1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 9 (365)

13 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 9 (365)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 13
Dung lượng 157,35 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Xét hai khẳng đinh sau (I) Mọi hàm số f (x) liên tục trên[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Xét hai khẳng đinh sau

(I) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó

(II) Mọi hàm số f (x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó

Trong hai khẳng định trên

A Chỉ có (I) đúng B Cả hai đều sai C Chỉ có (II) đúng D Cả hai đều đúng.

Câu 2. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

26 .

Câu 3. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại A với AB = AC = a, biết tam giác

S ABcân tại S và nằm trong mặt phẳng vuông góc với (ABC), mặt phẳng (S AC) hợp với mặt phẳng (ABC) một góc 45◦ Thể tích khối chóp S ABC là

A. a

3

3

a3

12.

Câu 4. Dãy số nào sau đây có giới hạn khác 0?

A. 1

n+ 1

sin n

1

n.

Câu 5. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là

A. 1

2

e3

Câu 6. Giá trị của lim

x→1(3x2− 2x+ 1)

Câu 7. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

a2√ 2

11a2

a2√ 7

8 .

Câu 8. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD = CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

a3√ 3

3√

3√ 2

2 .

Câu 9. [3-1229d] Đạo hàm của hàm số y= log 2x

x2 là

2x3ln 10. B y

0 = 1 − 4 ln 2x 2x3ln 10 . C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 10. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Trang 2

Câu 11. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

B.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

Câu 12. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (2; 1; 6) B ~u= (1; 0; 2) C ~u= (2; 2; −1) D ~u= (3; 4; −4)

Câu 13. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = R C. D = (−∞; 1) D. D = R \ {1}

Câu 14. [2] Tổng các nghiệm của phương trình 3x2−4x+5 = 9 là

Câu 15. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

3√ 3

a3

a3

√ 3

9 .

Câu 16 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

Câu 17. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±1 C m= ±√3 D m= ±3

Câu 18 Mệnh đề nào sau đây sai?

A Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

B F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D.

Z

f(x)dx

!0

= f (x)

Câu 19. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

a

2a

a√2

3 .

Trang 3

Câu 20. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

58

a√38

3a√38

3a

29.

Câu 21. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 22. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 23. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A. 20

3

√ 3

3 .

Câu 24. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

2a√3

√ 3

2 .

Câu 25. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

Câu 26. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 9

3

3

4.

Câu 27. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 28. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?

Câu 29. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng

5

Câu 30. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2

Câu 31. [1] Đạo hàm của làm số y = log x là

A y0 = 1

1

0 = ln 10

0 = 1

xln 10.

Câu 32. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Trang 4

Câu 33. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)

Câu 34. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 35. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

√ 3

3

√ 3

4 .

Câu 36. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 37. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

2.

Câu 38. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x

lần lượt là

A 2

2 và 3 B 2 và 2

2 và 3

Câu 39. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 40. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 41. Khối đa diện đều loại {3; 3} có số cạnh

Câu 42. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?

(I) lim nk = +∞ với k nguyên dương

(II) lim qn= +∞ nếu |q| < 1

(III) lim qn= +∞ nếu |q| > 1

Câu 43. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là

A Phần thực là −1, phần ảo là 4 B Phần thực là −1, phần ảo là −4.

C Phần thực là 4, phần ảo là 1 D Phần thực là 4, phần ảo là −1.

Câu 44. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 45. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 46. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Trang 5

Câu 47. [3-1122d] Trong kỳ thi THPTQG có môn thi bắt buộc là môn Toán Môn thi này dưới hình thức trắc nghiệm 50 câu, mỗi câu có 4 phương án trả lời, trong đó có 1 phương án đúng Mỗi câu trả lời đúng được cộng 0, 2 điểm, mỗi câu trả lời sai bị trừ 0, 1 điểm Bạn An học kém môn Toán nên quyết định chọn ngẫu nhiên hết 50 câu trả lời Xác suất để bạn An đạt 4 điểm môn Toán là

A. C

40

50.(3)10

20

50.(3)30

20

50.(3)20

10

50.(3)40

450

Câu 48. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 3

2.

Câu 49 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aα+β= aα.aβ B aαβ = (aα)β C. a

α

aβ = aα D aαbα = (ab)α

Câu 50. Xác định phần ảo của số phức z= (√2+ 3i)2

A −6

Câu 51. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016

Câu 52. Tính lim 2n

2− 1 3n6+ n4

Câu 53. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 54. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 55. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 56. Tính lim

x→2

x+ 2

x bằng?

Câu 57. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2

− 4M)2019

Câu 58. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

A. 67

Câu 59. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 60. Dãy số nào có giới hạn bằng 0?

A un= −2

3

!n B un = 6

5

!n C un = n2− 4n D un = n3− 3n

n+ 1 .

Trang 6

Câu 61. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 62. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng

A. 2a

57

√ 57

a√57

19 .

Câu 63. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A f (x) có giới hạn hữu hạn khi x → a B lim

x→a + f(x)= lim

x→a − f(x)= +∞

C lim

x→a + f(x)= lim

x→af(x)= f (a)

Câu 64. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3√6

2a3√6

a3√3

2 .

Câu 65. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết

S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)

A. a

5a

8a

2a

9 .

Câu 66. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 67. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là

A. 7

3; 0; 0

!

3; 0; 0

!

3; 0; 0

!

Câu 68. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x

x trên đoạn [1; e

3] là M = m

en, trong đó n, m là các

số tự nhiên Tính S = m2+ 2n3

Câu 69. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 70. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 2ac

3b+ 2ac

3b+ 3ac

3b+ 3ac

c+ 1 .

Câu 71. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là

√ 3

C Phần thực là

2 − 1, phần ảo là −

2, phần ảo là 1 −

√ 3

Câu 72. Biểu thức nào sau đây không có nghĩa

A. −3

√ 2)0

Câu 73. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Trang 7

Câu 74. [1] Giá trị của biểu thức log √31

10 bằng

A −1

1

Câu 75. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 76. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là

Câu 77. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 78. Khối đa diện loại {3; 4} có tên gọi là gì?

A Khối lập phương B Khối 12 mặt đều C Khối bát diện đều D Khối tứ diện đều.

Câu 79. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 18 lần B Tăng gấp 9 lần C Tăng gấp 3 lần D Tăng gấp 27 lần.

Câu 80 Hình nào trong các hình sau đây không là khối đa diện?

Câu 81. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦

, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là

A a3

3√ 3

a3√2

a3√2

12 .

Câu 82. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 83. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

3

2.

Câu 84. Khối đa diện đều loại {3; 5} có số mặt

Câu 85. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

A. 2017

2016

4035

2018.

Câu 86. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

A. a

6

√ 3

Câu 87. Khối lập phương thuộc loại

Câu 88. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2

− 2; m = e−2+ 2

C M = e−2+ 2; m = 1 D M = e−2+ 1; m = 1

Câu 89. Hàm số y= −x3+ 3x2

− 1 đồng biến trên khoảng nào dưới đây?

Trang 8

Câu 90. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i.

5

Câu 91. [3-c] Cho 1 < x < 64 Tìm giá trị lớn nhất của f (x)= log4

2x+ 12 log2

2x log2 8

x

Câu 92. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey

− 1 C xy0 = ey

Câu 93. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

√ 13

Câu 94. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 95. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 96. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1 D xy0 = −ey+ 1

Câu 97. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

36 .

Câu 98. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 99. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. a

3√

3

8a3√ 3

8a3√ 3

4a3√ 3

9 .

Câu 100. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 101. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là −3, phần ảo là 4 B Phần thực là 3, phần ảo là 4.

C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là −4.

Câu 102. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

Câu 103. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1

ln 10. B f

0 (0)= ln 10 C f0(0)= 10 D f0(0)= 1

Trang 9

Câu 104. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

B. " 5

2; 3

!

Câu 105. Dãy số nào sau đây có giới hạn là 0?

A un= n2+ n + 1

(n+ 1)2 B un = 1 − 2n

5n+ n2 C un = n2− 2

5n − 3n2 D un = n2− 3n

n2

Câu 106. Khối đa diện đều loại {3; 3} có số mặt

Câu 107. Khối đa diện đều loại {5; 3} có số đỉnh

Câu 108. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 109. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

B Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

C Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

Câu 110. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng

A. a

6

a

√ 6

a

√ 6

a

√ 3

2 .

Câu 111. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng

Câu 112 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

Câu 113. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

√ 3

Câu 114. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

Câu 115. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

Câu 116. Tính lim n −1

n2+ 2

Trang 10

Câu 117. Cho hai đường thẳng phân biệt d và d đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 118. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 6 cạnh, 6 mặt.

Câu 119. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx =

Z

f(x)dx+

Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.

Câu 120. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A -2

7

Câu 121. Thể tích của khối lập phương có cạnh bằng a

√ 2

3√ 2

3 .

Câu 122. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc

60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. a

3√

3

5a3√ 3

4a3√ 3

2a3√ 3

3 .

Câu 123. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x)+ g(x)] = a + b B lim

x→ +∞[ f (x) − g(x)]= a − b

C lim

x→ +∞[ f (x)g(x)]= ab D lim

x→ +∞

f(x) g(x) = a

b.

Câu 124. [1] Đạo hàm của hàm số y = 2x

A y0 = 2x ln 2 B y0 = 1

0 = 1

2x ln x. D y

0 = 2x ln x

Câu 125. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 126. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)

Câu 127. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có f0(x)= F(x)

D Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

Câu 128. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A. −∞;2

3

#

5

#

"

−2

3;+∞

! D. " 2

5;+∞

!

Ngày đăng: 11/04/2023, 22:19

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN