TOÁN PDF LATEX (Đề thi có 11 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng ∆ có[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 11 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 2. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 3. Trong không gian, cho tam giác ABC có các đỉnh B, C thuộc trục Ox Gọi E(6; 4; 0), F(1; 2; 0) lần lượt là hình chiếu của B, C lên các cạnh AC, AB Tọa độ hình chiếu của A lên BC là
A. 7
3; 0; 0
!
3; 0; 0
!
3; 0; 0
!
Câu 4. Khối đa diện đều loại {3; 4} có số cạnh
Câu 5. Tính lim
x→5
x2− 12x+ 35
25 − 5x
2
Câu 6. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√3
a√6
2 .
Câu 7. Hàm số nào sau đây không có cực trị
A y = x3− 3x B y= x −2
2x+ 1. C y= x4− 2x+ 1. D y= x +
1
x.
Câu 8 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
f(x)g(x)dx=Z f(x)dx
Z
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0
C.
Z
( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
Câu 9. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey+ 1 B xy0 = −ey
− 1 D xy0 = ey+ 1
Câu 10. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3
√ 3
a3
√ 3
a3
√ 3
36 .
Câu 11. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3
3√
3√ 3
a3√3
3 .
Trang 2Câu 12. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+ log23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 13. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin2x+ 2cos 2 x
lần lượt là
A 2
√
√
√ 2
Câu 14. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 15. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A 2a
√
√ 6
√
√ 6
Câu 16. [2-c] Giá trị lớn nhất của hàm số y = xe−2x2 trên đoạn [1; 2] là
2
e2
Câu 17. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7
Câu 18. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 19. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 20. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
√
√ 3
2a√3
2 .
Câu 21. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = log√
C y = logaxtrong đó a= √3 − 2 D y = logπ
4 x
Câu 22. Cho hàm số y= x3− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 23. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦
, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng
A. a
√
39
a√39
a√39
a√39
13 .
Câu 24. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là √2 − 1, phần ảo là −
√
3 B Phần thực là √2, phần ảo là 1 −
√ 3
C Phần thực là
√
2 − 1, phần ảo là
√
√
2, phần ảo là −
√ 3
Câu 25 Trong các mệnh đề dưới đây, mệnh đề nào sai?
A Nếu lim un= a , 0 và lim vn = ±∞ thì lim un
vn
!
= 0
B Nếu lim un= a < 0 và lim vn = 0 và vn > 0 với mọi n thì lim un
vn
!
= −∞
Trang 3C Nếu lim un= a > 0 và lim vn = 0 thì lim un
vn
= +∞
D Nếu lim un= +∞ và lim vn = a > 0 thì lim(unvn)= +∞
Câu 26. Tứ diện đều có bao nhiêu mặt phẳng đối xứng?
Câu 27. Cho z1, z2là hai nghiệm của phương trình z2+ 3z + 7 = 0 Tính P = z1z2(z1+ z2)
Câu 28. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 29. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 3 lần B Tăng gấp 9 lần C Tăng gấp 27 lần D Tăng gấp 18 lần.
Câu 30. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng
A. 1
√
Câu 31. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 − 2 log 2x
x3 C y0 = 1
2x3ln 10. D y
0 = 1 − 2 ln 2x
x3ln 10 .
Câu 32. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 33. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
A. 2
√
3
√ 3
Câu 34. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ
A m = (1, 01)3
(1, 01)3− 1 triệu. B m = 120.(1, 12)3
(1, 12)3− 1 triệu.
C m = 100.(1, 01)3
3 triệu.
Câu 35. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và
S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là
A. a
3√
6
a3
√ 6
a3
√ 3
a3
√ 6
48 .
Câu 36. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
4.
Câu 37 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
Trang 4(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b].
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 38. Tìm giới hạn lim2n+ 1
n+ 1
Câu 39. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab +1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
A. 5
7
Câu 40. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m= 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 41. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2
n+ 2 + a2− 4a
!
= 0 Tổng các phần tử của S bằng
Câu 42. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 43. [4-1244d] Trong tất cả các số phức z = a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab
5
9
23
100.
Câu 44. Khối đa diện đều loại {4; 3} có số đỉnh
Câu 45. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Bốn tứ diện đều và một hình chóp tam giác đều.
B Năm hình chóp tam giác đều, không có tứ diện đều.
C Một tứ diện đều và bốn hình chóp tam giác đều.
D Năm tứ diện đều.
Câu 46. Tính giới hạn lim
x→ +∞
2x+ 1
x+ 1
Câu 47. [1] Phương trình log3(1 − x)= 2 có nghiệm
Câu 48. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 49. Tính lim 1
1.2 + 1 2.3 + · · · + 1
n(n+ 1)
!
A. 3
Trang 5Câu 50. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 51. [3] Cho khối chóp S ABC có đáy là tam giác vuông tại B, BA = a, BC = 2a, S A = 2a, biết
S A ⊥ (ABC) Gọi H, K lần lượt là hình chiếu của A lên S B, S C Khoảng cách từ điểm K đến mặt phẳng (S AB)
A. 5a
2a
8a
a
9.
Câu 52. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
A. 9
11
Câu 53. Tính lim
x→−∞
x+ 1 6x − 2 bằng
A. 1
1
1
6.
Câu 54. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 6 đỉnh, 9 cạnh, 5 mặt D 5 đỉnh, 9 cạnh, 6 mặt.
Câu 55. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng S B và AD bằng
A a
√
√ 2
√
√ 2
2 .
Câu 56. Tính limcos n+ sin n
n2+ 1
Câu 57. Hàm số y= x + 1
x có giá trị cực đại là
Câu 58. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
√ 3
1
3
2.
Câu 59. [2D1-3] Cho hàm số y= −1
3x
3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R
A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C −2 ≤ m ≤ −1 D (−∞; −2] ∪ [−1;+∞)
Câu 60. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 61. Cho hình chóp S ABC có S B = S C = BC = CA = a Hai mặt (ABC) và (S AC) cùng vuông góc với (S BC) Thể tích khối chóp S ABC là
A. a
3√
3
a3√ 3
a3√ 3
a3√ 2
12 .
Câu 62. [3-12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 63. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d :
x= t
y= −1
z= −t
và hai mặt phẳng (P), (Q)
lần lượt có phương trình x+ 2y + 2z + 3 = 0, x + 2y + 2z + 7 = 0 Viết phương trình mặt cầu (S ) có tâm I thuộc đường thẳng d tiếp xúc với hai mặt phẳng (P) và (Q)
A (x − 3)2+ (y + 1)2+ (z + 3)2= 9
4. B (x+ 3)2+ (y + 1)2+ (z + 3)2= 9
4.
Trang 6C (x+ 3)2+ (y + 1)2+ (z − 3)2= 9
2+ (y − 1)2+ (z − 3)2= 9
4.
Câu 64. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tam giác.
B Hai hình chóp tứ giác.
C Một hình chóp tứ giác và một hình chóp ngũ giác.
D Một hình chóp tam giác và một hình chóp tứ giác.
Câu 65. Tính lim
x→2
x+ 2
x bằng?
Câu 66. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 67. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 3S h B V = 1
3S h. C V = 1
2S h. D V = S h
Câu 68. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 69. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√ 3
2√
3√ 3
24 .
Câu 70. Khẳng định nào sau đây đúng?
A Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.
B Hình lăng trụ đứng là hình lăng trụ đều.
C Hình lăng trụ tứ giác đều là hình lập phương.
D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.
Câu 71. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
4 < m < 0 D m > −5
4.
Câu 72. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z
A P= 2i B P= −1+ i
√ 3
2 . C P= −1 − i
√ 3
2 . D P= 2
Câu 73. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục thực.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Đường phân giác góc phần tư thứ nhất.
D Trục ảo.
Câu 74. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
C Phần thực là 3, phần ảo là −4 D Phần thực là −3, phần ảo là −4.
Câu 75. [2] Tập xác định của hàm số y= (x − 1)1
là
A. D = (1; +∞) B. D = R C. D = (−∞; 1) D. D = R \ {1}
Câu 76. Xét hai câu sau
Trang 7(I) ( f (x)+ g(x))dx = f(x)dx+ g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Cả hai câu trên sai B Cả hai câu trên đúng C Chỉ có (I) đúng D Chỉ có (II) đúng.
Câu 77. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối 20 mặt đều B Khối tứ diện đều C Khối 12 mặt đều D Khối bát diện đều.
Câu 78 Các khẳng định nào sau đây là sai?
A.
Z
f(x)dx= F(x)+C ⇒
Z
f(u)dx = F(u)+C B.
Z
f(x)dx= F(x) + C ⇒
Z
f(t)dt= F(t) + C
C.
Z
f(x)dx
!0
Z
k f(x)dx= kZ f(x)dx, k là hằng số
Câu 79. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là
A −1
1
Câu 80. Hàm số y= x3
− 3x2+ 4 đồng biến trên:
Câu 81. Tính lim
x→1
x3− 1
x −1
Câu 82. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?
A lim
x→a − f(x)= f (a) và lim
x→b − f(x)= f (b) B lim
x→a + f(x)= f (a) và lim
x→b − f(x)= f (b)
C lim
x→a + f(x)= f (a) và lim
x→b + f(x)= f (b) D lim
x→a − f(x)= f (a) và lim
x→b + f(x)= f (b)
Câu 83. Khối đa diện thuộc loại {5; 3} có bao nhiêu đỉnh, cạnh, mặt?
Câu 84. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 85. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 86. Khối đa diện đều loại {3; 5} có số mặt
Câu 87. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị
Câu 88. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
Câu 89. Hàm số f có nguyên hàm trên K nếu
Trang 8Câu 90. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?
Câu 91. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng
A T = e +2
e. B T = e + 3 C T = e + 1 D T = 4 + 2
e.
Câu 92. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√2 B m= ±√3 C m= ±3 D m= ±1
Câu 93. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là
Câu 94. [4-1212d] Cho hai hàm số y = x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y = |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 95. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 6 cạnh, 4 mặt B 4 đỉnh, 6 cạnh, 4 mặt C 4 đỉnh, 8 cạnh, 4 mặt D 3 đỉnh, 3 cạnh, 3 mặt.
Câu 96. Giá trị cực đại của hàm số y = x3− 3x+ 4 là
Câu 97. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?
Câu 98. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 99. Nếu một hình chóp đều có chiều cao và cạnh đáy cùng tăng lên n lần thì thể tích của nó tăng lên?
Câu 100 [1233d-2] Mệnh đề nào sau đây sai?
A.
Z
[ f (x) − g(x)]dx=
Z
f(x)dx −
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
B.
Z
f0(x)dx = f (x) + C, với mọi f (x) có đạo hàm trên R
C.
Z
k f(x)dx= kZ f(x)dx, với mọi k ∈ R, mọi f (x) liên tục trên R
D.
Z
[ f (x)+ g(x)]dx =
Z
f(x)dx+
Z
g(x)dx, với mọi f (x), g(x) liên tục trên R
Câu 101. [1-c] Giá trị của biểu thức log716
log715 − log71530 bằng
Câu 102. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 103. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. a
3√
6
a3√3
2a3√6
a3√3
4 .
Trang 9Câu 104 Trong các khẳng định sau, khẳng định nào sai?
A Cả ba đáp án trên.
B Nếu F(x), G(x) là hai nguyên hàm của hàm số f (x) thì F(x) − G(x) là một hằng số.
C F(x)= x là một nguyên hàm của hàm số f (x) = 2√x
D F(x)= x2 là một nguyên hàm của hàm số f (x)= 2x
Câu 105. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 106. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 107. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2
f(x3) − √ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 108. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
√
2
a
2a
a
4.
Câu 109. [1] Giá trị của biểu thức log √31
10 bằng
1
3.
Câu 110. Trong không gian cho hai điểm A, B cố định và độ dài AB= 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?
3
2.
Câu 111. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
3√ 2
a3
√ 3
a3
√ 2
12 .
Câu 112. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
1
2.
Câu 113. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 114. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 115. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 116. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Trang 10Câu 117. Tính lim 2n
2− 1 3n6+ n4
A. 2
Câu 118 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
Câu 119. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 120. Cho f (x)= sin2
x −cos2x − x Khi đó f0(x) bằng
A 1+ 2 sin 2x B −1+ sin x cos x C 1 − sin 2x D −1+ 2 sin 2x
Câu 121. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3có tất cả bao nhiêu nghiệm?
Câu 122 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 22 triệu đồng B 3, 03 triệu đồng C 2, 25 triệu đồng D 2, 20 triệu đồng.
Câu 123. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
27.
Câu 124. [2] Phương trình logx4 log2 5 − 12x
12x − 8
!
= 2 có bao nhiêu nghiệm thực?
Câu 125. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 126. Cho lăng trụ đều ABC.A0B0C0 có cạnh đáy bằng a Cạnh bên bằng 2a Thể tích khối lăng trụ ABC.A0
B0C0 là
A. a
3√
3
3√ 3
a3
3 .
Câu 127. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. 11a
2
a2√ 7
a2√ 2
a2√ 5
16 .
Câu 128. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 129. Khối đa diện đều loại {3; 3} có số cạnh
Câu 130 Mệnh đề nào sau đây sai?
A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)
B.
Z
f(x)dx
!0
= f (x)
C Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì
Z
f(x)dx = F(x) + C
D Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).
HẾT