1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn toán thptqg (245)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn toán thptqg
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Hà Nội
Định dạng
Số trang 12
Dung lượng 152,82 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, A[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

a3√ 5

a3√ 15

3√ 6

Câu 2. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= loga2 B log2a= − loga2 C log2a= 1

loga2. D log2a= 1

log2a.

Câu 3. Cho hàm số y= x3+ 3x2 Mệnh đề nào sau đây là đúng?

A Hàm số nghịch biến trên các khoảng (−∞; −2) và (0;+∞)

B Hàm số đồng biến trên các khoảng (−∞; −2) và (0;+∞)

C Hàm số nghịch biến trên khoảng (−2; 1).

D Hàm số đồng biến trên các khoảng (−∞; 0) và (2;+∞)

Câu 4. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 5. Điểm cực đại của đồ thị hàm số y = 2x3− 3x2− 2 là

Câu 6. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

A −3 − 4

Câu 7. Hàm số y= x + 1

x có giá trị cực đại là

Câu 8. [1] Một người gửi tiết kiệm 50 triệu đồng vào ngân hàng với lãi suất 7% một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm, số tiền lãi sẽ được nhập vào vốn ban đầu Sau 5 năm mới rút lãi thì người đó thu được số tiền lãi là

A 3, 5 triệu đồng B 50, 7 triệu đồng C 70, 128 triệu đồng D 20, 128 triệu đồng.

Câu 9. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 ≤ m ≤ −1 C (−∞; −2] ∪ [−1; +∞) D −2 < m < −1.

Câu 10. Khối đa diện thuộc loại {4; 3} có bao nhiêu đỉnh, cạnh, mặt?

Câu 11. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A −1

1

1

2.

Câu 12. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng

A a

√ 3

2a√3

a√3

3 .

Trang 2

Câu 13. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

Câu 14. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 15. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 16. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (2; 1; 6) B ~u= (2; 2; −1) C ~u= (3; 4; −4) D ~u= (1; 0; 2)

Câu 17. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

5.

Câu 18. [1] Tập xác định của hàm số y= 2x−1là

A. D = R \ {0} B. D = R \ {1} C. D = (0; +∞) D. D = R

Câu 19. [2] Tìm m để giá trị lớn nhất của hàm số y = 2x3+ (m2+ 1)2x

trên [0; 1] bằng 8

A m = ±√2 B m= ±√3 C m= ±1 D m= ±3

Câu 20. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là

Câu 21. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 22. [3-1131d] Tính lim 1

1 + 1

1+ 2 + · · · +

1

1+ 2 + · · · + n

!

A. 5

2.

Câu 23. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 24. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối lập phương B Khối bát diện đều C Khối tứ diện đều D Khối 12 mặt đều.

Câu 25. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 26. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 27. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

Trang 3

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

B.

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

C.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

Câu 28. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 29. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước

đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra

Câu 30. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 31. Khẳng định nào sau đây đúng?

A Hình lăng trụ đứng là hình lăng trụ đều.

B Hình lăng trụ tứ giác đều là hình lập phương.

C Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

Câu 32. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3

√ 3

a3

√ 3

12 .

Câu 33. Tính lim 2n

2− 1 3n6+ n4

3.

Câu 34. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

1

3.

Câu 35. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 36. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1

2 = y

1 = z+ 1

−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất

Câu 37. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức

P= (2x2+ y)(2y2+ x) + 9xy là

Câu 38. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Trang 4

Câu 39 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

u0(x)

u(x)dx= log |u(x)| + C

B F(x)= 1 + tan x là một nguyên hàm của hàm số f (x) = 1 + tan2x

C Nếu F(x) là một nguyên hàm của hàm số f (x) thì mọi nguyên hàm của hàm số f (x) đều có dạng

F(x)+ C, với C là hằng số

D F(x)= 5 − cos x là một nguyên hàm của hàm số f (x) = sin x

Câu 40. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 41. Cho các số x, y thỏa mãn điều kiện y ≤ 0, x2 + x − y − 12 = 0 Tìm giá trị nhỏ nhất của P =

xy+ x + 2y + 17

Câu 42. Khối đa diện đều loại {4; 3} có số đỉnh

Câu 43. Tìm giá trị nhỏ nhất của hàm số y= (x2− 2x+ 3)2− 7

Câu 44. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 45. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A lim

x→a + f(x)= lim

x→a − f(x)= a

C f (x) có giới hạn hữu hạn khi x → a D lim

x→a + f(x)= lim

x→a − f(x)= +∞

Câu 46. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3√ 6

a3√ 6

a3√ 2

6 .

Câu 47. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

7

3.

Câu 48. [1] Đạo hàm của hàm số y = 2x

A y0 = 1

0 = 2x ln 2 C y0 = 2x ln x D y0 = 1

2x ln x.

Câu 49. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?

Câu 50. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối lập phương B Khối 12 mặt đều C Khối bát diện đều D Khối tứ diện đều.

Câu 51. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 1 B T = e + 2

e. C T = 4 + 2

e. D T = e + 3

Câu 52. [1] Tập xác định của hàm số y= 4x2+x−2là

A. D = R B. D = R \ {1; 2} C. D = [2; 1] D. D = (−2; 1)

Trang 5

Câu 53. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 54. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là

Câu 55. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 6

a3

√ 3

2a3√ 6

9 .

Câu 56. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 57 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 58. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. 2a

57

a

√ 57

√ 57

19 .

Câu 59. [2] Cho hình chóp S ABC có S A = 3a và S A ⊥ (ABC) Biết AB = BC = 2a và ABCd = 120◦

Khoảng cách từ A đến mặt phẳng (S BC) bằng

A. 3a

Câu 60. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

a

√ 3

a

3.

Câu 61. Tứ diện đều thuộc loại

Câu 62. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

3√ 3

a3

√ 2

a3√3

24 .

Câu 63. Tính lim n −1

n2+ 2

Câu 64. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A −5

4 < m < 0 B m ≥ 0 C m ≤ 0 D m > −5

4.

Trang 6

Câu 65. Cho hai đường thẳng d và d cắt nhau Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành

d0?

Câu 66. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

9

2.

Câu 67. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 68. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 69. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc 45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3√ 15

a3

a3√ 15

5 .

Câu 70. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 71. Tính limcos n+ sin n

n2+ 1

Câu 72. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 73. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

2 . B V = πa3

√ 3

6 . C V = πa3

√ 6

6 . D V = πa3

√ 3

3 .

Câu 74. Tính giới hạn lim2n+ 1

3n+ 2

A. 2

1

3

2.

Câu 75. [2] Tổng các nghiệm của phương trình 3x−1.2x 2

= 8.4x−2là

Câu 76. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?

A y = logπ

2x

C y = log1 x D y = logaxtrong đó a= √3 − 2

Câu 77. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1

3|x−1| = 3m − 2 có nghiệm duy nhất?

Câu 78. Tính lim

x→ +∞

x −2

x+ 3

Câu 79. Vận tốc chuyển động của máy bay là v(t) = 6t2+ 1(m/s) Hỏi quãng đường máy bay bay từ giây thứ 5 đến giây thứ 15 là bao nhiêu?

Trang 7

Câu 80. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2

2 = y −3

3 = z+ 4

−5 và d

0 : x+ 1

3 = y −4

−2 = z −4

−1

A. x

1 = y

1 = z −1

x

2 = y −2

3 = z −3

−1 .

C. x −2

2 = y −2

3 = z −3

x −2

2 = y+ 2

2 = z −3

2 .

Câu 81. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp ngữ giác.

B Hai khối chóp tam giác.

C Hai khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp tứ giác.

Câu 82. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = e, m = 1

e. B M= e, m = 1 C M = 1

e, m = 0 D M = e, m = 0

Câu 83. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A − 1

1

e.

Câu 84. Trong không gian cho hai điểm A, B cố định và độ dài AB = 4 Biết rằng tập hợp các điểm M sao cho MA= 3MB là một mặt cầu Khi đó bán kính mặt cầu bằng?

A. 3

9

2.

Câu 85. Khối đa diện đều loại {3; 5} có số mặt

Câu 86. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 87. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300

Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho

A V = a3

3

2 . B V = 3a3√

3 C V = 3a3

√ 3

2 . D V = 6a3

Câu 88. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi

Câu 89. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 90. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 2x3ln 10. C y

0 = 1 − 2 log 2x

x3 D y0 = 1 − 2 ln 2x

x3ln 10 .

Câu 91. Giả sử ta có lim

x→ +∞f(x)= a và lim

x→ +∞f(x)= b Trong các mệnh đề sau, mệnh đề nào sai?

A lim

x→ +∞[ f (x) − g(x)]= a − b B lim

x→ +∞[ f (x)g(x)]= ab

C lim

x→ +∞[ f (x)+ g(x)] = a + b D lim

x→ +∞

f(x) g(x) = a

b.

Câu 92. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey+ 1 B xy0 = −ey

− 1 C xy0 = −ey+ 1 D xy0 = ey

− 1

Trang 8

Câu 93. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A −1

1

Câu 94. [2-c] Giá trị lớn nhất của hàm số f (x)= ex 3 −3x +3trên đoạn [0; 2] là

Câu 95. Hàm số nào sau đây không có cực trị

A y = x −2

2x+ 1. B y= x4− 2x+ 1. C y= x3− 3x. D y= x +

1

x.

Câu 96. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 97. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

8.

Câu 98. Khối đa diện đều loại {3; 5} có số cạnh

Câu 99. [2] Ông A vay ngắn hạn ngân hàng 100 triệu đồng với lãi suất 12% trên năm Ông muốn hoàn nợ ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi lần là như nhau và trả hết tiền nợ sau đúng 3 tháng kể từ ngày vay Hỏi theo cách đó, số tiền m mà ông A phải trả cho ngân hàng trong mỗi lần hoàn nợ là bao nhiêu? Biết rằng lãi suất ngân hàng không đổi trong thời gian ông A hoàn nợ

A m = (1, 01)3

(1, 01)3− 1 triệu. B m = 100.(1, 01)3

3 triệu.

C m = 120.(1, 12)3

(1, 12)3− 1 triệu. D m = 100.1, 03

3 triệu.

Câu 100. Cho f (x)= sin2

x −cos2x − x Khi đó f0(x) bằng

Câu 101. [4] Xét hàm số f (t) = 9t

9t + m2, với m là tham số thực Gọi S là tập tất cả các giá trị của m sao cho f (x)+ f (y) = 1, với mọi số thực x, y thỏa mãn ex +y≤ e(x+ y) Tìm số phần tử của S

Câu 102. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a

2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng

A. a

2a

a√2

a

3.

Câu 103. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 104. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 105. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?

A 6 đỉnh, 6 cạnh, 6 mặt B 6 đỉnh, 9 cạnh, 5 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 6 mặt.

Câu 106. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 9 lần B Tăng gấp 27 lần C Tăng gấp 3 lần D Tăng gấp 18 lần.

Trang 9

Câu 107. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 108. Dãy số nào sau đây có giới hạn là 0?

A. −5

3

!n

3

!n

3

!n

e

!n

Câu 109. Tìm giới hạn lim2n+ 1

n+ 1

Câu 110. Cho hàm số y= 3 sin x − 4 sin3x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Câu 111. Một chất điểm chuyển động trên trục với vận tốc v(t) = 3t2 − 6t(m/s) Tính quãng đường chất điểm đó đi được từ thời điểm t= 0(s) đến thời điểm t = 4(s)

Câu 112. [4-1213d] Cho hai hàm số y= x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y= |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 113. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x3−3mx2+m

nghịch biến trên khoảng (−∞;+∞)

Câu 114. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦

và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt

và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là

A. a

2√

5

a2

√ 2

11a2

a2

√ 7

8 .

Câu 115. [1] Tính lim1 − 2n

3n+ 1 bằng?

A. 2

2

1

Câu 116. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?

Câu 117. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

√ 3

√ 3

Câu 118. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 119. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 9

13

23

5

16.

Câu 120. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?

Trang 10

Câu 121. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 122. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 123. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 0) B Hàm số nghịch biến trên khoảng (1;+∞)

C Hàm số đồng biến trên khoảng (1; 2) D Hàm số nghịch biến trên khoảng (0; 1).

Câu 124. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành

A Hai hình chóp tam giác.

B Hai hình chóp tứ giác.

C Một hình chóp tam giác và một hình chóp tứ giác.

D Một hình chóp tứ giác và một hình chóp ngũ giác.

Câu 125. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng

1

2.

Câu 126. [12215d] Tìm m để phương trình 4x+

√ 1−x 2

− 4.2x+

√ 1−x 2

− 3m+ 4 = 0 có nghiệm

A 0 ≤ m ≤ 9

3

3

4.

Câu 127. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB = a, AD = b Khoảng cách giữa hai đường thẳng BB0và AC0bằng

a2+ b2 B. √ ab

a2+ b2 C. ab

2

a2+ b2

Câu 128. Khối đa diện loại {5; 3} có tên gọi là gì?

A Khối 12 mặt đều B Khối bát diện đều C Khối 20 mặt đều D Khối tứ diện đều.

Câu 129. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 130. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

HẾT

Ngày đăng: 11/04/2023, 14:00

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN