TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [3 1123d] Ba bạn A, B,C, mỗi bạn viết ngẫu nhiên lên bảng[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1079
1637
4913.
Câu 2. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 3. Hàm số f có nguyên hàm trên K nếu
C f (x) có giá trị lớn nhất trên K D f (x) có giá trị nhỏ nhất trên K.
Câu 4. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 4 ln 2x
2x3ln 10 . C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 2x3ln 10.
Câu 5. Cho
Z 1
0
xe2xdx= ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
Câu 6. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?
Câu 7. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b, AA0 = c Khoảng cách từ điểm A đến đường thẳng BD0bằng
√
a2+ c2
√
a2+ b2+ c2 B. abc
√
b2+ c2
√
a2+ b2+ c2 C. a
√
b2+ c2
√
a2+ b2+ c2 D. c
√
a2+ b2
√
a2+ b2+ c2
Câu 8. [1] Giá trị của biểu thức log √31
10 bằng
A. 1
1
3.
Câu 9. Khối đa diện loại {3; 4} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối tứ diện đều D Khối lập phương.
Câu 10. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 11. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 12. Xác định phần ảo của số phức z= (√2+ 3i)2
√
√ 2
Câu 13. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun
vn bằng
Trang 2Câu 14. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 15. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 16. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 17. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (1;+∞)
C Hàm số nghịch biến trên khoảng (0; 1) D Hàm số đồng biến trên khoảng (1; 2).
Câu 18. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4 − 2e. B m= 1+ 2e
4 − 2e. C m= 1+ 2e
4e+ 2. D m=
1 − 2e 4e+ 2.
Câu 19. [1] Tính lim 1 − n
2
2n2+ 1 bằng?
1
1
3.
Câu 20. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.
Câu 21. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 22. Hàm số nào sau đây không có cực trị
A y = x3− 3x B y= x −2
2x+ 1. C y= x4− 2x+ 1. D y= x +
1
x.
Câu 23. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 24 Trong các khẳng định sau, khẳng định nào sai?
A F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
D Cả ba đáp án trên.
Trang 3Câu 25. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 26. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
3√
3
a3
√ 3
a3
√ 3
3√ 3
Câu 27. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
2a
√ 3
√
√ 3
3 .
Câu 28. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 29. Tính lim
x→2
x+ 2
x bằng?
Câu 30. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 31. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
3√
3
2a3
√ 3
5a3
√ 3
a3
√ 3
2 .
Câu 32. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= 2i B P= −1 − i
√ 3
√ 3
Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√3
a3
√ 6
a3
√ 2
16 .
Câu 34. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 35. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
A. a
3√
6
a3√ 15
3√
3√ 5
3 .
Câu 36. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 8
Câu 37. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 38. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Trang 4Câu 39. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 40. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
a2+ b2 B. √ ab
a2+ b2 C. ab
2
√
a2+ b2
Câu 41. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 42. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 43 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 25 triệu đồng B 3, 03 triệu đồng C 2, 20 triệu đồng D 2, 22 triệu đồng.
Câu 44. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 45. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng
2
√
a2+ b2 C. √ 1
a2+ b2 D. ab
a2+ b2
Câu 46. Khối đa diện đều loại {3; 3} có số cạnh
Câu 47. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 C m ≥ 0 D m > −5
4.
Câu 48. Phần thực và phần ảo của số phức z= −i + 4 lần lượt là
Câu 49. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 50. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối 20 mặt đều D Khối 12 mặt đều.
Câu 51. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
5
a3
a3√15
a3√15
25 .
Câu 52 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C B.
Z
k f(x)dx= k
Z
f(x)dx, k là hằng số
Trang 5Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z f(x)dx
!
= f (x)
Câu 53 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
u0(x)
u(x)dx= log |u(x)| + C
B Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng
F(x)+ C, với C là hằng số
C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x
D F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x
Câu 54. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
9 .
Câu 55. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 56. Tính lim
x→3
x2− 9
x −3
Câu 57. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3√3
a3√6
a3√6
48 .
Câu 58. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = −ey
− 1
Câu 59. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 60. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 61. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
Câu 62. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2
√
3 Thể tích khối nón đã cho là
A V = πa3
√ 3
3 . B V = πa3
√ 3
6 . C V = πa3
√ 3
2 . D V = πa3
√ 6
6 .
Câu 63. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
5
Câu 64. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
6 .
Trang 6Câu 65. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 8
1
1
8
3.
Câu 66. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3
√ 3
2 . B V = 3a3√
3 C V = 6a3 D V = a3
√ 3
2 .
Câu 67. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
2; 3
!
"
2;5 2
!
Câu 68. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 69. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 2ac
3b+ 3ac
c+ 1 .
Câu 70. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
1
1
4.
Câu 71 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=
Z
f(x)dx
Z
Z ( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx
C.
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx D.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0
Câu 72. [4] Xét hàm số f (t)= 9t
9t+ m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho
f(x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y ≤ e(x+ y) Tìm số phần tử của S
Câu 73. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = S h B V = 1
2S h.
Câu 74. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 75 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 76. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 77. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e + 1 B T = e + 2
e. C T = 4 + 2
e. D T = e + 3
Câu 78. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Trang 7Câu 79. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 80. [2] Cho hai mặt phẳng (P) và (Q) vuông góc với nhau và cắt nhau theo giao tuyến ∆ Lấy A, B thuộc ∆ và đặt AB = a Lấy C và D lần lượt thuộc (P) và (Q) sao cho AC và BD vuông góc với ∆ và
AC = BD = a Khoảng cách từ A đến mặt phẳng (BCD) bằng
√ 2
a
√ 2
4 .
Câu 81. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
A 2√2 và 3 B. √2 và 3 C 2 và 2√2 D 2 và 3.
Câu 82. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 9
11
Câu 83. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 84. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 85. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
A.
√
2
2 e
π
2e
π
√ 3
2 e
π
Câu 86. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√
√
√ 6
2 .
Câu 87. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
√
Câu 88. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 89. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Năm hình chóp tam giác đều, không có tứ diện đều.
B Năm tứ diện đều.
C Một tứ diện đều và bốn hình chóp tam giác đều.
D Bốn tứ diện đều và một hình chóp tam giác đều.
Câu 90. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
Câu 91. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Trang 8Câu 92. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|.
A.
√
√ 2
Câu 93. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:
Câu 94. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 95. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
A 2
√
√ 2
Câu 96. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 97. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 98. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
B. " 2
5;+∞
!
"
−2
3;+∞
!
3
#
Câu 99. Hàm số y= x2− 3x+ 3
x −2 đạt cực đại tại
Câu 100. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = ey+ 1 C xy0 = ey
− 1
Câu 101. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 102. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 103. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của
P= xy + x + 2y + 17
Câu 104. Khối đa diện đều loại {4; 3} có số cạnh
Câu 105. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
2.
Câu 106. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Trang 9Câu 107. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 108 Phát biểu nào sau đây là sai?
C lim 1
nk = 0 với k > 1 D lim √1
n = 0
Câu 109. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
Câu 110. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = 1
e, m = 0 B M= e, m = 0 C M = e, m = 1
e. D M = e, m = 1
Câu 111. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 112. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 113. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2
√
√
2 D 3+ 4√2
Câu 114. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 115. Khối chóp ngũ giác có số cạnh là
Câu 116. [1] Tập xác định của hàm số y= 4x 2 +x−2là
A. D = R \ {1; 2} B. D = [2; 1] C. D = (−2; 1) D. D = R
Câu 117. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 118. [1] Đạo hàm của làm số y = log x là
A y0 = ln 10
0 = 1
xln 10. C.
1
0 = 1
x.
Câu 119. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?
A Hàm số nghịch biến trên khoảng (−2; 1).
B Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)
C Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)
D Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)
Câu 120. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?
Trang 10Câu 121. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
! là
Câu 122. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 123. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 124. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng
a
√ 38
3a
√ 58
3a
√ 38
29 .
Câu 125. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
2.
Câu 126. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. 1
2;+∞
!
2;+∞
!
2
!
2
!
Câu 127. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3
a3√3
a3√3
8 .
Câu 128. Cho I =
Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 129. [1] Biết log6 √a= 2 thì log6abằng
Câu 130. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối 12 mặt đều B Khối bát diện đều C Khối lập phương D Khối tứ diện đều.
HẾT