1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 8 (397)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 8 (397)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 154,12 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Tứ diện đều thuộc loại A {3; 3} B {3; 4} C {5; 3} D {4; 3}[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 11 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Tứ diện đều thuộc loại

Câu 2. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 3 Trong các khẳng định sau, khẳng định nào sai?

A F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

B.

Z

u0(x)

u(x)dx= log |u(x)| + C

C F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

D Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

Câu 4. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C = a√3 Thể tích khối chóp S ABCD là

A. a

3√

3

a3

a3

√ 3

3

Câu 5 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B.

Z

f(x)dx

!0

= f (x)

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

Câu 6. [1] Tập xác định của hàm số y= log3(2x+ 1) là

A. −∞; −1

2

!

2;+∞

!

2

!

2;+∞

!

Câu 7. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= 1

log2a. B log2a= loga2 C log2a= − loga2 D log2a= 1

loga2.

Câu 8. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của

S bằng

Câu 9. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tứ giác.

B Hai hình chóp tam giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 10. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (0; 2) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (−∞; 2) D Hàm số đồng biến trên khoảng (0;+∞)

Trang 2

Câu 11. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 12. Khối đa diện đều loại {3; 4} có số mặt

Câu 13. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

√ 2

2 e

π

√ 3

2 e

π

2e

π

3

Câu 14. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1

Câu 15. [2] Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AB = a√2 và BC = a Cạnh bên

S A vuông góc mặt đáy và góc giữa cạnh bên S C và đáy là 60◦ Khoảng cách từ điểm C đến mặt phẳng (S BD) bằng

A. 3a

58

a

√ 38

3a

√ 38

3a

29.

Câu 16. Cho hai đường thẳng d và d0 cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 17. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

B Hình lăng trụ đứng là hình lăng trụ đều.

C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ tứ giác đều là hình lập phương.

Câu 18. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1

A. 3

√ 3

1

2.

Câu 19. Thập nhị diện đều (12 mặt đều) thuộc loại

Câu 20. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 21. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 22. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 9 lần B Tăng gấp 27 lần C Tăng gấp 3 lần D Tăng gấp 18 lần.

Câu 23. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 24. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

6 . B V = πa3

√ 3

2 . C V = πa3

√ 3

3 . D V = πa3

√ 6

6 .

Trang 3

Câu 25. [4-1242d] Trong tất cả các số phức z thỏa mãn |z − 1+ 2i| = |z + 3 − 4i| Tìm giá trị nhỏ nhất của môđun z

A.

√ 13

√ 13

Câu 26. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 27. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)

Câu 28. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

Câu 29. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2)?

Câu 30. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số mặt của khối chóp bằng số cạnh của khối chóp.

B Số mặt của khối chóp bằng 2n+1.

C Số đỉnh của khối chóp bằng 2n+ 1

D Số cạnh của khối chóp bằng 2n.

Câu 31. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng

Câu 32. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) B lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3

√ 3

3√

3√ 3

3 .

Câu 34. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 35. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 36. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4 − 2e. B m= 1+ 2e

4e+ 2. C m=

1 − 2e

4 − 2e. D m= 1 − 2e

4e+ 2.

Câu 37 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

1

xdx= ln |x| + C, C là hằng số B.

Z

dx = x + C, C là hằng số

C.

Z

xαdx= α + 1xα+1 + C, C là hằng số D.

Z 0dx = C, C là hằng số

Trang 4

Câu 38. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A. " 5

2; 3

!

"

2;5 2

!

Câu 39. Xác định phần ảo của số phức z= (√2+ 3i)2

Câu 40. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦

Đường chéo

BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là

A. 2a

3√

6

a3

√ 6

3√

3√ 6

3 .

Câu 41. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3√3

a3√6

a3√6

24 .

Câu 42. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3√ 2

a3√ 2

a3√ 2

2 .

Câu 43. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 44. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18

√ 3

Câu 45. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= +∞ B lim

x→af(x)= f (a)

C lim

x→a + f(x)= lim

Câu 46. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là

Câu 47. [3-1133d] Tính lim1

2+ 22+ · · · + n2

n3

A. 2

1

Câu 48. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 5a

3√

3

2a3√ 3

4a3√ 3

a3√ 3

2 .

Câu 49. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 50 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A. a

α

aβ = aα B aαbα = (ab)α

C aαβ = (aα

D aα+β = aα.aβ

Câu 51. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Trang 5

Câu 52. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 53. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 54. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0

có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 55. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 6

a3

√ 2

a3

√ 6

6 .

Câu 56. Tính lim

x→2

x+ 2

x bằng?

Câu 57. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0

(1) bằng

A. ln 2

1

Câu 58. [2] Tập xác định của hàm số y= (x − 1)1

A. D = R B. D = (1; +∞) C. D = (−∞; 1) D. D = R \ {1}

Câu 59. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 60. Cho các dãy số (un) và (vn) và lim un = a, lim vn = +∞ thì limun

vn bằng

Câu 61 [1233d-2] Mệnh đề nào sau đây sai?

A.

Z

f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R

B.

Z

[ f (x)+ g(x)]dx =

Z

f(x)dx+

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

C.

Z

k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R

D.

Z

[ f (x) − g(x)]dx=

Z

f(x)dx −

Z g(x)dx, với mọi f (x), g(x) liên tục trên R

Câu 62. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 63 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx= F(x)+C ⇒Z f(u)dx = F(u)+C B. Z f(x)dx= F(x) + C ⇒Z f(t)dt= F(t) + C

C.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số D.

Z

f(x)dx

!0

= f (x)

Trang 6

Câu 64. Dãy số nào sau đây có giới hạn là 0?

A un= n2− 2

5n − 3n2 B un = 1 − 2n

5n+ n2 C un = n2+ n + 1

(n+ 1)2 D un = n2− 3n

n2

Câu 65. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3− mx2+ 3x + 4 đồng biến trên R

Câu 66. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

√ 3

20√3

√ 3

Câu 67. [1] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 4% trên một tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau 6 tháng, người đó lĩnh được số tiền (cả vốn lẫn lãi) gần nhất với số tiền nào dưới đây, nếu trong khoảng thời gian này người đó không rút tiền ra và lãi suất không thay đổi?

Câu 68 Trong các mệnh đề dưới đây, mệnh đề nào sai?

A Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un

vn

!

= −∞

B Nếu lim un= a > 0 và lim vn = 0 thì lim un

vn

!

= +∞

C Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞

D Nếu lim un= a , 0 và lim vn = ±∞ thì lim un

vn

!

= 0

Câu 69. Tính giới hạn lim2n+ 1

3n+ 2

A. 3

1

2

3.

Câu 70. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 3

3

9

4.

Câu 71. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị

Câu 72. [1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 73. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. 2a

a

a

a

√ 2

3 .

Câu 74. [1] Giá trị của biểu thức 9log3 12bằng

Câu 75. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 2 log 2x

x3 B y0 = 1 − 4 ln 2x

2x3ln 10 . C y

0 = 1 2x3ln 10. D y

0 = 1 − 2 ln 2x

x3ln 10 .

Trang 7

Câu 76. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 5 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 6 mặt C 6 đỉnh, 6 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.

Câu 77. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 78. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 79. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

A. 2

1

9

1

10.

Câu 80. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 81. Phần thực và phần ảo của số phức z= √2 − 1 −

√ 3i lần lượt l

A Phần thực là 1 −

2, phần ảo là −

2 − 1, phần ảo là

√ 3

C Phần thực là

2 − 1, phần ảo là −

2, phần ảo là 1 −

√ 3

Câu 82. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 83. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

A. 1728

23

1637

1079

4913.

Câu 84. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

a3

√ 2

2 .

Câu 85. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 ≤ m ≤ −1 C (−∞; −2] ∪ [−1; +∞) D −2 < m < −1.

Câu 86. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i

5

Câu 87. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√2

a3√6

a3√3

24 .

Câu 88. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 89. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 90. [1] Phương trình log3(1 − x)= 2 có nghiệm

Câu 91. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Trang 8

Câu 92. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

4035

2016

2017.

Câu 93. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 94. Khối đa diện đều loại {4; 3} có số mặt

Câu 95. Tìm tất cả các khoảng đồng biến của hàm số y = 1

3x

3− 2x2+ 3x − 1

Câu 96. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 97. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 98. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Hai khối chóp tam giác.

B Một khối chóp tam giác, một khối chóp tứ giác.

C Hai khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 99. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

Câu 100. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

A. 4a

3

4a3

√ 3

2a3

2a3

√ 3

3 .

Câu 101. Khối đa diện đều loại {3; 3} có số mặt

Câu 102. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 103. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A. 1

1

Câu 104. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn

nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = 100.(1, 01)3

3 triệu.

C m = 120.(1, 12)3

(1, 12)3− 1 triệu. D m = (1, 01)3

(1, 01)3− 1 triệu.

Câu 105. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Trang 9

Câu 106. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 107 Trong các khẳng định sau, khẳng định nào sai?

A Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.

B F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x

C Cả ba đáp án trên.

D F(x)= x là một nguyên hàm của hàm số f (x) = 2√x

Câu 108. Hàm số y= x3− 3x2+ 4 đồng biến trên:

Câu 109. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 110. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?

Câu 111. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 1 B f0(0)= ln 10 C f0(0)= 10 D f0(0)= 1

ln 10.

Câu 112. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

2

a2+ b2 C. √ 1

a2+ b2 D. ab

a2+ b2

Câu 113. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 114. [12221d] Tính tổng tất cả các nghiệm của phương trình x+1 = 2 log2(2x+3)−log2(2020−21−x)

Câu 115. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 116. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

A. 3

Câu 117. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 4 đỉnh, 6 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 6 đỉnh, 6 cạnh, 4 mặt.

Câu 118. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?

A (−∞; −1) và (0; +∞) B (−1; 0) C (−∞; 0) và (1; +∞) D (0; 1).

Câu 119. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 120. Cho hai đường thẳng phân biệt d và d0đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 121. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Không thay đổi B Tăng lên (n − 1) lần C Tăng lên n lần D Giảm đi n lần.

Trang 10

Câu 122. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2

− 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 123. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 124. Tính lim

x→3

x2− 9

x −3

Câu 125. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A. a

3

2a√3

a√3

√ 3

Câu 126. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

2

11a2

a2

√ 5

a2

√ 7

8 .

Câu 127. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 128. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng

A. a

6

a√6

a√6

√ 6

Câu 129. [1] Biết log6 √a= 2 thì log6abằng

Câu 130 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

HẾT

Ngày đăng: 11/04/2023, 22:08

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN