TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Trong các khẳng định sau, khẳng định nào sai? A ∫ dx = x +[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1 Trong các khẳng định sau, khẳng định nào sai?
A.
Z
dx = x + C, C là hằng số B.
Z 0dx = C, C là hằng số
C.
Z
1
xdx= ln |x| + C, C là hằng số D.
Z
xαdx= α + 1xα+1 + C, C là hằng số
Câu 2. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 3. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =
0 có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 4. Tính lim
√ 4n2+ 1 − √n+ 2 2n − 3 bằng
A. 3
Câu 5. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 6. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3
√ 6
a3√3
a3
√ 6
48 .
Câu 7. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD= 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
2
3√
3√ 3
a3
√ 2
12 .
Câu 8. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của
S bằng
Câu 9. [1] Tập xác định của hàm số y= log3(2x+ 1) là
2
!
2;+∞
!
2
!
2;+∞
!
Câu 10. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 11. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
√ 3
2 . C V = a3
√ 3
2 . D V = 3a3√
3
Câu 12. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Trang 2Câu 13. [4] Cho lăng trụ ABC.A BC có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N
và P lần lượt là tâm của các mặt bên ABB0A0, ACC0
A0, BCC0
B0 Thể tích khối đa diện lồi có các đỉnh
A, B, C, M, N, P bằng
A. 20
√
3
√
√ 3
√ 3
Câu 14. [1] Đạo hàm của làm số y = log x là
A y0 = 1
xln 10. B.
1
0 = ln 10
0 = 1
x.
Câu 15. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 16. Khối đa diện đều loại {4; 3} có số cạnh
Câu 17. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 18. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 19. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?
Câu 20. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A a
√
√ 6
a√6
a√6
6 .
Câu 21. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?
Câu 22. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3
a3√ 15
a3√ 5
a3√ 15
5 .
Câu 23. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 24. Bát diện đều thuộc loại
Câu 25. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?
Câu 26. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 27 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
Trang 3(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b].
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 28. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1
2x3ln 10.
Câu 29. [1] Đạo hàm của hàm số y = 2x
là
A y0 = 2x ln 2 B y0 = 1
0 = 2x ln x D y0 = 1
2x ln x.
Câu 30. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
2x3ln 10. B y
0 = 1 − 4 ln 2x 2x3ln 10 . C y
0 = 1 − 2 log 2x
x3 D y0 = 1 − 2 ln 2x
x3ln 10 .
Câu 31. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 32 Phát biểu nào sau đây là sai?
n = 0
C lim 1
Câu 33. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 34. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 35. [3-1131d] Tính lim 1
1 + 1
1+ 2 + · · · +
1
1+ 2 + · · · + n
!
A. 5
2.
Câu 36. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A a3
√
3√ 3
a3
a3√ 3
3 .
Câu 37. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng
d: x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng
dđồng thời cách A một khoảng bé nhất
A ~u = (3; 4; −4) B ~u= (2; 2; −1) C ~u= (2; 1; 6) D ~u= (1; 0; 2)
Câu 38. [2] Đạo hàm của hàm số y = x ln x là
A y0 = 1 − ln x B y0 = x + ln x C y0 = 1 + ln x D y0 = ln x − 1
Trang 4Câu 39. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng số mặt của khối chóp.
B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
C Số cạnh của khối chóp bằng số mặt của khối chóp.
D Số đỉnh của khối chóp bằng số cạnh của khối chóp.
Câu 40. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1 B M= e, m = 0 C M = e, m = 1
e. D M = 1
e, m = 0
Câu 41 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx
!0
Z
f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C
C.
Z
f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C D. Z k f(x)dx= kZ f(x)dx, k là hằng số
Câu 42. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 43. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 44. Dãy số nào có giới hạn bằng 0?
A un= −2
3
!n B un = n3− 3n
n+ 1 . C un = n2− 4n D un = 6
5
!n
Câu 45. Tính lim
x→3
x2− 9
x −3
Câu 46. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
A. 1728
23
1079
1637
4913.
Câu 47. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là
Câu 48. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
sai
Câu 49. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 50. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Trang 5Câu 51. Giá trị cực đại của hàm số y = x3
− 3x+ 4 là
Câu 52. Khối đa diện đều loại {5; 3} có số cạnh
Câu 53. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey
− 1
Câu 54. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)
Câu 55. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là −4.
Câu 56. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 57. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. a
3√
3
4a3√3
5a3√3
2a3√3
3 .
Câu 58. Cho I = Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 59. Tứ diện đều thuộc loại
Câu 60. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp
Câu 61. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 62. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
a3
a3
√ 3
3
Câu 63. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục ảo.
B Đường phân giác góc phần tư thứ nhất.
C Trục thực.
D Hai đường phân giác y= x và y = −x của các góc tọa độ
Câu 64. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
Câu 65. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
Trang 6A. x
1 = y
1 = z −1
x −2
2 = y+ 2
2 = z −3
2 .
C. x
2 = y −2
3 = z −3
x −2
2 = y −2
3 = z −3
4 .
Câu 66. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là
A 2√3, 4
√
3, 38 B 6, 12, 24 C 2, 4, 8 D 8, 16, 32.
Câu 67. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a√2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√ 6
a3√ 6
a3√ 2
6 .
Câu 68. Tính lim
x→5
x2− 12x+ 35
25 − 5x
A. 2
5.
Câu 69. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
Câu 70. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 71. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 72. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
1
2
1
5.
Câu 73. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 74. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 75. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
A. 1
1
Câu 76. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 77. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên
Câu 78. Tập các số x thỏa mãn log0,4(x − 4)+ 1 ≥ 0 là
Câu 79. [2-c] Giá trị lớn nhất của hàm số f (x)= ex3−3x+3trên đoạn [0; 2] là
Câu 80. [1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Trang 7Câu 81. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e−2+ 1; m = 1 B M = e2− 2; m = e−2+ 2
C M = e−2− 2; m= 1 D M = e−2+ 2; m = 1
Câu 82. Hàm số f có nguyên hàm trên K nếu
C f (x) có giá trị lớn nhất trên K D f (x) có giá trị nhỏ nhất trên K.
Câu 83. Nhị thập diện đều (20 mặt đều) thuộc loại
Câu 84. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
A. " 5
2; 3
!
"
2;5 2
!
Câu 85. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 86. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 87. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = −ey
Câu 88. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 89. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 90. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 91. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là
Câu 92. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 93. Tính lim
x→2
x+ 2
x bằng?
Câu 94. [2-c] Giá trị nhỏ nhất của hàm số y = x2
ln x trên đoạn [e−1; e] là
A −1
1
Câu 95. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 96. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối bát diện đều B Khối tứ diện đều C Khối lập phương D Khối 12 mặt đều.
Trang 8Câu 97. [3] Cho hình lập phương ABCD.A BC D có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
2a
√ 3
√
√ 3
2 .
Câu 98. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
B. " 2
5;+∞
!
"
−2
3;+∞
!
3
#
Câu 99. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. 11a
2
a2
√ 5
a2
√ 7
a2
√ 2
4 .
Câu 100. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Một hình chóp tam giác và một hình chóp tứ giác.
B Hai hình chóp tứ giác.
C Hai hình chóp tam giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 101. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z
A.
√
√ 13
√
√ 13
Câu 102. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Câu 103. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 104. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng
Câu 105. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là
A. 8a
3√
3
4a3√ 3
8a3√ 3
a3
√ 3
9 .
Câu 106. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. 1
ln 2
2 .
Câu 107. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?
Trang 9Câu 108. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. 2a
a√2
a
a
4.
Câu 109. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất
Câu 110. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
a3
a3√ 3
12 .
Câu 111. Tính giới hạn lim2n+ 1
3n+ 2
A. 3
2
1
Câu 112. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 113. Thể tích của khối lập phương có cạnh bằng a
√ 2
A. 2a
3√
2
√
2
Câu 114. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 115. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
2S h. B V = 1
3S h. C V = S h D V = 3S h
Câu 116. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng
A. 2a
√
57
a
√ 57
a
√ 57
√ 57
Câu 117. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 118. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?
A Hàm số nghịch biến trên khoảng 1
3; 1
!
3
!
C Hàm số nghịch biến trên khoảng (1;+∞) D Hàm số đồng biến trên khoảng 1
3; 1
!
Câu 119. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
1
Câu 120. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Trang 10Câu 121. [3-1122h] Cho hình lăng trụ ABC.A BC có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
6 .
Câu 122. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = √4
Câu 123. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số mặt của khối chóp bằng 2n+1.
B Số cạnh của khối chóp bằng 2n.
C Số mặt của khối chóp bằng số cạnh của khối chóp.
D Số đỉnh của khối chóp bằng 2n+ 1
Câu 124 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x)+ g(x))dx =
Z
f(x)dx+
Z g(x)dx B.
Z
f(x)g(x)dx=
Z
f(x)dx
Z g(x)dx
C.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 D.
Z ( f (x) − g(x))dx=
Z
f(x)dx −
Z g(x)dx
Câu 125. Khối đa diện đều loại {3; 3} có số mặt
Câu 126. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√ 3
Câu 127. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦
, S O vuông góc với mặt đáy và S O= a Khoảng cách từ A đến (S BC) bằng
A. 2a
√
57
a√57
√
√ 57
17 .
Câu 128. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?
Câu 129. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
B F(x)= G(x) trên khoảng (a; b)
C Cả ba câu trên đều sai.
D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
Câu 130. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π
!x 3 −3mx 2 +m
nghịch biến trên khoảng (−∞;+∞)
HẾT