TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho lăng trụ đứng ABC A′B′C′ có đáy là tam giác vuông tại[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Cho lăng trụ đứng ABC.A0B0C0 có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. 2a
3√
6
3√
3√ 6
4a3√ 6
3 .
Câu 2 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
Câu 3. [2D1-3] Tìm giá trị của tham số m để hàm số y = −1
3x
3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng
√ 24
A m = 4 B m= −3 C −3 ≤ m ≤ 4 D m= −3, m = 4
Câu 4. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A. " 5
2; 3
!
"
2;5 2
!
Câu 5. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −∞; −1
2
!
2;+∞
!
2;+∞
!
2
!
Câu 6. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
3
a
√ 6
a
√ 6
a
√ 6
2 .
Câu 7 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Tứ diện đều B Nhị thập diện đều C Thập nhị diện đều D Bát diện đều.
Câu 8. Tính lim 2n
2− 1 3n6+ n4
Câu 9. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
a3
a3
√ 3
3
Câu 10 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0
C.
Z
( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
Câu 11. Khối đa diện đều loại {3; 4} có số đỉnh
Câu 12. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Trang 2Câu 13. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 14. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga
3
√
abằng
A. 1
1
Câu 15. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
A. " 2
5;+∞
!
3
#
5
#
"
−2
3;+∞
!
Câu 16. [12215d] Tìm m để phương trình 4x+
√ 1−x 2
− 4.2x+
√ 1−x 2
− 3m+ 4 = 0 có nghiệm
3
3
4.
Câu 17. Tính lim 5
n+ 3
Câu 18. [12210d] Xét các số thực dương x, y thỏa mãn log3 1 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất
Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 9
√
11+ 19
9 . C Pmin = 18
√
11 − 29
21 D Pmin= 2
√
11 − 3
Câu 19. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng số cạnh của khối chóp.
B Số mặt của khối chóp bằng 2n+1.
C Số cạnh của khối chóp bằng 2n.
D Số đỉnh của khối chóp bằng 2n+ 1
Câu 20. Tìm giới hạn lim2n+ 1
n+ 1
Câu 21. [1] Giá trị của biểu thức 9log3 12bằng
Câu 22. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 2a
a
5a
8a
9 .
Câu 23. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 24. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 25. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 3ac
3b+ 2ac
c+ 3 .
Trang 3Câu 26. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
√
√ 2
Câu 27. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
√
√ 3
Câu 28. Khối lập phương thuộc loại
Câu 29. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = R \ {1; 2} B. D = [2; 1] C. D = (−2; 1) D. D = R
Câu 30. Khối đa diện đều loại {3; 4} có số cạnh
Câu 31. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
Câu 32. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 3 B T = 4 + 2
e. C T = e + 2
e. D T = e + 1
Câu 33. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 34. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
9
Câu 35. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 36. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 37. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3
a3√ 3
3√ 3
3 .
Câu 38. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 39. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 40. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π
!x 3 −3mx 2 +m
nghịch biến trên khoảng (−∞;+∞)
Câu 41. Xét hai câu sau
Trang 4(I) ( f (x)+ g(x))dx = f(x)dx+ g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai câu trên sai D Cả hai câu trên đúng.
Câu 42. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 43. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
A. abc
√
b2+ c2
√
a2+ b2+ c2 B. c
√
a2+ b2
√
a2+ b2+ c2 C. b
√
a2+ c2
√
a2+ b2+ c2 D. a
√
b2+ c2
√
a2+ b2+ c2
Câu 44. [1] Biết log6 √a= 2 thì log6abằng
Câu 45. Tập xác định của hàm số f (x)= −x3+ 3x2
− 2 là
Câu 46. Tính lim n −1
n2+ 2
Câu 47. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =
xy+ x + 2y + 17
Câu 48. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Câu 49. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
1
8
1
3.
Câu 50. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
√
Câu 51. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A a
√
√
√ 2
a√2
3 .
Câu 52. [1232h] Trong không gian Oxyz, cho đường thẳng d :
x= 1 + 3t
y= 1 + 4t
z= 1
Gọi∆ là đường thẳng đi qua
điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là
A.
x= −1 + 2t
y= −10 + 11t
z= −6 − 5t
B.
x= 1 + 7t
y= 1 + t
z= 1 + 5t
x= 1 + 3t
y= 1 + 4t
z= 1 − 5t
x= −1 + 2t
y= −10 + 11t
z= 6 − 5t
Trang 5
Câu 53. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
3√
3√ 15
a3
√ 5
3 .
Câu 54. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 55. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 56. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 57. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 58. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. a
3√
3
4a3√ 3
8a3√ 3
8a3√ 3
3 .
Câu 59. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 60. Bát diện đều thuộc loại
Câu 61. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Một khối chóp tam giác, một khối chóp ngữ giác.
C Một khối chóp tam giác, một khối chóp tứ giác.
D Hai khối chóp tứ giác.
Câu 62. Hàm số nào sau đây không có cực trị
A y = x4− 2x+ 1 B y= x +1
x. C y= x −2
2x+ 1. D y= x3− 3x.
Câu 63. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 64. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 65. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
2
2 e
π
2e
π
√ 3
2 e
π
Câu 66. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là
Câu 67. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Trang 6Câu 68. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 69. Dãy số nào sau đây có giới hạn là 0?
A un= n2− 3n
n2 B un = 1 − 2n
5n+ n2 C un = n2− 2
5n − 3n2 D un = n2+ n + 1
(n+ 1)2
Câu 70. Tính lim
x→1
x3− 1
x −1
Câu 71. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n
n2+ 1 Mệnh đề nào sau đây đúng?
2.
Câu 72. [1] Giá trị của biểu thức log √31
10 bằng
A −1
1
Câu 73. Dãy số nào sau đây có giới hạn là 0?
A. 4
e
!n
3
!n
3
!n
3
!n
Câu 74. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
Câu 75. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 76. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 14
√
3
√
√ 3
√ 3
Câu 77. Một chất điểm chuyển động trên trục với vận tốc v(t)= 3t2− 6t(m/s) Tính quãng đường chất điểm
đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)
Câu 78. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 79. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√ 3
Câu 80. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 7
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 81. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2] ∪ [−1; +∞) B −2 ≤ m ≤ −1 C −2 < m < −1 D (−∞; −2) ∪ (−1;+∞)
Trang 7Câu 82. Khối đa diện đều loại {3; 3} có số cạnh
Câu 83. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = 1
e, m = 0 B M= e, m = 0 C M = e, m = 1 D M = e, m = 1
e.
Câu 84 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
k f(x)dx= k
Z
f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
C.
Z
[ f (x)+ g(x)]dx =Z f(x)dx+Z g(x)dx, với mọi f (x), g(x) liên tục trên R
D.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
Câu 85. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là 1 −
√
2, phần ảo là −
√
√
2 − 1, phần ảo là −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2, phần ảo là 1 −
√ 3
Câu 86 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαbα= (ab)α B aαβ = (aα)β C. a
α
aβ = aα D aα+β = aα.aβ
Câu 87. Khối đa diện đều loại {5; 3} có số mặt
Câu 88. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 89. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 90. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 91. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng
a√3
a
3.
Câu 92. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√
√ 3
Câu 93. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
√
2
a
2a
a
4.
Câu 94. Cho hàm số y= x3
− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng 1
3; 1
! B Hàm số nghịch biến trên khoảng (1;+∞)
Trang 8C Hàm số nghịch biến trên khoảng −∞;1
3 . D Hàm số đồng biến trên khoảng
1
3; 1 .
Câu 95. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 96. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A a
√
√ 6
a√6
a√6
3 .
Câu 97. Tính lim
x→2
x+ 2
x bằng?
Câu 98. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 99. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 100. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Câu 101. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 102. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 103. Xét hai khẳng đinh sau
(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó
(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó
Trong hai khẳng định trên
A Cả hai đều sai B Chỉ có (I) đúng C Chỉ có (II) đúng D Cả hai đều đúng.
Câu 104. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
5
a3
a3√15
a3√15
5 .
Trang 9Câu 105. Thập nhị diện đều (12 mặt đều) thuộc loại
Câu 106. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?
Câu 107. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
2S h. D V = 1
3S h.
Câu 108. Dãy số nào sau đây có giới hạn khác 0?
A. 1
sin n
n+ 1
1
√
n.
Câu 109. Khối đa diện đều loại {3; 4} có số mặt
Câu 110. Khối chóp ngũ giác có số cạnh là
Câu 111. Tính limcos n+ sin n
n2+ 1
Câu 112 Mệnh đề nào sau đây sai?
A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
D.
Z
f(x)dx
!0
= f (x)
Câu 113. Hàm số f có nguyên hàm trên K nếu
Câu 114. Giả sử ta có lim
x→ +∞f(x)= a và lim
x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?
A lim
x→ +∞[ f (x) − g(x)]= a − b B lim
x→ +∞[ f (x)+ g(x)] = a + b
C lim
x→ +∞
f(x)
g(x) = a
Câu 115. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
A Phần thực là −1, phần ảo là 4 B Phần thực là 4, phần ảo là 1.
C Phần thực là −1, phần ảo là −4 D Phần thực là 4, phần ảo là −1.
Câu 116. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
B Cả ba câu trên đều sai.
C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
D F(x)= G(x) trên khoảng (a; b)
Câu 117. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
2.
Trang 10Câu 118. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1.
A.
√
3
3
1
2.
Câu 119. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
3
2a3√ 6
a3
√ 3
a3
√ 6
12 .
Câu 120. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
8.
Câu 121. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 122. Tứ diện đều thuộc loại
Câu 123 Hình nào trong các hình sau đây không là khối đa diện?
Câu 124. [1] Tính lim1 − 2n
3n+ 1 bằng?
A. 1
2
2
3.
Câu 125. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. 2a
√
57
√
√ 57
a
√ 57
19 .
Câu 126. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2
trên đoạn [1; 2] là
2
e3
Câu 127. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2là số ảo là
A Đường phân giác góc phần tư thứ nhất.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Trục ảo.
D Trục thực.
Câu 128. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
2.
Câu 129. [1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≤ 1
1
1
1
4.
Câu 130. Khối đa diện đều loại {3; 3} có số đỉnh
HẾT