1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề kiểm tra thpt môn toán (898)

4 0 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề kiểm tra thpt môn toán
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề kiểm tra
Năm xuất bản 2022 – 2023
Thành phố Việt Nam
Định dạng
Số trang 4
Dung lượng 122,61 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Tìm tất cả các khoảng đồng biến của hàm số y = x − 2 √ x + 2017 A (0; 1[.]

Trang 1

Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN

NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT

(Đề kiểm tra có 4 trang)

Mã đề 001 Câu 1 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017

A (0;1

4;+∞) D (0; 1).

Câu 2 Giá trị lớn nhất của hàm số y= (√π)sin 2x

trên R bằng?

Câu 3 Cho a, b là hai số thực dương, khác 1 Đặt logab = m, tính theo m giá trị của P = loga 2b − log√

ba3

A. m

m2− 12

4m2− 3

m2− 12

Câu 4 Đường cong trong hình bên là đồ thị của hàm số nào?

A y= x4+ 2x2+ 1 B y= −x4+ 1 C y= −x4+ 2x2+ 1 D y = x4+ 1

Câu 5 Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= x2và đường thẳng y= x

A −1

1

2

3.

Câu 6 Đạo hàm của hàm số y= log√

2

3x − 1

là:

A y′= 2

(3x − 1) ln 2. B y

(3x − 1) ln 2. C y

3x − 1

ln 2

3x − 1

ln 2

Câu 7 Tìm tất cả các giá trị của tham số m để hàm số y= mx − sin xđồng biến trên R

Câu 8 Cho x, y, z là ba số thực khác 0 thỏa mãn 2x = 5y = 10−z Giá trị của biểu thức A = xy + yz + zxbằng?

Câu 9 Cho cấp số nhân (un) với u1 = 3 và công bội q = −2 Số hạng thứ 7 của cấp số nhân đó là

Câu 10 Cho khối lăng trụ đứng ABC.A

B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng

√ 3

3 a Tính thể tích của khối lăng trụ ABC.A

B′C′

A. a

2

a3

a3√ 2

a3

2.

Câu 11 Trong không gian Oxyz, cho mặt cầu (S ) : (x − 1)2 + (y + 2)2 + (z − 3)2 = 16và mặt phẳng (P) : 2x − 2y+ z + 6 = 0 Khẳng định nào sau đây đúng?

A (P) cắt mặt cầu (S ) B (P) không cắt mặt cầu (S ).

C (P) tiếp xúc mặt cầu (S ) D (P) đi qua tâm mặt cầu (S ).

Câu 12 Tập nghiệm của bất phương trình 52x +3> −1 là

Câu 13 BiếtR f(x)dx= sin 3x + C Mệnh đề nào sau đây là mệnh đề đúng?

A f (x)= cos 3x

3 . B f (x)= 3 cos 3x C f (x)= −3 cos 3x D f (x)= −cos 3x

Câu 14 Thể tích khối hộp chữ nhật có 3 kích thước là a; 2a;3a bằng

Trang 2

Câu 15 Cho hàm số y = f (x) xác định trên tập R và có f′

(x) = x2 − 5x+ 4 Khẳng định nào sau đây đúng?

A Hàm số đã cho nghịch biến trên khoảng (3;+∞)

B Hàm số đã cho đồng biến trên khoảng (1; 4).

C Hàm số đã cho nghịch biến trên khoảng (1; 4).

D Hàm số đã cho đồng biến trên khoảng (−∞; 3).

Câu 16 Cho khối chóp S ABCD có đáy ABCD là hình vuông với AB= a, S A⊥(ABCD) và S A = 2a Thể tích của khối chóp đã cho bằng

A. a

3

3

3

Câu 17 Biết z là số phức thỏa mãn z2+ 3z + 4 = 0 Khi đó mô-đun của số phức w = z + 1 bằng bao nhiêu ?

A |w|= √5 B |w|= √3 C |w|= √2 D |w|= 2√2

Câu 18 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?

Câu 19 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng

T = |z1|+ |z2|+ |z3|+ |z4|

Câu 20 Tất cả các căn bậc hai của số phức z= 15 − 8i là:

A 4 − i và −4+ i B 5 − 2i và −5+ 2i C 4 − i và 2+ 3i D 4+ i và −4 + i

Câu 21 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?

Câu 22 Biết z = 1 − 3i là một nghiệm của phương trình z2+ az + b = 0 ( với a, b ∈ R ) Khi đó hiệu

a − bbằng

Câu 23 Cho phương trình bậc hai az2+ bz + c = 0 (với a, b, c ∈ R) Xét trên tập số phức, trong các khẳng định sau, đâu là khẳng định sai?

A Nếu∆ = b2− 4ac < 0 thì phương trình đã vô nghiệm

B Phương trình đã cho có tổng hai nghiệm bằng −b

a .

C Phương trình đã cho luôn có nghiệm.

D Phương trình đã cho có tích hai nghiệm bằng c

a.

Câu 24 Biết x= 2 là một nghiệm của phương trình x2+ (m2− 1)x − 8(m − 1) = 0 (m là tham số phức

có phần ảo âm) Khi đó, mô-đun của số phức w= m2− 3m+ i bằng bao nhiêu ?

A |w|= 3√5 B |w|= √73 C |w|= √5 D |w|= 5

Câu 25 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0

Khi đó tổng phần thực và phần ảo của z0là

Câu 26 Trong không gian Oxyz, cho đường thẳng d : x −1

−1 = z+ 3

−2 Điểm nào dưới đây thuộc d?

A N(2; 1; 2) B Q(1; 2; −3) C P(1; 2; 3) D M(2; −1; −2).

Câu 27 Cho tập hợp A có 15 phần tử Số tập con gồm hai phần tử của A bằng

Câu 28 Có bao nhiêu cặp số nguyên (x; y) thỏa mãnlog3(x2+ y2+ x) + log2(x2+ y2) ≤ log3x+ log2(x2+

y2+ 24x)?

Trang 3

Câu 29 Phần ảo của số phức z= 2 − 3i là

Câu 30 Trên khoảng (0;+∞), đạo hàm của hàm số y = xπ là:

A y′= πxπ B y′ = πxπ−1 C y′ = π1xπ−1 D y′ = xπ−1

Câu 31 Cho hình chóp S ABC có đáy là tam giác vuông tại B, S A vuông góc với đáy và S A= AB (tham khảo hình bên)

Góc giữa hai mặt phẳng (S BC) và (ABC) bằng

Câu 32 Trên mặt phẳng tọa độ, điểm biểu diễn số phức z= 7 − 6i có tọa độ là

Câu 33 Cho hàm số y= ax4+ bx2+ c có đồ thị là đường cong trong hình bên Điểm cực tiểu của đồ thị hàm số đã cho có tọa độ là

Câu 34 Cho số phức z thỏa mãn (3 − 4i)z − 4

|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?

A. 9

4;+∞

!

4

!

4;

5 4

!

2;

9 4

!

Câu 35 Cho số phức z , 1 thỏa mãn z+ 1

z −1 là số thuần ảo Tìm |z| ?

A |z|= 1 B |z|= 1

Câu 36 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa

|w|, với w= z − 2 + 2i

A |w|min= 3

2. B |w|min= 1

2. C |w|min = 1 D |w|min = 2

Câu 37 Cho ba số phức z1, z2, z3thỏa mãn |z1|= |z2|= |z3|= 1 và z1+z2+z3 = 0 Tính A = z2

1+z2

2+z2

3

Câu 38 (Sở Nam Định) Tìm mô-đun của số phức z biết z − 4= (1 + i)|z| − (4 + 3z)i

A |z|= 1

Câu 39 Cho a, b, c là các số thực và z= −1

2+

√ 3

2 i Giá trị của (a+ bz + cz2)(a+ bz2+ cz) bằng

Câu 40 (Đặng Thức Hứa – Nghệ An) Cho số phức z= a + bi(a, b ∈ R) thỏa mãn điều kiện|z2+ 4| = 2|z| Đặt P= 8(b2− a2) − 12 Mệnh đề nào dưới đây đúng?

A P=

|z|2− 42 B P=

|z|2− 22 C P = (|z| − 4)2 D P = (|z| − 2)2

Câu 41 Cho số phứcz = a − 2 + (b + 1)i với a, b ∈ Z và|z| = 2 Tìm giá trị lớn nhất của biểu thức

S = a + 2b

Câu 42 Cho số phức z thỏa mãn |z|+ z = 0 Mệnh đề nào đúng?

A z là một số thực không dương B Phần thực của z là số âm.

Câu 43 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3

2 chỉ có cực tiểu mà không có cực đại

A −1 ≤ m ≤ 0 B −1 ≤ m < 0 C m > 1 D m < −1.

Trang 4

Câu 44 Cho đường thẳng∆ đi qua điểm M(2; 0; −1) và có véctơ chỉ phương −→a = (4; −6; 2) Phương trình tham số của đường thẳng∆ là

Câu 45 Đồ thị hàm số y= x3− 3x2− 2x cắt trục hoành tại mấy điểm?

Câu 46 Trong không gian Oxyz, cho mặt cầu (S ) : (x+ 1)2+ (y − 3)2+ (z + 2)2 = 9 Mặt phẳng (P) tiếp xúc với mặt cầu (S ) tại điểm A(−2; 1; −4) có phương trình là:

C −x+ 2y + 2z + 4 = 0 D x − 2y − 2z − 4= 0

Câu 47 Cho số phức z= (1 + i)2

(1+ 2i) Số phức z có phần ảo là

Câu 48. R 6x5dxbằng

A. 1

6x

Câu 49 Trong không gian với hệ toạ độ Oxyz, cho đường thẳng thẳng d : x+ 1

1 = z −2

1 Viết phương trình mặt phẳng (P) chứa đường thẳng d song song với trục Ox

A (P) : y − z + 2 = 0 B (P) : x − 2z + 5 = 0 C (P) : x − 2y + 1 = 0 D (P) : y + z − 1 = 0.

Câu 50 Số phức z= 2 − 3i có phần ảo là

HẾT

Ngày đăng: 11/04/2023, 11:16

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN