1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn tập toán 12 giải chi tiết (133)

11 4 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn tập kiến thức toán 12
Tác giả Đoàn Tấn Minh Triết
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề ôn tập
Năm xuất bản 2023
Thành phố Hồ Chí Minh
Định dạng
Số trang 11
Dung lượng 1,25 MB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Cho hàm số yf x  có bảng biến thiên như sau: Hàm số đã cho đồng biến trên khoảng nào dưới đây?. Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là Đáp án đúng: C Câ

Trang 1

ĐỀ MẪU CÓ ĐÁP ÁN ÔN TẬP KIẾN THỨC

TOÁN 12

Thời gian làm bài: 40 phút (Không kể thời gian giao đề)

-Họ tên thí sinh:

Số báo danh:

Mã Đề: 014.

Câu 1

Cho hàm số yf x 

có bảng biến thiên như sau:

Hàm số đã cho đồng biến trên khoảng nào dưới đây?

A 1;  . B 1;0

C  ;4

D 0;1.

Đáp án đúng: D

Câu 2

Cho hàm sốyf x có bảng biến thiên như sau Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số( )

đã cho là

Đáp án đúng: C

Câu 3

Cho hàm số Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên ( )1;e2

Đáp án đúng: D

1

Trang 2

Giải thích chi tiết: Cho hàm số Có bao nhiêu giá trị nguyên của tham số m để hàm số nghịch biến trên ( )1;e2

A Vô số B 2 C 0 D 4.

Lời giải

Tác giả: Đoàn Tấn Minh Triết; Fb: Triết Minh Đoàn

Điều kiện x3- mx- 2 0,> " Îx ( )1;e2

3

2

2

x

x

(*) Đặt   3 2  2

, 1;

x

x

2

x

x

 *  mf  1  (1)1

2

2 3

3

2 ln 3

 3x2 m  0, x 1;e2  m3 ,x2  x 1;e2  m3e4 (2)

Từ (1) và (2) suy ra không có giá trị m thỏa yêu cầu bài toán

Câu 4 Gọi F x  là một nguyên hàm của f x cos 4 cos8x x thỏa mãn

2

F  

  Giá trị

2 3

F  

  bằng

2

1

Đáp án đúng: B

Giải thích chi tiết: Ta có

 

2 3

3

2

d

2 3

3

cos 4 cos8 dx x x

2 3

3

1 cos12 cos 4 d

2 3

3

Suy ra

0

F  F    F  

Câu 5 Trong mặt phẳng tọa độ Oxy Phép vị tự tâm O tỉ số k biến đường tròn bán kính R  thành đường3 tròn có bán kính là:

Đáp án đúng: C

Trang 3

Câu 6 Cho các số phức z1 3 2 ,i z2  1 4 ,i z3   có điểm biểu diễn hình học trong mặt phẳng 1 i Oxy lần

lượt là các điểm A B C, , Tính diện tích tam giác ABC

Đáp án đúng: C

Giải thích chi tiết: z1 3 2 ,i z2  1 4 ,i z3  có điểm biểu diễn hình học trong mặt phẳng 1 i Oxy lần lượt

là các điểm A B C, ,  A3; 2 ,  B1; 4 , C1;1

 1; 1,  2; 2

ABx y ACx y

1 2 2 1

1 2

ABC

 2;6 ,  4;3

Diện tích tam giác ABC là: 1  2 3  4 6 9

2

Câu 7

Nếu (a, b > 0) thì x bằng

A 5a + 4b B 4a + 5b C 5 4

a b

Đáp án đúng: C

Câu 8

Đáp án đúng: D

Ta có

Theo tính chất tích phân

Vậy

Câu 9 Cho ,x y là các số thực dương thỏa mãn x y.33xy x y  81 81xy 0

Tìm giá trị lớn nhất của biểu thức P3 x xy y 2

A

9

4

3

3

4

Đáp án đúng: A

Câu 10 Biết phương trình

2

27

x

có hai nghiệm x x với 1; 2 x1x2 Hiệu x2 x1?

3

Trang 4

A

6560

80

80

6560

729

Đáp án đúng: D

Giải thích chi tiết:

2

27

x

x   1log23 log3 log 27 03

2

1

3

6 3

9

1

729

x x

9;

Câu 11 Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

Đáp án đúng: A

Giải thích chi tiết: Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

Câu 12 Khi quan sát một đám vi khuẩn trong phòng thí nghiệm người ta thấy tại ngày thứ x có số lượng là

 

N x

Biết rằng   2000

1

N x

x

 và lúc đầu số lượng vi khuẩn là 5000 con.Vậy ngày thứ 12 số lượng vi khuẩn là?

Đáp án đúng: A

Giải thích chi tiết: Bản chất đây là một bài toán tìm nguyên hàm, cho N x 

và đi tìm N x 

Ta có

2000

d 2000.ln 1 5000

1x x x

( Do ban đầu khối lượng vi khuẩn là 5000).

Với x  thì số lượng vi khuẩn là 1013012  con

Câu 13

Tứ diện đều có tâm là và có độ dài các cạnh bằng Gọi theo thứ tự

là hình chiếu của các đỉnh trên đường thẳng nào đó đi qua Tìm GTLN

A

7

1

4

7

4

Đáp án đúng: A

Giải thích chi tiết: Ngoại tiếp tứ diện đều bằng hình lập phương

Chọn hệ trục tọa độ như hình vẽ

Trang 5

Tọa độ các điểm

Suy ra

Gọi là véc tơ đơn vị của đường thẳng Khi đó:

Hay

Dấu đẳng thức có khi và chỉ khi

Vậy đạt được khi là các đường thẳng đi qua các đỉnh của tứ diện đều

Câu 14

Cho hàm số y=f(x) có bảng biến thiên như sau

Số nghiệm thực của phương trình 2f(x) + 3 = 0 ?

Đáp án đúng: D

Câu 15 Cho dãy số 1;5;9; ;17.m Tìm điều kiện của m để dãy số đã cho là một cấp số cộng

A m 13 B m 16 C m 15 D m 14

Đáp án đúng: A

Giải thích chi tiết: Cho dãy số 1;5;9; ;17.m Tìm điều kiện của m để dãy số đã cho là một cấp số cộng

A m 13 B m 14 C m 15 D m 16

5

Trang 6

Lời giải

Dãy là cấp số cộng khi

5 1

17

d

m d

 

Câu 16 Họ tất cả các nguyên hàm của hàm số 2

1 os

y

c x

A cotx C . B tanx C . C  tanx C . D  cotx C .

Đáp án đúng: B

Câu 17

Cho hàm số có bảng biến thiên dưới đây

Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số là

Đáp án đúng: B

Câu 18 Trong không gian, cho tam giác ABC vuôngtại A, AB a và AC2a Khi quay tam giác ABC quanh cạnh góc vuông AB thì đường gấp khúc ACB tạo thành một hình nón Diện tích xung quanh của hình nón đó

bằng

A 10a2 B 2 5a2. C 5a2 D 5a2.

Đáp án đúng: B

Giải thích chi tiết:

Khi quay tam giác ABC quanh cạnh góc vuông AB thì đườnggấp khúc ACB tạo thành một hình nón có chiều có

h AB a  và bán kính đáy rAC 2a

Do đó, đường sinh lh2 r2  5a

Vậy diện tích xung quanh của hình nón là S xq rl2 5a2

Trang 7

Câu 19 2019) Họ tất cả các nguyên hàm của hàm số 2

( )

x

f x

  trên  2; là

A  

2

2

x

4

2

x

C  

4

2

x

2

2

x

Đáp án đúng: C

Câu 20

Cho hàm số yf x 

có đồ thị như hình vẽ bên dưới:

Tìm tất cả các giá trị của tham số m để đồ thị hàm số      

2

h xf xf xm

có đúng 3 điểm cực trị

A

1

4

m 

B m 1. C

1 4

m 

D m 1.

Đáp án đúng: C

Giải thích chi tiết: Đồ thị hàm số yf x  có 3 điểm cực trị

Do đó để đồ thị hàm số h x 

có 3 điểm cực trị thì đường thẳng ym hoặc tiếp xúc hoặc không cắt đồ thị hàm số g x  f2 xf x 

Xét hàm số g x  f2 xf x  có g x  f x 2f x 1

 

 

 

0

1; 3

0 2

f x

g x

x a

f x



7

Trang 8

Bảng biến thiên: với af  1 0

x  a 13 g x   0  0  0  g x   14 a 0 

Dựa vào bảng biến thiên ta có

Câu 21 Với các số thực a , b , c  và a , 0 b  bất kì Mệnh đề nào dưới đây sai?1

A loga c b c loga b

B loga b.logb cloga c

C logab c  loga bloga c

1 log

log

a

b

b

a

Đáp án đúng: A

Giải thích chi tiết: Ta có

1 loga c b loga b

c

Câu 22 Phát biểu nào sau đây sai về tính đơn điệu của hàm số ?

A Hàm số yf x 

được gọi là đồng biến trên D

 2  1

B Hàm số yf x 

được gọi là đồng biến trên D x x1, 2,x1x , ta có 2 f x 1  f x 2

C Nếu f x 0, xa b; và hàm số liên tục trên a b; hì hàm số đồng biến trên a b;  .

D Nếu f x 0, xa b; 

thì hàm số đồng biến trên a b; 

Đáp án đúng: B

Giải thích chi tiết:

Lời giải

Dễ dàng chọn đáp án A theo lý thuyết

Câu 23 Tập nghiệm của bất phương trìnhlog (x 1) 22  

A     ; 1    2;    B    ;5 

Đáp án đúng: C

Câu 24 Trong không gian với hệ tọa độ Oxyz, tính khoảng cách từ điểmM1; 2; 3  đến mặt phẳng

 P x: 2y2z10 0

8

11

4

3.

Đáp án đúng: C

Câu 25 Nghiệm của phương trình log2x  3  là3

A x  9 B x  11 C x  3 D x  12

Đáp án đúng: B

Giải thích chi tiết: Nghiệm của phương trình log2x  3  là3

A x  B 12 x  C 9 x  D 3 x  11

Trang 9

Lời giải

Điều kiện x  3

2

log x  3 3 x 3 2 3  x11

Câu 26

Cho đường cong Diện tích hình chữ nhật tạo bởi hai đường tiệm cận của và hai trục tọa độ bằng

Đáp án đúng: A

Câu 27 Cho hàm số

1 2

x y

x,đường tiệm cận ngang của đồ thị hàm số là

A y2 B y1 C x2. D x1.

Đáp án đúng: B

Câu 28 Trong mặt phẳng tọa độ Oxy , cho hai điểm A  3;1 và I2; 3  Phép vị tự tâm I tỉ số k 2 biến

điểm A thành điểm A Tọa độ điểm A là

C A7;0. D A   3; 11.

Đáp án đúng: D

Câu 29

Hàm số f x( )

có đạo hàm f x'( )

trên khoảng K Cho đồ thị của hàm số f x'( )

trên khoảng K như sau:

Số điểm cực trị của hàm số trên là

Đáp án đúng: A

Câu 30

Cho các số phức thỏa mãn Tập hợp các điểm biểu diễn các số phức

trên mặt phẳng tọa độ là một đường thẳng Phương trình đường thẳng đó là:

Đáp án đúng: C

Câu 31 Cách phát biểu nào sau đây là sai khi dùng để phát biểu định lý có dạng AB?

A A là điều kiện đủ để có B. B Nếu A thì B.

C A là điều kiện cần để có B D A kéo theo B

9

Trang 10

Đáp án đúng: C

Giải thích chi tiết: [Mức độ 1] Cách phát biểu nào sau đây là sai khi dùng để phát biểu định lý có dạng AB?

A Nếu A thì B B A kéo theo B.

C A là điều kiện đủ để có B D A là điều kiện cần để có B.

Lời giải

Đáp án D sai vì B mới là điều kiện cần để có A

Câu 32 Hàm số F x( )=ln x x 1+ + là một nguyên hàm của hàm số nào sau đây trên (0;+¥ )?

A f x( )=x ln x x+ . B f x( ) 1 1

x

= +

C f x( )=x ln x 1( - ). D f x( ) x ln x x2 x

2

Đáp án đúng: B

Câu 33

Cho hàm số xác định trên và có đồ thị hàm số là đường cong trong hình bên Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng

B Hàm số đồng biến trên khoảng

C Hàm số đồng biến trên khoảng

D Hàm số nghịch biến trên khoảng

Đáp án đúng: A

Câu 34 Tập xác định của hàm số y 1 2x14

A

1

;

2

 

1

\ 2

1

; 2

 

Đáp án đúng: A

Giải thích chi tiết: Ta có

1 4

a   

nên hàm số đã cho xác định khi:

1

2

Tập xác định của hàm số y 1 2x14

1

; 2

 

Câu 35 Cho hàm số

2

x y x

 có đồ thị  C

Tìm tọa độ giao điểm Icủa hai đường tiệm cận của đồ thị  C

Trang 11

A I2;2

B I   2; 2

C I2; 2 

D I  2;2

Đáp án đúng: D

HẾT -11

Ngày đăng: 11/04/2023, 18:59

🧩 Sản phẩm bạn có thể quan tâm

w