1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề luyện thi thpt môn toán (501)

5 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề luyện thi thpt môn toán năm học 2022 – 2023
Trường học Trường Trung Học Phổ Thông Quốc Gia
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 5
Dung lượng 123,79 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Free LATEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 5 trang) Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0;[.]

Trang 1

Free L A TEX ĐỀ LUYỆN THI THPT QG MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 5 trang)

Mã đề 001 Câu 1 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung

điểm I của đoạn thẳng AB

A I(0; 1; −2) B I(0; 1; 2) C I(0; −1; 2) D I(1; 1; 2).

Câu 2 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?

A Có một tiệm cận ngang và không có tiệm cận đứng.

B Không có tiệm cận ngang và có một tiệm cận đứng.

C Không có tiệm cận.

D Có một tiệm cận ngang và một tiệm cận đứng .

Câu 3 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A −1

2

1

6.

Câu 4 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 5 Đạo hàm của hàm số y= log√

2

3x − 1

là:

A y′= 6

(3x − 1) ln 2. B y

(3x − 1) ln 2. C y

3x − 1

ln 2

3x − 1

ln 2

Câu 6 Cho hình phẳng (H) giới hạn bởi các đường y = x2; y= 0; x = 2 Tính thể tích V của khối tròn xoay tạo thành khi quay (H) quanh trục Ox

A V = 8

5 .

Câu 7 Cho hàm số y= 2x + 2017

x

+ 1 (1) Mệnh đề nào dưới đây là đúng?

A Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1

B Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng

C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng

x= −1, x = 1

D Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng

Câu 8 Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P) : x+ y − z − 1 = 0 Viết phương trình mặt cầu (S ) có tâm I(2; 1; −1) và tiếp xúc với (P)

A (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 3 B (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 3

C (S ) : (x − 2)2+ (y − 1)2+ (z + 1)2 = 1

3. D (S ) : (x+ 2)2+ (y + 1)2+ (z − 1)2= 1

3.

Câu 9 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng

Câu 10 Cho hàm số f (x)= cosx + x Khẳng định nào dưới đây đúng?

A.R f(x)= −sinx + x2

2 + C

Trang 2

Câu 11 Trong không gian Oxyz, cho điểm A(1; 2; 3) Điểm đối xứng với A qua mặt phẳng (Oxz) có tọa

độ là

A (1; −2; 3) B (−1; −2; −3) C (1; 2; −3) D (−1; 2; 3).

Câu 12 NếuR2

0 f(x)= 4 thì R02[1

2f(x) − 2] bằng

Câu 13 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A Q(1; 2; −3) B M(2; −1; −2) C N(2; 1; 2) D P(1; 2; 3).

Câu 14 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2

−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng

A. 1

11

3 .

Câu 15 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 16 Với a là số thực dương tùy ý, ln(3a) − ln(2a) bằng

A ln2

2.

Câu 17 Cho hai số phức z1= 1 + 2i và z2= 2 − 3i Khi đó số phức w = 3z1− z2+ z1z2có phần ảo bằng bao nhiêu?

Câu 18 Phần thực của số phức z= 1 + (1 + i) + (1 + i)2+ · · · + (1 + i)2016 là

A −22016 B −21008+ 1 C −21008 D 21008

Câu 19 Cho số phức z= 2 + 5i Tìm số phức w = iz + z

Câu 20 Số phức z= 1+ i

1 − i

!2016

+ 1 − i

1+ i

!2018

bằng

Câu 21 Đẳng thức nào đúng trong các đẳng thức sau?

A (1+ i)2018= −21009 B (1+ i)2018 = −21009i C (1+ i)2018 = 21009i D (1+ i)2018 = 21009

Câu 22 Trong các kết luận sau, kết luận nào sai

A Mô-đun của số phức z là số thực dương B Mô-đun của số phức z là số phức.

C Mô-đun của số phức z là số thực D Mô-đun của số phức z là số thực không âm Câu 23 Số phức z= (1+ i)2017

21008i có phần thực hơn phần ảo bao nhiêu đơn vị?

Câu 24 Cho số phức z= 3 − 2i.Tìm phần thực và phần ảo của số phức z

A Phần thực là−3 và phần ảo là −2i B Phần thực là −3 và phần ảo là−2.

C Phần thực là 3 và phần ảo là 2i D Phần thực là3 và phần ảo là 2.

Câu 25 Số phức z thỏa mãn điều kiện (3+ i)z + (1 − 2i)2 = 8 − 17i Khi đó hiệu phần thực và phần ảo của z là

Câu 26 ChoR01 f(x)= 2R v `a R1

0 g(x)= 5 R1

0 [ f (x) − 2g(x)] bằng

Trang 3

Câu 27 Hàm số F(x)= sin(2023x) là nguyên hàm của hàm số.

A f (x)= 2023cos(2023x) B f (x)= −2023cos(2023x)

2023cos(2023x).

Câu 28 Trong không gian Oxyz cho biết A(4; 3; 7); B(2; 1; 3) Mặt phẳng trung trực đoạn AB có phương

trình

A x − 2y+ 2z − 15 = 0 B x+ 2y + 2z + 15 = 0

Câu 29 Nguyên hàmR 1+ lnx

x dx(x > 0) bằng

A. 1

2ln

2x+ lnx + C B ln2x+ lnx + C C x+ 1

2ln

Câu 30 Cho hàm số f (x) có đạo hàm trên đoạn [−1; 2] và f (−1)= 2023, f (2) = −1 Tích phân R−12 f′(x) bằng:

Câu 31 Tìm nguyên hàm của hàm số f (x)= √ 1

2x+ 1.

C.R f(x)dx= √ 1

R

f(x)dx= 1

2

√ 2x+ 1 + C

Câu 32 Phương trình mặt phẳng đi qua A(2; 1; 1), có véc tơ pháp tuyến ⃗n= (−2; 1; −1) là

A 2x + y − z − 4 = 0 B −2x + y − z − 4 = 0 C −2x + y − z + 1 = 0 D −2x + y − z + 4 = 0.

Câu 33 Họ nguyên hàm của hàm số f (x)= cosx + sinx là

A F(x)= sinx − cosx + C B F(x)= −sinx − cosx + C

C F(x)= sinx + cosx + C D F(x)= −sinx + cosx + C

Câu 34 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 35 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2

Câu 36 Cho z1, z2, z3 là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?

A |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1|

C |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|

Câu 37 Cho số phức z thỏa mãn1 − √5i|z|= 2

√ 42

z +√3i+√15 Mệnh đề nào dưới đây là đúng?

A 3 < |z| < 5 B. 3

2 < |z| < 3 C. 1

2 < |z| < 2 D. 5

2 < |z| < 4

Câu 38 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

A |z|= 1

Câu 39 (Chuyên Lê Quý Đôn- Quảng Trị) Cho số phức ω và hai số thực a, b Biết z1 = ω + 2i và

z2 = 2ω − 3 là hai nghiệm phức của phương trình z2+ az + b = 0 Tính T = |z1|+ |z2|

A T = 2√13 B T = 4√13 C T = 2

√ 85

√ 97

Câu 40 Cho z1, z2, z3 thỏa mãn z1 + z2 + z3 = 0 và |z1| = |z2| = |z3| = 2

√ 2

3 Mệnh đề nào dưới đây đúng?

A |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2

√ 2

3 . B |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 1

Trang 4

C |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2 = 8

3. D |z1+ z2|2+ |z2+ z3|2+ |z3+ z1|2= 2√2

Câu 41 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|

Câu 42 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017

1 + z2017

2 + · · · + z2017

2015+ z2017

2016

Câu 43 Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= x4− 4x trên đoạn [−1; 2] lần lượt là M, m Tính tổng M+ m

Câu 44 Cho bất phương trình 3

√ 2(x−1) +1− 3x ≤ x2− 4x+ 3 Tìm mệnh đề đúng

A Bất phương trình vô nghiệm.

B Bất phương trình đúng với mọi x ∈ [ 1; 3].

C Bất phương trình có nghiệm thuộc khoảng (−∞; 1).

D Bất phương trình đúng với mọi x ∈ (4;+∞)

Câu 45 Cho hình chóp S ABCD có đáy ABCD là hình vuông Cạnh S A vuông góc với mặt phẳng

(ABCD); S A = 2a√3 Góc giữa hai mặt phẳng (S BC) và (ABCD) bằng 600 Gọi M, N lần lượt là trung điểm hai cạnh AB, AD Tính khoảng cách giữa hai đường thẳng MN và S C

A. 3a

6

3a√30

3a√6

a√15

Câu 46 Tìm tất cả các giá trị của tham số m để hàm số y= x2+ mx + 1

x+ 1 đạt cực tiểu tại điểm x= 0.

Câu 47 Cho biểu thức P= (ln a + logae)2+ ln2

a −(logae)2, với 0 < a , 1 Chọn mệnh đề đúng

Câu 48 Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A(−1; 2; 4), B(1; 2; 4), C(4; 4; 0) và mặt

phẳng (P) : x+2y+z−4 = 0 Giả sử M(a; b; c) là một điểm trên mặt phẳng (P) sao cho MA2+MB2+2MC2

nhỏ nhất Tính tổng a+ b + c

Câu 49 Trong không gian với hệ trục tọa độ Oxyz, gọi (P) là mặt phẳng đi qua hai điểm A(1; 1; 1), B(0; 1; 2)

và khoảng cách từ C(2; −1; 1) đến mặt phẳng (P) bằng3

√ 2

2 Giả sử phương trình mặt phẳng (P) có dạng

ax+ by + cz + 2 = 0 Tính giá trị abc

Câu 50 Cho m= log23; n= log52 Tính log22250 theo m, n

A log22250= 3mn+ n + 4

C log22250= 2mn+ n + 2

Trang 5

HẾT

Ngày đăng: 11/04/2023, 15:56

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

🧩 Sản phẩm bạn có thể quan tâm