this a pl i cati on; i t i s just as valuabl e

for e s timating the ftg ue stre ngth or the fatig ue l i mi t at an othe r p e

r-c e ntage s o s urvi va provi ded t h at the s p e c i me ns are pro erly al l o c ate d to

the vari ous s tre s s levels When use d t e tmate the fa t igu e l i mi t at 5 p r

c e nt s urviva at le st two stress levels should b e s le ted s o that the per

c ntage o s p e cimens survi vi ng Nc yc le s wil l be less than 5 an two more

stre s le vels se lec ted at whi ch the perc ntag e o survi vors wi l l be more th an

50 A fi fth s tre s s level prod ci ng a proxi matel y 5 p e r c nt survivors i s

de i ra l e but not e s s e nti al

Trang 19

TABL 1.—AL L OCAT I ON OF TEST S E CIM E NS FOR "P RO BIT "

E xpeted er C e nt Surv iv al

Rel ati ve Group S iz"

T he gro up siz is the n mb r of specimens inc lu ed in a test at o ne stres level

T hus , whatever g roup size i s chos en fo r te s ti ng at stress levels fr whi c h the expeted

p e r c ent survi val i s be twe en 2 an 7 , the sizes o f other g roups mus t b e in eas ed b y the

fa ctor i n the s eco nd c lumn to o tain the number o te st s p ec ime ns req i re d fr te s ti ng

at stress levels fo r whic h the pe r c e nt survi val i s expe c te d to b e l arg e r, o r s malle r, i f

s imilar p re cisio n i s to b e o b tai ne d i n the te st re sult I f the stress levels are chosen suc

-csively, s tarti ng with levels re qui ring the smalest g roup siz, the gro up siz re quire d

fo r the other levels wi be de te rmi ne d more easily Pre vi o us data fr the s ame mate ri al

o r simiar materi als s ho ul d b e us e d as a g ui de fr choo sin the s tress levels, whene ve r th ey

are avai lab le ; o the rwi s e a prel i mi nary te s t s uc h as that des crib ed under Sections III A1 o r

B2 may b e req i red A pro erl y desiged "P ro b i t" te s t wi give more useul fatig ue

data than an o fthe othe r resp onse or in e asing ampl i tu e tests

FIG 2 —Resp onse or S rvi val Tests

I n "Prob i t" tests a g roup s ho uld co nsis t o not les th a n fi ve s p e c i me ns

an the to tal te s te d at all stress levels should b e at le st 50 The di s tri b

u-ti o n o the total n um ber o avai l abl e t sp ec imens wi l l de pe nd up n the

purp se o the test T he rel ati ve g roup sizes fr d iferen t s tre s s levels are

s hown in T ab l e 1 This allo c ati o n is s ug e s te d s o t h a t the ob s e rve d perc

nt-age s urvi val val ue s wi have a proxi matel y eq al weig ht, a c o nd i on

neces-sary fr fi tti ng the re s p o ns e curve by the usual m eth od o le as t s quare s This

al l oc ati on also facil itates the computati on o f confi denc limits o n the re

-s p o n-s e c urve s As an al ternati ve to the us o the rel ati ve grou p sizes

Trang 20

(Ta-weig hting fa ct ors are e mp lo ye d an the anal ysi s c n ucted as i ndi cate d i n

re erences (1-3)

7

Fi g ure 2 presents data t h a t m ight b o tai ne d i n a "Pro i t" test o the

ty e describ d ifthe pressig ed n mb r of cycles we re 10

7

Alt o ug not

req i red f r the "Pro i t" analys is , the a tual number o cycl es-o-fi l ure

should b e re c o rde d fo r each specimen that fi l s beore 10

7

cycles, s o th at the

data may be avai l ab le fr other type s o analys i s , s uc h as the pl oti ng o

P-S-NCurv es

2 The Stai rcase Method:

T he stai rc s e ( or "up-and-down") method o testi ng i s a variation o the

"Pro i t" method I may req ire fwer s pe c ime ns than the latter b t is

l i kel y to be useul onl y when the prim a ry interest is in the mean fa t igue

strength c r esp n i ng to a p re as s igne d cyc le lf, N* The advantag e gai ne d

FIG 3.—Illustratio n of S taircse Me tho d

NO TE—Sp ec ime ns n mb e re d i n chronological order N umb r o f cycles fo r ech te s t i s

c o ns tant uless fi l ure o cur b e fo re han

in re duc ing the n mb r o f spe imens te sted may b e ofset b y an increase in

the ti me req i red to c n uct the test

I n the stairc as e method the s pe cime ns are te s ted seq enti al l y, o e at a

ti me T he fi rst s pe cime n i s te s te d at a s tre s s level eq al to the esti mated

val ue o mean fa t igu e streng th fr the prescri bed number o c yc le s or until

i t fi l s, i fi t fai ls be ore t h a t num ber o cycles I f the specimen fails, the n ext

specimen i s te ste d at a stres s le ve l t h a t i s one increment be l ow the fi rst

stress level Ifthe firs t specimen does no t fail, the sec ond s p ec imen is tested

at a stres s level tha t i s one i ncrement ab o ve the fi rst s tre s s le ve l, an so for th

The data are reco rded as sho wn in 3 The sp cimens that did no t fail

are de s i gnate d by the o's an tho se that fai l ed as #'s The chart s ho ws at a

glance the stres level that should b e used fo r the next te s t

T he s e l e c tio n o fthe pro er i ncrement o f stres leve l i s v ery im portant

Trang 21

I deal l y, mo s t o the te s ts shoul d be made at thre s tre s le ve ls , so c ho s e n

t h a t about 5 p r c nt o the test sp ecimens s urvi ve at the mi ddle s tre s s

le ve l, about 7 p r c nt survi ve at the l ower s tre s s le ve l, an about 3 p r

c nt s urvi ve at the hi g her s tre s s level P re vi ous data fr the s ame or s imi lar

m aterials are ne ded i n order to choose the s tre s s le vels eficien tly I fnone

are avai l abl e, some prelminary te ti ng may be required S c h data are di s

-carde d up to the fi rst p ai r o data giving o p p o s ite re uls; f r e xamp l e , i n

F ig 3, data fr ests 1, 2, an 3shoul d be di scarded

Sinc e the te tng is concentrated at s tres s levels near the mean fa t igu e

streng th val ue, the n um ber o s p e c ime ns te ted may be less t h a n f r the

"Pro i t" m eth od, w hich give s re u s f r a w ider range o stre s val ue In

g enera at le as t 3 s p e c i me ns s ho uld b te ted be aus , at most, only half

o the test e ults are actually us e d i n the computation o the mean f tgu e

st ren gt h Ifdata o tai ned by the stai rcas m eth od are anal yz ed by res po ns e

curv e methods, the re uls may be stati sti cal l y bi ase d be aus o the

se-quential nat u r e o the s tai rc as e m et h od Fu rt h er, ifthe main in tere t lie s

in e tmating the re p ns curv e—rath er t h a n the mean stren gt h —a t N

c yc l es , the s tai rcas m et hod i s n t an eficien t experi mental proc dure

3 Modi fi e d Stai rcase Method:

The ti me required to compl ete a test by the stai rcas method can be

re-d c d by di vi di ng the one l o ng s tai rcas pro ram into s e ve ral shorter, i

nde-pendent s tai rcase s an conductng the e s e ve ral tests si mu aneousl y This

t rea t m en t is know n as the modified stai rcas m et h od In the modified pr

o-c dure, the total n u m ber o s p e c i me ns , T, i s di vi ded into r g roups o n each,

so t ha t rn = T E ach group is te ted as a s p rate stai rcas pro ram , wit h a

s parate cha rt fr e ach g roup Thus s e ve ral machi ne may be us d si mul

-taneousl y In the modified s tai rc as e m ethod, as in an other test in which

s p e c i me ns i n a grou p are te ted on m ore t h a n one machi ne, a che c k s houl d

be made to determine w hether the mac hi ne s give si g ni fi cantl y d ifer ent

re-su s Ifthe re u s are not si g nifi cantl y d ifer ent, the data may be combi ned

fr statistic l analys i s

C INCRE ASI N G AM P L I T UDE T STS

1 Ste p Method:

I n m any cases the "Pro i t" or s tai rc as methods o test require more

s p e c ime ns than are avai l ab l e When onl y a few part s are avai l abl e f r

de-termi ni ng the fa t igu e limit, a na tura l de s i re is to test each pa rt unti it

ac-tual l y fis i ns te ad o just cou ti ng the number o runouts W h en te ti ng a

l i mi ted number o s p e c ime ns s o me time the practi ce i s to ru each specimen

at s e ve ral s tres s levels fr a l arg e num ber o f cyc les , s ay 10

7

I ftyp i cal re

-s p o n-s e curves f r the material are avai l abl e, the test may b started at a

s tre s s le ve l core p n i ng to a perc ntag e survi val o f a proxi matel y 9 pe r

c ent For e ach s uc c e s s ful ly co mpl ete d run , the ap p lie d s tre s s le ve l i s i

n-c re as ed by an amount core p n i ng to a dec re as e i n the pro abi ty o sur

vi val o about 5 per c nt an the test i s repeated un til failure o the

Trang 22

speci-at a stre ss level e qual to about 7 per c nt o the esti mated fa tigue lmi, an

the s tre s s increments s hould be a proximately 5 per c e nt o the e sti mated

fa t igue lmi t

I n the past, thi s method has not b en c nsi de red an a c ep ta l e technique

be aus the fa t igu e streng ths o some materials wi l l be inc re ase d or "c o axe d"

b y stres in them at stres levels below the i r ftg ue lmits, where as the

fa t igu e streng ths o ot her material s may be de c re as e d by damag e d e to

"u de r-s tre s si ng." H owever, in re ent years i has be en o b s e rve d th a t un der

s tre s s ing do es not greatly a ffct the t rue fa tigue l i mi t o some aloys, such

as m a n y o the allo y s te e ls a d a few o the n onferous materials (4 ) For

thos materials w ith w hich neither a p rec i abl e c o axi ng nor damag e o curs,

it i s p s ible to e s timate the ftg ue s tre ngth o feach sp cimen o r part b y

s tre s s i ng i t at c o ns e cuti ve l y hig her le ve ls u t the s p e c ime n fis

F IG 4.—Re resentati on of"Step" Testin ofS inle Specimen

This method i s i ll ustrated gra hi cal l y i n F ig 4 I n thi s man er, the fa t igu e

stren gth c resp n i ng to a p re as s igne d value o N fr e ac h s p e c ime n or

pa rt may be es ti mated The mai n di s ad antage o the proc d re i s that

the-s pe ci me nthe-s are ru ini ally at a sufficiently low stres level so t ha t f iu r e

wil l not o ccur As a resul, a n u m ber o s tres levels o ru n ou t s are usually

nec esary beore fa ilu re of the s p e c i me n o curs

Beore the ste te h iq e o fa tigue testi ng can be sael y used, the efe t

o c o axing or u de r-stres si ng the material must be kn own Certain s te e l s ,

s e ns i ti ve to s trai n-agi ng, will have r fa t igu e l i mi ts artficially rai sed by

c o axing or u derstres i ng at l ow stres le ve ls I n other case s i t i s th ough t

t h a t co axin or u derstres i ng may damag e the material artficially an

c aus e prem a tu re fiures

A l thoug h ste te sts have b e n made w it h a s ingle s p e c ime n, f ur or m ore

are needed to estimate the me dian fatig ue strength A l arge r sample gives

g reater p recision i n the estmates o the median an the variabi ty o the

Trang 23

2 The Prot Meth d (5-8 ):

I n 19 5 M arc l Pro i n Fran ce, de vis e d a ra i d m ethod f r e tmati ng

the f t ig e lmi t o a m aterial By us i ng the Prot m et h od, a go o d e tmate

o the fa t igu e l i mi t ma be o tai ned i n a fra ct io o the ti me req i red b

other me tho ds b ut at the expense o fmore u c rtai nty than i s p re s e nt i n

most o the other te t methods The use o thi s techniq e i s re tricted not

onl y to thos m ateria ls whi ch are not s e ns i ti ve to co xi ng efct s, as di

s-c us s e d in Se c tio n II Cl, but also to material s th a t apparently have a ft igu e

l imit In contrast to the ste p m et hod, i t i s s ug e s te d t h a t at l east 2

te t s p e c ime ns be us e d to o tai n the data nee ded f r the Prot anal ys i s

be-c ause o the wide s atter in fr actur e stre ss usual l y fo n i n Prot f t ig e

da t a To date, i has be n fou nd t h a t , by the use o the Prot proc dure, the

ft ig e l i mi ts o man al l o y s tee l s m ay be o tained w it h in a few per c nt

FI G 5.—Grap hic al Ilustration o Prot Data

« !, « 2 , «s, indicate d if r ent lo ading rates in psi p r c ycle

o the e tmate foun d from constant ampl ude methods It is not c rta in,

howev er, th a t the l ong -l i fe ft ig e stren gths o n on ferrou s aloys can always

be eval uated by thi s m eth od

In the Prot m et h od, the te st on a s p e c ime n i s fi rst started at an alternating

stre s o a bou t 6 to 7 per c nt o i ts e ti mated fa t igu e l imit an the stre s

i s rais e d at a constant rate A num ber o sp ec imens i s te s te d at the s ame ra t e

o l o adi ng unti each s pe ci men fi l s At l east t h re rate o l oadi ng are us e d

to e s tab li s h an c he c k the l i near rel ati onshi p betwe n s tre s s an the p wer

o the l o adi ng rate, whi ch i s req i red i n the Prot analys i s The l owe t ra t e

s ho uld be as smal as practcable an e highest ra t e sho ul d be l ow enoug h

so t h at the s p e c ime n do e s not fa il by yi el di ng be ore fract u re The type o

data ob se rve d is shown i n Fi g 5

One o the simp le st m eth ods fr o tai nin a constant ra t e o lo ading i n a

fa t igu e te t i s to us a stream o w a t er fl owi ng at a constant ra t e into the

l oadi ng container A noth er way i s to arrange fr s mall wei g hts, s uc h as shot,

to b p ured in to a contai ner at a constant rate Fai rl y good res ul ts hav e

Trang 24

equal c yc l e in crem en t s A n y devi ce that i ncreases th e stres at practica lly a

conti nuous, c o ns tant rate c an b us e d

NOT E —F r c o ns tant rates o lo adi ng, al l the p ints o b tai ne d at a g i ven ra te s hould

fa ll o the same straig ht l i ne Small va ria t ion s in the r ate o lo din or v a ria tion s in the

testin sp eed may c ause scter such as that sh wn i n F ig 5

The practicabi ty o f t igu e tests i s b sed up n the assumpti on t hat est

ab-l i shi ng the f tg e ch ara cterist ics o a g i ven m a terial by study in g the

per-form an ce o a random sample selected fr om a l arg er b d o possible speci

mens (t he p pulat ion

or univer e) i s p s i bl e Impl ici t i n these tests i s the

assumpton that the s amp le tested is "representa tiv e" o the p pulation

By ran om se le ctio n an al lo c ati o n o the test specimen us ing a tabl e o

ra n dom n u m bers (9, p 366-370) the in flu en ce o al v aria bi ty inh eren t i n

the m a t eria l and testing proc dures is gi ven a fa ir chanc o bei ng refle ted

i n the te s t data

There are inn um erable stag es in the testing progr a m in which any one

spe ci me n or any one group of spe i mens may be afcted diferen t ly from

ot her s from the s ame p pulation For ex ampl e, if one bar of a ba t ch of bar

stock is tested, i is o ten t acit l assumed that t h e rem a in in g b r s a re th e

s ame as the one tes ted Usual l y they are not bec aus e, f r e xamp le , s uc h

blanks a re h ea t t rea t ed in batches For each ba t ch t h e furna e settings a re

sl i g htl y diferent Wit h in each heat tr eatment ba t ch , those spe i mens near

the wall s o the fu rna ce are under sl i g htl y d ifer ent c o nd i o ns fr om tho s e i n

th e c n t er Spe i mens prepa red at th e st a rt o th e day a re ma chined wih

sharper to l s t han those t hat suc e d t h em Spe i mens tested at the begin

-ni ng o a prog ram may have the advantag e o b e i ng te s te d on newer, more

per fe t testing machines t ha n those that a re tested la t er wh en w ea r o t h e

machi nes has modi fi ed their characteri stcs T he s e are but a fw ex a m ples of

th e m an y fctor that m ay produce sig nificant bi ases in th e resu lt s unl es

controled by a ppropria t e ra n dom iza t ion

The fl l owi ng are s o me o the fa ct ors f r which randomi z ation m ight be

considered:

Posii on of spe i men w it h in the whole ba tch of m a t eria l

H eat-reatment batch

Position ofspe i men in heat r eat i g furna e

Order of quen ch in g

Order of p o lis hing

A ssig nm ent to testing s ( tres l evel an d so forth)

Order of testi ng

As s ignment to testi ng machi ne

Ma ch in e o era t or

T hi s li st wi l l sug g est ot her v ariables o im port a nc in pa rt icu la r progra m s

On p jo of th pnginp r and stati sti ci an is to de c ide how the ran omi z ati on

s b _n^1H h e rqm 'eH r^it A common misconception is t hat ra n dom izat ion ca n_

Trang 25

in t o t h e b x of spe imensjQr^ the^iex tjto^ b^ te ted, b t t is summing h w

The sampl e can be "b i as e d" by unconscious an unre o niz d t ren d s o

hu man behavi or as we l l as by u nk nown p ter ns o a r r angement The best

pro c e dure Js _tQ_ae ±-i i D the progra m o the b si s of ra n dom nu mber s as prev

i-ousl y sug gested ( 9"

To o t a in f tg e da t a that ca n be use d m ost eficien t ly, atr ained^tatisti^

ci an s ho i i ld_b £_£ O Ji au]l e j

J_whe ne ve r p s ibl e, in j la n n in g the ex perim en t s

and spe i men sele tion In most cases the st a t ist icia n wil l be a l e to plan the

e xpe ri me nts to measure not o nly the efct s o the mai n vari abl es under

st u dy but al so t h e efe ts of t h e m ore im port a nt se onda ry v a ria bles a s wel,

a nd do this wi hout requ irin g man , if any, a ddition a l spe imens Tests

con-duct ed in a ccorda nce wih such a plan can be a na ly zed to g i ve an est im at e

of the im port a n ce of each of the kn own variables that cont ribu t e to the

sca tt er in the test resu s The t ech niq u es o ex perim en t a l desi g n are to

in-vo l ve oL however, to be i ncl uded in th is G ui de '

"So me indication of the m in im um n u m ber of spe i mens needed for a g i ven

degre of con fiden ce in the results o t a in ed w h en usi ng the difer ent test

proc dures has be n g i ven in Se ti on I I I For supplementary refren ces on

this su bje t , se r efr en ces (10-12)

9

The folow in g se ti ons di scus the minim um nu mber of spe ci mens needed

fr each ty pe of analysis gi ve n in Se ti on V when the sampl e s i ze is fix ed

b f r e testing A ll sampl es are assumed to be ra n dom ly se l e cte d sampl es

from t he p pulation u nd er con sideration

A L I T E DISTRIBU TION SHAP E NOT AS UMED

1 S-N Curves:

The m in im um n um ber o f tg e test spe i mens ne ded at e ach stres

l evel depends on: (1) which per c n t survi val cu rve is desired an d (2) what

con fiden ce l e ve l i s desired

For a 5 per c nt con fiden ce l e ve l and one grou p tested at each stres l evel ,

T abl e 8 i n Se cti on V A1 shows the n u m ber of spe i me ns needed for several

v alues o per c n t survi val For ex ampl e, a 9 per c n t survival curv e

re-q i re s at le ast 1 specimens at e ac h s tres s level

Table 2

10

provi des s i mi l ar inf rm at ion for on e or m ore grou ps tested at

each stres l eve l a d se ve n val ues of con fidence l e ve l , in cludin g 50 per c nt

For example, from T abl e 2 , one grou p o fi ve spe ci me ns at each stres l e ve l

is needed fr an 8 per c nt survival curv e coresp ndi ng to a 5 per c nt

con fiden ce l eve l For a 9 per c n t confiden ce lev el, at least fi ve groups of 10

sp e c i me ns at each stres l e ve l are d fr an a pproxim a t ely equ iv a len t

S-Ncurv e

When se ve ral S-N curves are to be d ra wn from the same da t a , T abl e 2

shoul d be st udied ca refu lly to find the best com bination of n um ber ofgrou ps

and grou p si ze

9

Se al s o Re om m en ded Pra ctic for Ch ic of S mple Si ze to Estim ate the A v era ge

Quality of a L ot or Proce s s (E 12 ), 19 61 Bo k o A TM Sta dards, Part 3

Trang 26

2 Esti mate s o Paramete s,Si ngle Stres Le v el

T he m in im um n um ber o sp ec i mens ne ded depends up n the desi red

wid t h o the con fiden ce in t erv a l fr each pa ra m et er In g eneral, as the

sam-ple size i ncreases, the co fi dence in terv al for any g i ven confidence le ve l

be-come s n a rrower an d the dif ren ce between the o served v a lue an d the u ni

ver e v alue be omes smal l er

For the m edian at a confidence l evel o 0.9 5, confidence lm its are equa l

to the o served m in im u m and m a xim u m values up to a sampl e size o n ine,

wh en the wid t h o the confidence interv al be comes le ss t h a n the o b s e rve d

ran ge ( Se e Ta l e 9 on p g e 2 ) Ifranges fr prior s amp l e s fr om the same

p pulation are k nown , a sampl e s i ze can be chosen so t ha t the in terv al wil

hav e approx imately the desi red widt h

If the n u m ber o fs p e c ime ns are onl y 3, 4 , or 5, Tabl e 10 (s ee Se c ti on V A2)

gi ves proc dures for computng confidence interv als for the mean

Fo r p e r c nt survi val val ue s , T ab le 1 (Sec ti on V A2) give s val ues o f9

per c nt confidence l imis for fou r s amp le sizes Comparing the w idth s of

the confi denc intervals give s so me ide a o fthe size o f s amp le ne ded I f a

good estm ate o p = per c nt s urvi val /10 i s avai l abl e, the minimum

s amp l e s ize i s approx imately:

w h ere E = one half the desi red widt h o a 9 per c nt confi dence interval

(s e e ASTM Re ommended Practc E 12 )

I t is m ore dificu lt to det erm in e the m in im um n u m ber o sp ec i me ns needed

fr a confidence inter val of a g i ven wid t h for ftg e lfe coresp nding to a

stated v alue o per c n t surv iv al ot h er t han 5 per c nt Se f ot n ot e 15,

pag e 2 , f r equations f r set t in g up tabl es si mi l ar to T abl e 9 (in Se ti on

V A2) for ot her perc ntage p ints

In g eneral , the sampl e s ize s would be larger t h a n fr medi ans

3 Te sts o Si gni f a ce :

T he minim um n u m ber o spe i mens ne ded depends upon the de si red

magnitude o the difer en ce that s houl d be dete ted and the size o the ri sks

t h at can be tolerated

When the ra n k test is us e d to test the dif ren ces o group medians, i t i s

dificu lt to relate the desi red v alues and the crieria f r the si gni fi canc test

g i ven in T ab l e 2 for two groups and in T ab le 2 for m ore th an two g roups

At l east fi ve s p e c i me ns s hould be i ncl uded i n each grou p

For dif ren ces of two or m ore s (oth er t h a n 50 per c nt) no

pre i se esti mate of the m in im u m n m ber of spe i mens needed i s p o s s i b l e

u l es prior estmates o the perc ntag es are avai l abl e At l east 15 s p e c i

-mens shoul d be inclu ed i n each group

4 Re sp nse Curves:

A di s c us s i on of the m in im u m n u m ber of spe i mens and their al l ocati on

Trang 27

B L I T E DI STRI BUT I ON SH AP E ASSUME D

1 Normal Di stri buti on:

It i s as sume d here, as wel l as i n Se ti on V B t hat the ft igu e data can be

transf rmed so that t h ey wi l l be a pprox im ately N ormally dist ribu t ed A

Normal di stri buti on is assumed in all c ses Eac h sample is assumed to b e

dra w n a t random fr om it s p pulation

2 S-N Curv e s:

Tab le 3 gi ves k fa ct ors fr compu ng p ints on 7 , 9 , 9 , 9 , a d 99.9

per c nt survi val curves for f ur v alues of confidence l evel , i ncl udi ng 50 per

c ent, an f r n = 3 to 2 T he minimum number o specimens should i

n-c re ase as the per c nt survi val i ncreases, but t here is no defin it e criterion

fr c ho o s i ng a particular grou p size except for the relativ e m a gn it u des of

the k val ues (Not e

that the ra t e o de rease is les s as,« i ncreases ) The nu m -

be r o spec i me ns tested at eac h stres level can be s malle r th an the group

s ize s ne ede d w h en the lf dist ribu t ion is n t as ume d ( Se ti on V A)

OF S E CIMENS

0

OF S E IMEN S" NE DED FOR

WIDTH FO A POPULA TION

STAND-AR D DEVIATION, a

Some E sti mate o <r Avai l ab l e

W idth of Int erv al

Fo th Me an.—If a goo d esti mate o the p pul ati on standard devi ati on,

0 , is avaiable, Table 2 gives the mi ni mum n mber o f specimens nee ded

fr confi denc i nterval s o stated widt h f r the m ean, p, o the p pulation

Trang 28

larg er, since ^.9 5 val ue fr om T ab l e 2 s ho uld be us e d i nstead of the 1.96

in the eq ati on fr n (Table 2)

Fo the Sta dard Demoti on.—In order to find the minim um nu m ber of

sp ec i mens ne e de d for determ ining confi denc i nterval s of stated w idt h for

the standard devi ati on, <r, of a p pulati on, some e t im a te of a m ust be avai

l-a l e, since the w idt h o the interv al i s measured i n un it s o a Howev er,

Table 3 c an b e used as a gui de even if no good e s ti mate o f a is avaiab le

For e xampl e , i fn = 8, the sampl e-standard devi ati on, us e d to e ti mate the

p pul ati on stan da rd devi ation, may be a ove or bel ow a b 0.5< whereas an

e tmate based on n = 3 will not b expe ted to devi ate fr om the t r u e val ue

by more than 0.2 <r

OF S E CIM E NS" NE DED TO

DE-TE CT IF THE STANDARD DEV IA

ULA-TION I S A ST AT ED MUL IPL OF

AN THER POPU LA TION

D fe re nc Be tw een Two Sta dard Dev i ati ons.—Th e s amp le s ize s for testng

the diferen ce betw een two means are gi ven i n T ab le s 6 an 7 In some c as e s ,

the princip l in tere t is in the dif ren ce betw een stan dard deviatons

1 One Sta dard Dev i ati on a Fi x ed Value.—If o e standard devi ati on i s a

fi xed v a lu e—for exampl e, the l ong -ti me standard devi ati on o data b s d

up n an ol d proc dure—and i fthe other standard devi ati on i s to be c o

m-puted from data based up n a new p ro c e dure that may re duc e the

varia-bil i ty, T ab l e 4 gi ve the mi nimum n um ber o s p e c ime ns ne ded to dete t a

reducton o a stated amount T he s e e size a pl y when the ob s e rve d

stan ard deviati on, s, fr the new proc d re i s i nde d s mall e r than the fix ed

value, and the ratio s /(fix ed v alue)

2

is comp red w it h 1/ F

0.9 , core p n i ng

to °o an n — 1 degrees o fre dom f r numerator an de no minato r re

-s p e c ti ve l y (Se e Se c tio n V B4(a) an T ab le 3 )

2 Two Sample Sta dard Dev i ati ons.—If the pro l em is to test w h et h er

the variab ility of p ro c e dure 1, say, is greater than the variab i li ty of p ro

Trang 29

-b le 5 gives the mi ni mum num ber o s p e cimens ne e de d i n e ach s amp le to

dete t th a t si i s a stated mu i pl e of s% I f the o bs e rve d val ue of si i s i nde d

l arg er than the ob s e rve d val ue o s

z,comp re s?/s<? with ^ 0.9 core sp n i ng

to (HI — 1) de g ree s of freedom for num erator an denom inator (s inc e

n\ = HZ) (S ee Section V B4( a) an Tab le 32 ) I n thi s case i t i s not core t

to m ake the

test

i fs

22

i s grea t er than S i

2

D i ffe re nc Betw ee n Tw o Me ans:

1 On Me n a Fi x ed Vali se —If o e m ean i s a fi xed v alue—for exampl e,

the l ong -tme mean o data b se d on an ol d proc dure or a commonl y use d

m aterial—a nd the other mean is to be com puted fr om da t a b se d upon a new

a = U n kn ow n Standa rd Devi ati on o the

P opul ati on B n E sti mated

THE MEA S OF TWO POPU LA TIONS

< = U n kn ow n Standard Devi ati on of

E ach Po ula tion ; <n = az

proc d re tha t may shift the mean, T ab l e 6 gi ve s the m in im um n um ber o

s p e c ime ns needed to detect a sh ift in either dire ton, measured in term s

o the p pul ati on standard de vi ati on o the ne w proc d re T he s e sampl e

s i ze s a pl y w hen the computed v alue o

i s co mp re d with £ 9 5 i n T ab le 2 e Se c tio n V B4( 6).) No F-ratio test

i s nee de d

2 Two Sample Mea s.—Th e mi ni mum n um ber of s p ec ime ns ne e de d i n

e ac h s ampl e to dete t a dif ren ce i n two p pul ati on means, stated as a

multple o thei r eq al u i ve rs e standard de vi ati ons, i s give n i n T abl e 7

T he s e s amp le sizes a pl y w h en ( 1) the two s amp l e standard devi ati ons are

n t si g ni fi cantl y d ifer en t and (2) the computed v alue o / (s e e Se c tio n

Trang 30

V A N A L Y SIS OF FA TIG U E DA TA

A b ask conc pt o stati sti cs i s th a t a grou p o one or m ore sp ec i me ns i s a

s amp le taken fr om a larger b d or p pul ati on S c h a s amp le i s co ns i de re d

to be ju st one o a "number," oft en v ery l arge , o s amp le s that coul d hav e

be en taken The sampl i ng proc dure us e d del i mi ts t h e-p pu la t ion b e ing

e tmated The re uls o tai ned fr om te sts on a random s amp le from the

p pulation can be used to e tmate the characteri sti cs o the whol e p pul

a-ti on an to measure the pre i si on o the e ti mate

In the case o fa t igu e te ts the da t a o se rved are usual l y the li e s o

s p e c i me ns te ste d at a constant a pl i ed stre s (strain or defl ecti on) ampl i tu e

Sinc e the c yc le li fe vari es from spe i men to spe i men, thi s measurable ch a

r-FI G 6.—"Normal " or Gaus s i an Distri buti on Curve

acteristc i s not a fix ed val ue and is be s t de cri bed by a frequen cy

distribu-ti on The g raphi cal pre entation of the distribution of c yc le li e s for the

p pulation o s p e c i me ns t hat h av e l i ve s bet w een c rtain l imi ts i s kn own as a

frequ en cy distribution curv e S ch a dist ribu t ion curv e m ay be e tim a ted

from t h e ra w te t data or from t ra n sf rm ed test da t a , that is, either from

val ue of Nor fr om val ue ofl og N, l og l og N, N

12

, and so forth

W hen the freq u ency distribution cu rve has a partcular kin d o b e ll sha e,

as shown i n Fi g 6, the data are s aid o hav e a "Normal" or Gaus s ian dis

-tribution T hi s Norm a l pro abii t dist ribu t ion curve, fx ), i s repre ented

by the equa t ion :

Trang 31

ti o n standard deviation (a m easure o the di spers i on).

1

It shoul d be

empha-sized t h a t val ue s o the param eter o the p pulation can onl y be esti mate d

from tests on the spe i mens in the sampl e; to o t a in ex act val ues w ould

re-quire t ha t the total p pulation be tested

Whil e some fa t igu e te s ts , partcularly those made i n the fi ni te l if ra n ge

o f a S-N curv e, ma yi el d a proxi matel y N orm a l distributions of cycl e

lf, generally a t ra n sf rm a t ion to lo c yc le lf is required Ot h er do not

yi el d N ormal distributions, even a t er various t ra n sf rm a t ion s are perform ed

o the da t a Thi s i s particularly t ru e in the cas e o tests made at a pl i ed

stre s s es near th e ftg e lm it wh ere ru n ou t s are o served H enc , ot her

distribut ion s, such as the Wei bul di stri buti on,

12

the "ex treme val ue" di s

-t ribu-t ion wit h and wit hou t lower lmits, as us e d by Freu d en t ha l and Gumbel

( IS), and other distributions, t ha t are just as n orm a l in the usua l sense, as the

N orm al or Gaus s ian distribut ion , hav e be n ap pli e d to the anal ysi s o ftg e

data Whi l e referen ces to s o me ,of these distributions are included i n this

G uide, anal ysi s o the f t igu e da ta has be n confined mostl y to m et h ods t h at

requ ire no assumptons o distribut ion sha e or to the m et h ods b sed u pon

th e assumpti on t hat th e ra w data or t h e t ran sf r m ed data hav e a Norm al

dist ribut ion

As st a t ed previ ousl y, h ow ev er, any set o o serv ations to w h ich these

stati sti cal m ethods are a pl i ed is as umed to c o me from a ra n dom sample

from the p pula t ion of in t erest If a seri es of sampl es is drawn, proc dures

fr te sti ng fr statistical control are g i ven in the ASTM Man al on Quality

Control ofMa terials ( s e e f ot not e 5) L ack of statistical con t rol i n d a t a

in-dicates that the s e ri e s o sampl es doe s not c ome from the same p pulation

A L I FE DISTRIBU TION SHA PE N OT ASSUME D

1 S-N Curv e s:

T hes e techniques shoul d be used w h en the a ctua l shape o the dist ribu t ion

o fa t igu e l if val ues for a gi ven m a t erial is u n k nown or sketch y and the

n u m ber o s pe ci me ns tested at each a pl i ed stres l evel i s to smal l , s ay les

t ha n 5 , to estimate the sha e o the dist ribut ion In such cases , these te

h-niques g i ve conservati ve resuls

(a ) O ne Grou at Ea h Stre ss Lev e l.—U sua lly th e first step in the a n a ly sis

o ft ig e d a t a i s to draw the S-N curv e fr 5 per c nt surv iv al; i is the

curv e fi ed to the medi ans o the groups at the several a pl i ed stres leve l s

The m edian, an "o rde r statistic," is the mid lem ost v a lue when the o served

val ues are a rran ged i n order of m a gn it u de, or the averag e of the two mi ddl

e-most val ues i fthe grou p size i s even

Other S-N curves, thos e for p per t survi val (w h ere p is not 5 ), may

be fi tte d to oth er order stati sti cs i f the group s ize i s great er than 1 I f the

group val ues are arranged i n order o m a gn it u de, NI is the m inim um cycl e

lf val ue, or the fi rst order stati stic, A

7

2 is the s ec ond o served value, or the

s ec ond order stati sti c, an so forth

The estim ated perc n ta ge o survi vor fr the p pulation at cycl e lfe

1

In th e Norm al disribu tion , th e media an d th e mean ar eq u a l

Trang 32

val ues o Ni , or 7V

2, depends upon the group s ize Ta l e 8 gi ves th e median

perc ntages at Ni and Nz fr s e ve ral grou p sizes

2 I fth ree s pe cimens are tested at e ac h a pl i ed stres l evel , the 7 , 5 , an

the 21per c nt survi val curves may be estmated from the entries in T abl e

8 and their compl ements The v alue 7 per c nt i s fou n d o p si te s amp l e

s iz 3 i n the s eco nd col umn, the v alue 5 per c nt i s taken fr om the median

SU VIV RS FOR THE POPU LA TION

S-Ncurv e, and the v alue 21per c nt is o ta in ed by subtracting the v alue

i n the second col umn fr om 10 0 p e r c ent

3 If7 s p e c ime ns are tested at each ap p l i e d stre ss l e ve l , the 9 , 7 , 23, an

10 per c nt survi val curves may be esti mated from the en tries i n Ta l e 8 an

thei r compl ements The 5 per c nt survi val curv e may be estim ated from

the median

At l e as t 13 s p e c ime ns m ust be tested at each ap pl i ed stres l e ve l to esti

-m a t e the 9 per c nt survi val curv e

I n practi ce, val ues o per c nt l less than? 5 usual l y are not w a n ted

H enc , i fal l o the sp ec i mens i n a s amp l e are te s te d si mu aneousl y, the tests

may be s top p e d as soon as the s pe i men havi ng the median value o f tg e

lf for th e s amp l e h a s fa iled, u l es s th e da t a a re required for oth er purp ses

1

T hes e ar c alled "median p ercenta es " because, h alf o f th e t i me, th e tr ue per c enta g e

wi be larg e r, an d fo r th e othe h alf o f th e t i me, sm aller T hey ar clo s e to , but usualy

n ot eq al to, th e "expected" p ercenta e of s u rvivo rs, wh ic h is eqal to 1 — i/( + 1), whe r e

i is th e n mber o f th e orde s tats tic an d n is th e s ample si z e Th e c on fid e n c e l evel as so

ci-ate d with ex pec te d percentaes v ries with th e s am e si z e, wheeas it is co ns tant fo r

Trang 33

As menti oned previ ousl y, the perc ntag e survi val val ues gi ve n i n T abl e 8

are medi an val ues; th ey are b s ed on a "confidence l e ve l " o 5 per c e nt

14

Perc ntage s urvi val values coresp ndi ng to h igher con fidence l e vel s, such

as 9 or 9 per c nt, are gi ve n i n T abl e 2 fr a si ngl e sampl e w h en m = 1

For e xamp l e , i ft hree s p e c ime ns are tested at an ap p li e d stres l e ve l, 7

per c nt o the p pulation are expe ted to s urvi ve N\ c yc le s ( 50 per c nt

co fidenc l evel ), but the statem ent t h a t at l e as t 37 per c e nt o the p

pula-ti on wil survi ve N\ c yc les may be made wih grea t er confidence (confi dence

le ve l = 9 per c n t) Ifestimates o the p pulati on perc ntag e are m ade

fr om a s e rie s o sampl es tested at one a pl i ed stres le ve l and the st a t em en t

i s m ade t ha t at l east 7 per c nt o the p pul ation wi l l survi ve N\ c yc le s ,

50 per c nt o such sta tem ents are ex pe ted to be in cor e t Ifthe st a t em en t

i s made e ach tme t h a t at l east 37 per c nt wil l survi ve N\ c yc le s , only 5

per c nt o suc h statements are expe ted to be incor e t H owever, S-N

curv es coresp n i ng to a 5 per c nt co fidence level are usual l y shown

The efe t o fi ttng a curve to the s ame order statistcs at s e ve ral s tre s s

l eve l s pro ably i ncreases the confidenc l evel ; how m uch i s not kn ow n If

S-Ncurves are b s e d on other con fidence l e ve ls , the f ct s houl d be pl ai nl y

in-di cated on the ch a rt

( Z >) Sev eral Samples, or Gro ps, at Ea h Str s Level.—If i is not p s i bl e

to test al the spe i mens in a s amp l e simultaneously and i f sto pi ng the tests

be ore al l the sp ec i me ns have fa iled i s desi ra l e to save tme, the req ired

sampl e may be divi ded, at random, int o two or m ore g roups (see references

17 a d 18) Then the medi an o the particular order statistcs (t h e fi rst,

se on , a nd so forth) for the s eve ral g roups may be used for con st ruct in g

the S-N curve T abl e 25 gi ves values of perc ntage survival for several nu

m-ber of groups a d s eve ral co fidenc le ve ls

E XAM PL E —Wi th fi ve testng machi nes av aiable, 15 s p e c ime ns were tested at a

co stant applied stress level in thre e gro up s o f5e ac h F o r each group, all mac hi nes

were asumed to be s to p p e d ater the s ec ond fiu r e ( Actualy, al l machines were

allo we d to ru u t fr act ur e oc ured or u n t il 10 mi ll i on cyc le s o ft igu e stresi ng

had b e en ap plie d, s o that the ti me saved could b e e s ti mate d fo r thi s p rti cul ar s e t

of tests.)

The test da t a are:

En t erin g T ab le 25, u nder "Lo we s t Ra nking Poi nts," in the c l umn for m = 3

g ro ps, o p p o s i te n = 5 i n eac h group, an at a confi dence level of 50 per c n t,

1 4

Te hnical ly speaki ng, the S- N curves b as e d on o rde r s tati s ti c s are "nonparametric

tolerance li mits," w hich ar de s c ri b e d by Mu rph y (16 T he pro abil i ty t h a t at leas t p

per c nt o the p pul ati on lies ab o ve Ni cycl es, where Ni is the i th order stati sti c o the

sample, i s properly c alle d a "tol eranc lev el"; but the t er m confidence l eve l appears to

Trang 34

re ad 87.05 p er c e nt This val ue is an e sti mate of the p e rc entage of the p o pulaton

fr om whi c h the ori g i nal 15 sp e c ime ns were s electe d th at will surv iv e 16 kiocycles

Si mi l arl y, at a c nfidenc l e ve l o f9 pe r c nt, 6 7 0 3 pe r c nt o r more o f the po p

ula-ti on are estmated to surv iv e the 16 kiloc yc le s Ag ai n, fo r the "S eco d Rankin

Points," at a c nfidenc le vel of 50 pe r c n 68 61 per c nt of the p p l ati on are

es timate d to s urvive 2 9 kiocycles an , at a 95pe r c e nt c o nfide nc e level, 45.4 p e r

c nt or more ofthe p p l ati on are estmated to survi ve 2 9 kiloc yc le s

Addi o al in form a t io can be o tained from the pre eding test da ta b c o

n-s i de ri ng all 15 sp ec imens as o ne "group" an determining the perc ntag e o fthe

p p l ati on e xpec te d to survive 105 kilo c yc le s , whi ch i s the l owest rankin p int

fo r m = 1a d n = 15 in Table 2 Fo r a 9 p e r ce nt co nfide nc e level, straight-line

interp lato between 7 4.1 per c nt for n = 10 an 86 09 per c nt for n — 20

" Based on a table i n N air (19 )

gi ve s a bout 80 per c nt From this, i t i s estmated t hat at a 95 per c nt c nfi denc

level ab ut 80 p er c e nt ofthe p o p ulatio n will survi ve 10 5 kiocycles

2 Esti mates o Parame te s—Si ngle Str s Lev el

(a) Medi an Fati gue Li fe:

1 Poi nt Esti mate.—A p int estmate o the popul ati on me di an i s the

sample median, described a ove in n V Al(a)

2 Co fi de ce Inte v al Esti mate.—A c onfi de nc i nterval for the medi an

th a t doe s not ass ume a part icular frequen cy distribution f r th e p pulation

may b e co mp ute d ifthe sample size is l arge r than five

The n o served value o fat igu e lf, N, are arran ged in order o m a gn it u de

as fl l ows:

N4

N6N2

Trang 35

The c o nfide nc e limits correspondin to a c o nfi de nc e level o fat le st 0 95 are

give n by the order statsti cs de i g nated i n T ab le 9, p 2

E XAMP LE — Ass ume t h a t ten specimens are te s te d at a particular s tre s s level an

the o b s e rve d val ues o ffa t igue l i fe i n k ocycles are 2 01, 2 4 , 2 6, 2 0, 2 2, 2 38, 2

2 4 4 , 2 4 5, an 2 48 T he p int estmate of median fa tigue lf i s the ave rage o f the

two mi ddl e most val ue s , namely 23 kiloc yc le s T he interval esti mate i s defi ned b

A/2 an Ng (se T ab l e 9), whi c h are 2 4 an 24 5 kilocycles , re s p e c tive ly

T he p p l ati on median may be ab ve or b e lo w the sample median — 2 35

kiocycles — b t the chanc es are at l e as t 95 i n 10 t ha t the statement, "the

median les betw een 2 4 an 2 5 ki l o cyc l e s ," i s core t i fthe s ampl e c me fr om

3 ad the rang e o the o b s erve d values to the largest 3 X rang e

value an su tra t i t fr om the s mal le s t val ue:

that is, Ni - (N

3

- J V i) and N

3+ (N

3

- Ni )

4 ad (range) / 4 to the largest value an s ubtrac t i t lj£ X range

fr om the smalest val ue:

0

Se e Yo ude n (2 ) fo r n = 3

6

Pri v ate c o rre s p one nc e fr om W J You en, fr val ue s o n gre ter t han 3

2 Ap rox i mate Co fi de nce Inte v al Esti mate — An approx im ate confidence

i nterval e ti mate f r the mean t h a t doe s not as s ume a p rti cul ar frequ en cy

distribution fr the p pul ati on may be computed as shown i n T abl e 10, i f

the sample size is 3, 4, or 5

() Per Ce t Surv i v al fr a Stated Value o Fati gue Li fe:

1 Poi nt Esti mate — A p i nt e ti mate o the perc ntag e o the p pul ati on

t ha t has fa t igu e lf val ue eq al to or a ove a stated val ue i s the sampl e

perc ntag e o o se rved val ue eq al to or a o ve the same stated val ue

2 Co fi de nc Inte v al Esi mate — Co fidenc l i mi ts co rre spo ndi ng to

po ss ib le val ue o sample perc ntag e, p , fr fo r s amp le s izes are give n i n

T ab l e 11 Val ue s fr other s amp le s ize s may be read fr om a chart from Di xon

an Mas s e y (9), p 415, from w h ich m a n y val ue i n T abl e 1 were taken

E XAM PL E — Us ing the data gi ve n i n the ab o ve e xampl e o f thi s Section an 2 0

Trang 36

l ati o n val ue of per c e nt surviv al are o tained: ( 1) p int estimate: 7 per c nt an

(2) interv al estmate: 34 to 9 per c nt

A la rger s amp le siz wi l l gi ve a shorter interval esti mate (s e e T abl e 1 )

(d) Fati gue Li fe fr a Staled Value o Pe r Ce nt Surv i v al

1 Poi nt Esti mate —A p int estmate o the p pul ati on valu e o ft ig e

lf fr a stated val ue o pe r c nt survi val i s b sed on orde r stati sti cs as

Wher: p = sampl e pec ntag e (for ex am ple, perc ntag e surv iv ing) Con fiden ce li

m-i ts coresp n in to (10 — p) per c nt a re: low e r: 10 — (a bular value for u pper

lmit c o rres p o nding to p, per c nt); u pe: 10 — (ta ul ar value fr l o we r l imit cor'

rsp ni ng to p,p r c n t)

0

Based on chart fr om Di xon an Massey (9), p 41 , a n d, fr n = 4 , on chart fr om

Pe arson an H artley ( 2), p 2 04

o utl i ne d i n the Section o S- N curves: "One Group at Eac h Stre s s Level"

(Sec ti o n V A ) A partcular v alue is e m edian, c r esp ndin to 5 per

c ent surviva

A nother p int es ti mate m ay be deri ved fr om th e cumulative fr eq u ency

dis trib utio n o fthe observed values In ge ne ra the two p o int estimates woul d

not b exactl y eq a

2 Co fi de nc Inte v al Esti mate.—In terv al e s timate s for me dians '(50 per

c nt survi val ) are des cri b ed i n Se ctio n V A2(a) Interv al esti mates fr fa t igu e

Trang 37

lf val ues coresp ndi ng to other perc ntag e p i nts may be computed by

using reerence (21) ,

1

3 Tests o Si gni f a ce :

(a) D fe re nce s o Grou Medi ans—Si ngle Str s Le v e l.—-If tw o or more

groups of s p e c i me ns are tested, the q esti on of whether the o served difer

-e nc -e s in the val ues are d e to chanc or to s o me dif ren ces i n the p

pula-ti ons fr om whi ch the g roups w ere dra w n oft en ari s es The o b s e rve d d ifer

-e nc -e s , fr exampl e, c oul d ari s e be ause o diferen ces i n m a terial l ots or

dif ren ces i n the characteri sti cs o the testi ng machi nes

The rank tests gi ve n i n thi s se c tio n as sume th a t the s e ve ral groups are i

n-dependently and randomly d ra wn fr om p pulati ons t h a t are o the s ame

s ha e but may d ifer w it h respe t to their medi ans All the o s erved val ues

i n o ne g roup are assumed to come from o ne p op l ati on S ince the p o p ulati o ns

are as umed to be o the same (t h ough u n kn ow n ) sha e, onl y those g roups

t h at are tested at the same stres s le ve l shoul d be compared, s i nc e the for m

o the distribution tends to chang e wit h chang e in stres l evel

1 Ra k Test fr Two Gro ps.—In the ra n k test for two groups the ra n k

o e ac h o servati on i n the two groups combi ned i s determined T he l owest

v alue i s g i ven the r an o 1, the nex t h igh er o s erve d value i s gi ven the r an

o 2, a d so forth I f o e v alue a pear s eve ral ti mes, t hat i s, there i s a te,

the averag e o the ra n ks fr those nu m bers is as s i gne d to each one For ex

-ampl e, i fthe l th, 12th, 1 th, an 14th val ues are al l eq al, they are each

gi ve n the r an of( 11+ 12 + 13+ 14 ) /4 = 12 5 T he ra n ks for the two

g roups are total ed sep ratel y and the total f r one o the groups (th e one

w it h the s mal l e r n um ber of o servations i f the grou p s ize s are unequal) i s

comp red wit h the cri ti cal values give n i n T abl e 2 f r ampl e sizes eq al to

the group sizes

I fthe o s erve d val ue falls w it h in the rang e o val ues gi ve n i n T ab l e 2 fr

the chose n si gni fi canc level ( 5 or 1per c n t ), the groups may be c o ns i de re d

to have c o me fr om one p pulation Ifthe o bs erved val ue falls outsi de the

rang e o val ues give n i n the table, the two groups are s aid to be significantly

d ifer en t h a t is, to have c o me from tw o p pul ati ons wit h difer ent medi ans

T he use o the 1per c nt si g ni fi canc le ve l gi ve s a s mal le r ri sk o c al l i ng the

(1) k is c ho s e n s o th at

(2) m i s cho se n so th a t

Trang 38

g roups si g ni fi cantl y diferen t w hen they are a tual l dra w n fr om one p

pu-l ati on an the o bs erved diferen ce i s d e to chanc

EXAMP LE.—To c o mpare two ma hi nes, the rank tes t was ap p lied to the data

from 2 s pe c i me ns ran omly assig ed to two testi ng mac hi nes (S ee Table 12.)

Ac c o rdi ng to Table 2 , the r an total fo r Mac hi ne A i n Table 12, whic h has "the

s mal l e r n u m ber o fmeasurements," s ho ul d b e between 101 an 17 (Ni = 10 ,

NZ = 17) fr the 5 pe r c nt l e ve l o s i gni fi c anc e , an betw een 8 an 191fo r the

1p e r c e nt level o fsignificance This me ans that the ac tual tota 8 , wo uld no t b e

e xp e c te d to o cc ur as ot en as o nc e i n a h u n dred s amp le s d e to c hanc e al one , i f the

two machines were c ompl e tel y i nterchangeabl e Thus, o the averag e, the ma hi nes

give s i gni fi c antl y dif ren t ftig ue l ife v lues

TAB LE 12.—FATI GU E T E ST D TA

2 Ra k Test fr Mor th n Two Gro ps — The method of as s igni ng ra n ks

i s the s ame as f r the two-g roup test, ranking the o servati ons fr al l the

g roups combi ned The ranks are totaled se aratel y f r e ac h group and the

folow ing test-statistic, H, is computed from th e ra n k totals (2 ):

wher e:

k = n um ber o g roups,

Hi = n mber o o bse rvatio ns i n the ih g roup,

N = y ^,ni , the n um ber o o servati ons i n al l g roups combi ned, an

Ri = sum o the ran ks in the i th g roup

The test-statistc H i s distributed a proximately as x

Trang 39

-co mp re d w it h the val ue o x

2

gi ven i n T ab l e 2 to determine w hether

there may be a si g ni f ant dif ren ce among the p pulati ons from whi ch

the g roups w ere drawn or not IfH is g reater than the x

2

val ue fr k — 1

deg re s o fre dom an the c ho s e n si g ni fi c anc le ve l, the p pul ations are

s ai d to be d iferent; t ha t i s, the g roups may be said to have b een dra w n

from two or more p pul ati ons I nspe ti on o the ra n k total s wil l usual ly

sh w w hich g roups are d if r ent from the ot hers if the dif ren ce is si gni fi

-cant

E XAM P L E.—T o compare fi ve ma hines, the ran k tes t was ap p lied to the da ta

from 2 s p e c ime ns , ran dom ly assig ed to the fi ve machines (s e Tab le 13)

TABL E 13.—FAT I GUE T EST DAT A

= ° 49, coresp n in to a 5 per c nt si g ni f anc level or a perc nt e of

95 S inc the computed value o fH, 2.56 , i s v ery mu ch s malle r than 9.49, the o

b-s e rve d val ues o fa tigue lf may b c onsi de red to b fr om one p pula tion; the

ma-c hi ne s may be c o ns ide re d to be i nterchang eabl e

(t) D fe re nce s o Tw o or Mo e Pec enta es (fr ex ample, pe r c nt surv i v al

values).—Th e teststatistic us d to te t the si g ni f a c e o the diferen ces

among perc ntag e val ue computed from o s rved da t a is x

Trang 40

wh ere n = sampl e size a d x = ^ Xi /k (2 3, p 175 -178) The ot her term s

w ere defin ed previ ousl y

The computed val ue o x

2

may be comp red wit h the t a bula r val ue g i ven

in T ab l e 2 for k — 1 degre es of fre dom (d.f.) If the computed value of

X

2

is l arg er t h a n the tabular v alue core p n i ng to: p rcenti le =

10 — ( chos n s i gni fi canc e l e ve l ), the perc ntag es are s aid to b e si g ni fi

-c antly diferen t;that i s, the samples were drawn fr om diferen t p o p ulatio ns

I fthe computed val ue o x

2

i s s mal le r t h a n the tabular val ue, the s ampl e s

may be consi dered to have come fr om one p pul ati on

An ot h er use o the x

2

test i s to test w h et h er or not the o se rved

per-c ntag e val ue a re si g ni fi cantly d if r ent from a n ar bit r ar y v alue, such a s

5 pe r c nt T he method o f com putation i s the s ame as t h a t g i ven previ ousl y,

ex cept t hat: (1) the fir t w ay of w ritin g the form ula for x

pi = o b s e rve d fr act io f r t he i th sampl e: pi = #*/«; an d

P = Z_,Xi /£ ,ni = averag e fra ct ion fr al samples c o mb i ne d

2 Wh en the sampl e size are equal the formu la reduce to

T ABLE 14.— PERCEN TA G ES SU RVIVING 10

Ngày đăng: 12/04/2023, 16:33

TRÍCH ĐOẠN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN