1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thpt (616)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thpt
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 153,4 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Khối đa diện đều loại {3; 3} có số đỉnh A 4 B 3 C 5 D 2 Câ[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 11 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Khối đa diện đều loại {3; 3} có số đỉnh

Câu 2. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

C.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

Câu 3. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 4. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|

Câu 5. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

1

Câu 6. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 3S h B V = 1

2S h.

Câu 7. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√6

a3√2

a3√6

36 .

Câu 8. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x3−3mx2+m

nghịch biến trên khoảng (−∞;+∞)

Câu 9. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến∆ Lấy A, B thuộc

∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng

A. a

2

a

√ 2

Câu 10. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 11. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 6

6 . B V = πa3

√ 3

3 . C V = πa3

√ 3

6 . D V = πa3

√ 3

2 .

Trang 2

Câu 12. [3-1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 13. Khối đa diện loại {3; 5} có tên gọi là gì?

A Khối tứ diện đều B Khối 20 mặt đều C Khối 12 mặt đều D Khối bát diện đều.

Câu 14. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

Câu 15. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 16. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy

x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất

Pmincủa P= x + y

A Pmin= 9

11 − 19

9 . B Pmin = 9

11+ 19

9 . C Pmin = 18

11 − 29

21 D Pmin= 2

11 − 3

Câu 17. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 18. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 19 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

[ f (x) − g(x)]dx=Z f(x)dx −

Z

g(x)dx, với mọi f (x), g(x) liên tục trên R

B.

Z

[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

D.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

Câu 20. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. 8a

5a

2a

a

9.

Câu 21 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z

xαdx= α + 1xα+1 + C, C là hằng số

C.

Z

Z

dx = x + C, C là hằng số

Câu 22. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A a

√ 6

√ 6

Trang 3

Câu 23. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 24. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Câu 25. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

6

a3√ 3

a3√ 3

a3√ 2

16 .

Câu 26. Cho

Z 1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

1

4.

Câu 27. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1 D xy0 = ey+ 1

Câu 28. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là

A Hai đường phân giác y= x và y = −x của các góc tọa độ

B Trục ảo.

C Đường phân giác góc phần tư thứ nhất.

D Trục thực.

Câu 29 Hình nào trong các hình sau đây không là khối đa diện?

Câu 30. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 31. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

2a3√ 3

3 .

Câu 32. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Câu 33. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A. 5

13

√ 13

Câu 34. [1-c] Giá trị biểu thức log236 − log2144 bằng

Câu 35. Khối đa diện đều loại {3; 5} có số cạnh

Câu 36 Các khẳng định nào sau đây là sai?

A.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số B.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C

Trang 4

Z

f(x)dx

!

Z

f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C

Câu 37. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 38. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= 1

log2a. C log2a= 1

loga2. D log2a= loga2

Câu 39. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi

Câu 40. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2

x+ 5m đồng biến trên khoảng (−∞; −10)?

Câu 41. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 42. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 43. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (−∞; 2).

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0; 2).

Câu 44. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3

4a3√ 3

2a3

2a3√ 3

3 .

Câu 45. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

2x ln x. B y

0 = 1

0 = 2x ln x D y0 = 2x ln 2

Câu 46. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 2

9

1

1

5.

Câu 47. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 48. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?

Câu 49. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3

Câu 50. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019

Trang 5

Câu 51. Dãy số nào sau đây có giới hạn là 0?

A un= 1 − 2n

5n+ n2 B un = n2+ n + 1

(n+ 1)2 C un = n2− 3n

n2 D un = n2− 2

5n − 3n2

Câu 52. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π

3, x = π Tính giá trị của biểu thức T = a + b√3

Câu 53 Mệnh đề nào sau đây sai?

A.

Z

f(x)dx

!0

= f (x)

B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

Câu 54. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau

(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)

(II) kF(x) là một nguyên hàm của k f (x)

(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)

Các mệnh đề đúng là

Câu 55. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A − 5

9

13

23

100.

Câu 56. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 57. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối tứ diện đều B Khối bát diện đều C Khối 12 mặt đều D Khối lập phương.

Câu 58. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 59. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 60. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 61. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng

A a

√ 2

a√2

√ 2

Trang 6

Câu 62. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 63. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

6 .

Câu 64. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1 − i

√ 3

√ 3

Câu 65. Tứ diện đều thuộc loại

Câu 66. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 67. Cho hàm số y= x3

− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là

Câu 68. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞

f(x) g(x) = a

b.

C lim

x→ +∞[ f (x) − g(x)]= a − b D lim

x→ +∞[ f (x)g(x)]= ab

Câu 69. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

Câu 70. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 ≤ m ≤ −1 C −2 < m < −1 D (−∞; −2] ∪ [−1;+∞)

Câu 71. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

A. 2

1 2e3

Câu 72. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1 B M= e, m = 0 C M = e, m = 1

e. D M = 1

e, m = 0

Câu 73. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 74. Gọi F(x) là một nguyên hàm của hàm y= ln x

x

p

ln2x+ 1 mà F(1) = 1

3 Giá trị của F

2(e) là:

A. 8

8

1

1

3.

Câu 75. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a

√ 3

a

√ 6

a

√ 6

3 .

Câu 76. Khối lập phương thuộc loại

Trang 7

Câu 77. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 78. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a

√ 39

a

√ 39

a

√ 39

13 .

Câu 79. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 80. [4] Xét hàm số f (t)= 9t

9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho

f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S

Câu 81. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 82. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (2; 1; 6) B ~u= (1; 0; 2) C ~u= (2; 2; −1) D ~u= (3; 4; −4)

Câu 83. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 84. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

2

3.

Câu 85. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A. 3

√ 3

√ 3

√ 3

2 .

Câu 86. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 87. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 88. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 89. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.

Câu 90. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

Trang 8

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D.

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

Câu 91. Khối đa diện đều loại {5; 3} có số mặt

Câu 92. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 93. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 94. Tính lim

x→5

x2− 12x+ 35

25 − 5x

A −2

5.

Câu 95. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 96. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

5

a3√6

a3√15

3√ 6

Câu 97. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

A. 3

Câu 98. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 99. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 100. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

3

!n

e

!n

3

!n

Câu 101. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

24.

Câu 102. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tam giác.

B Hai khối chóp tứ giác.

C Một khối chóp tam giác, một khối chóp ngữ giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Trang 9

Câu 103. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1 − 2e

4 − 2e. B m= 1+ 2e

4 − 2e. C m= 1+ 2e

4e+ 2. D m=

1 − 2e 4e+ 2.

Câu 104. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

7

11a2

a2

√ 5

a2

√ 2

4 .

Câu 105. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 106. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 107. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 108. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (0; 1) B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số đồng biến trên khoảng (1; 2).

Câu 109. Khối đa diện đều loại {3; 3} có số cạnh

Câu 110. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi

M, N và P lần lượt là tâm của các mặt bên ABB0

A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 6

√ 3

√ 3

3 .

Câu 111. [4-1243d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = |z − 3 − 5i| Tìm giá trị nhỏ nhất của |z+ 2 + i|

A. 12

17

Câu 112. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 113. Biểu thức nào sau đây không có nghĩa

A (−

−1

Câu 114. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

Câu 115. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 116. [1] Phương trình log3(1 − x)= 2 có nghiệm

Trang 10

Câu 117. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm

Ađến đường thẳng BD0bằng

b2+ c2

a2+ b2+ c2 B. c

a2+ b2

a2+ b2+ c2 C. b

a2+ c2

a2+ b2+ c2 D. abc

b2+ c2

a2+ b2+ c2

Câu 118. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 119. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 120. [1] Biết log6 √a= 2 thì log6abằng

Câu 121. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016 B T = 1008 C T = 2017 D T = 2016

2017.

Câu 122. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

7

3.

Câu 123. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

8.

Câu 124. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3

√ 3

3√ 3

3 .

Câu 125. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 126. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là

Câu 127. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 128. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= ln 10 B f0(0)= 1

ln 10. C f

0 (0)= 1 D f0(0)= 10

Câu 129. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 2ac

3b+ 2ac

3b+ 3ac

c+ 1 .

Câu 130. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

HẾT

Ngày đăng: 12/04/2023, 00:45

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN