Kiểm tra LATEX ĐỀ KIỂM TRA THPT MÔN TOÁN NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI 50 PHÚT (Đề kiểm tra có 4 trang) Mã đề 001 Câu 1 Cho hàm số y = x− √ 2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận[.]
Trang 1Kiểm tra L A TEX ĐỀ KIỂM TRA THPT MÔN TOÁN
NĂM HỌC 2022 – 2023 THỜI GIAN LÀM BÀI: 50 PHÚT
(Đề kiểm tra có 4 trang)
Mã đề 001 Câu 1 Cho hàm số y= x−√2017 Mệnh đề nào dưới đây là đúng về đường tiệm cận của đồ thị hàm số?
A Có một tiệm cận ngang và không có tiệm cận đứng.
B Có một tiệm cận ngang và một tiệm cận đứng .
C Không có tiệm cận ngang và có một tiệm cận đứng.
D Không có tiệm cận.
Câu 2 Cho hình lập phương ABCD.A′
B′C′D′có cạnh bằng a Tính thể tích khối chóp D.ABC′
D′
A. a
3
a3
a3
a3
3.
Câu 3 Đạo hàm của hàm số y= log√
2
3x − 1
là:
A y′= 6
(3x − 1) ln 2. B y
3x − 1
ln 2
3x − 1
ln 2
(3x − 1) ln 2.
Câu 4 Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d : x −1
2 Viết phương trình mặt phẳng (P) đi qua điểm M(2; 0; −1)và vuông góc với d
A (P) : x − 2y − 2 = 0 B (P) : x − y + 2z = 0 C (P) : x − y − 2z = 0 D (P) : x + y + 2z = 0.
Câu 5 Tìm tất cả các khoảng đồng biến của hàm số y= x − 2√x+ 2017
A (0;1
4;+∞) D (0; 1).
Câu 6 BiếtR f(u)du= F(u) + C Mệnh đề nào dưới đây đúng?
A.R f(2x − 1)dx= 2F(2x − 1) + C B. R f(2x − 1)dx = 1
2F(2x − 1)+ C
C.R f(2x − 1)dx= F(2x − 1) + C D.R f(2x − 1)dx = 2F(x) − 1 + C
Câu 7 Cho hàm số y= 2x+ 2017
x
+ 1 (1) Mệnh đề nào dưới đây là đúng?
A Đồ thị hàm số (1) không có tiệm cận ngang và có đúng một tiệm cận đứng là đường thẳng x= −1
B Đồ thị hàm số (1) có đúng một tiệm cận ngang là đường thẳng y= 2 và không có tiệm cận đứng
C Đồ thị hàm số (1) không có tiệm cận ngang và có đúng hai tiệm cận đứng là các đường thẳng
x= −1, x = 1
D Đồ thị hàm số (1) có hai tiệm cận ngang là các đường thẳng y = −2, y = 2 và không có tiệm cận đứng
Câu 8 Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; 2; 0) và B(1; 0; 4) Tìm tọa độ trung
điểm I của đoạn thẳng AB
A I(1; 1; 2) B I(0; −1; 2) C I(0; 1; 2) D I(0; 1; −2).
Câu 9 Cho khối lăng trụ đứng ABC.A′
B′C′ có đáy ABC là tam giác vuông cân tại A,AB = a Biết khoảng cách từ A đến mặt phẳng (A′BC) bằng
√ 3
3 a Tính thể tích của khối lăng trụ ABC.A
′
B′C′
A. a
3√
2
a3√ 2
a3
a3
2.
Trang 2Câu 10 Cân phân công 3 ban tư môt tô 10 ban đê lam trưc nhât Hoi co bao nhiêu cach phân công khac
nhau
10
Câu 11 Nếu
6
R
1
f(x)= 2 vàR6
1
g(x)= −4 thìR6
1
( f (x)+ g(x)) bằng
Câu 12 Trong không gian Oxyz, cho mặt cầu (S ) có tâm I(−1; −4; 2) và điểmM(1; 2; 2)thuộc mặt cầu.
Phương trình của (S ) là
A (x+ 1)2+ (y + 4)2+ (z − 2)2 = √40 B (x − 1)2+ (y − 4)2+ (z + 2)2= 10
C (x − 1)2+ (y − 4)2+ (z + 2)2 = 40 D (x+ 1)2+ (y + 4)2+ (z − 2)2= 40
Câu 13 Trong không gian với hệ toạ độ Oxyz Cho đường thẳng d : x −2
−1 = x −1
A(2 ; 0 ; 3) Toạ độ điểm A′đối xứng với A qua đường thẳng d tương ứng là
A (10
2 ; −
4
3;
5
8
3; −
2
3;
7
3). C (2 ; −3 ; 1). D (
2
3; −
4
3;
5
3).
Câu 14 Cho hình thang cong (H) giới hạn bởi các đường y = √x, y = 0, x = 0, x = 4 Đường thẳng
x= k (0 < k < 4) chia hình (H) thành hai phần có diện tích là S1và S2như hình vẽ Để S1= 4S2 thì giá trị k thuộc khoảng nào sau đây?
A (3, 5; 3, 7)· B (3, 3; 3, 5)· C (3, 1; 3, 3)· D (3, 7; 3, 9)·.
Câu 15 Trên tập số phức, cho phương trình z2+ 2(m − 1)z + m2+ 2m = 0 Có bao nhiêu tham số m để phương trình đã cho có hai nghiệm phân biệt z1; z2thõa mãn
z1
2
+
z2
2
= 5
Câu 16 Cho hình chóp đều S ABCD có cạnh đáy bằng a√2 và đường cao S H bằng a
√ 2
2 Tính góc giữa mặt bên (S DC) và mặt đáy
Câu 17 Biết z là nghiệm phức có phần ảo dương của phương trình z2− 4z+ 13 = 0 Khi đó mô-đun của
số phức w= z2+ 2z bằng bao nhiêu?
A |w|= √13 B |w|= 5 C |w|= √37 D |w|= 5√13
Câu 18 Biết phương trình z2+ mz − m + 4 = 0 có hai nghiệm đều là số thuần ảo Khi đó tham số thực
mgần giá trị nào nhất trong các giá trị sau?
Câu 19 Phương trình (2 − i)z+ 3(1 + iz) = 7 + 8i có nghiệm là
Câu 20 Kí hiệu z1, z2, z3 và z4 là bốn nghiệm phức của phương trình z4 − z2 − 12 = 0 Tính tổng
T = |z1|+ |z2|+ |z3|+ |z4|
Câu 21 Hai số phức z1= 3 + i và z2= 2 − 3i là nghiệm của phương trình nào sau đây?
A z2− (5 − 2i)z+ 9 − 7i = 0 B z2− (1+ 4i)z + 9 − 7i = 0
C z2+ (5 − 2i)z − 9 + 7i = 0 D z2+ (1 + 4i)z − 9 + 7i = 0
Câu 22 Biết z0là nghiệm phức có phần ảo âm của phương trình z2− (3 − 2i)z+ 5 − i = 0
Khi đó tổng phần thực và phần ảo của z0là
Câu 23 Gọi z1, z2, z3là ba nghiệm phức của phương trình z3−z2+2 = 0 Khi đó tổngP = |z1+z2+z3+2−3i| bằng bao nhiêu?
Trang 3Câu 24 Tất cả các căn bậc hai của số phức z= 15 − 8i là:
A 4+ i và −4 + i B 4 − i và 2+ 3i C 4 − i và −4+ i D 5 − 2i và −5+ 2i
Câu 25 Tất cả các căn bậc bốn của 1 trong tập số phức có tổng các mô-đun bằng bao nhiêu?
Câu 26 Trong không gian Oxyz, mặt phẳng (P) : x+ y + z + 1 = 0 có một vectơ pháp tuyến là:
A.→−n4= (1; 1; −1) B.→−n3 = (1; 1; 1) C.→−n1 = (−1; 1; 1) D.→−n2 = (1; −1; 1)
Câu 27 Xét các số phức z thỏa mãn
z2− 3 − 4i
= 2 z
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
z
Giá trị của M2+ m2bằng
Câu 28 Trong không gian Oxyz, cho điểm A(0; 1; 2) và đường thẳng d : x −2
−3 Gọi (P) là mặt phẳng đi qua A và chứa d Khoảng cách từ điểm M(5; −1; 3) đến (P) bằng
A. 11
1
Câu 29 Trong không gian Oxyz, cho đường thẳng d : x −1
−1 = z+ 3
−2 Điểm nào dưới đây thuộc d?
A N(2; 1; 2) B Q(1; 2; −3) C P(1; 2; 3) D M(2; −1; −2).
Câu 30 Trong không gian Oxyz, góc giữa hai mặt phẳng (Oxy) và (Oyz) bằng
Câu 31 Cho số phức z= 2 + 9i, phần thực của số phức z2bằng
Câu 32 Có bao nhiêu số nguyên x thỏa mãn log3x
2− 16
343 < log7x2− 16
Câu 33 Tập nghiệm của bất phương trình log(x − 2) > 0 là
Câu 34 (Chuyên KHTH-Lần 4) Với hai số phức z1, z2thỏa mãn z1+ z2 = 8 + 6i và |z1− z2|= 2 Tìm giá trị lớn nhất của biểu thức P= |z1|+ |z2|
Câu 35 Cho biết |z1|+ |z2|= 3.Tìm giá trị nhỏ nhất của biểu thức.P = |z1+ z2|2+ |z1− z2|2
Câu 36 Giả sử z1, z2, , z2016là 2016 nghiệm phức phân biệt của phương trình z2016+z2015+· · ·+z+1 = 0 Tính giá trị của biểu thức P= z2017
1 + z2017
2 + · · · + z2017
2015+ z2017
2016
Câu 37 Cho số phức z , 1 thỏa mãn z+ 1
z −1 là số thuần ảo Tìm |z| ?
A |z|= 1 B |z|= 1
Câu 38 Biết rằng |z1+ z2|= 3 và |z1|= 3.Tìm giá trị nhỏ nhất của |z2|?
1
2.
Câu 39 Cho số phức z thỏa mãn (3 − 4i)z − 4
|z| = 8.Trên mặt phẳng Oxy, khoảng cách từ gốc tọa độ đến điểm biểu diễn số phức thuộc tập hợp nào sau đây?
A. 9
4;+∞
!
4;
5 4
!
2;
9 4
!
4
!
Trang 4Câu 40 Cho z1, z2là hai số phức thỏa mãn |2z − 1|= |2 + iz|, biết |z1− z2|= 1 Tính giá trị của biểu thức
P= |z1+ z2|
√ 3
√ 2
2 .
Câu 41 Cho số phức z thỏa mãn |z2− 2z+ 5| = |(z − 1 + 2i)(z + 3i − 1)| Tìm giá trị nhỏ nhất |w|mincủa
|w|, với w= z − 2 + 2i
A |w|min = 1
2. B |w|min = 3
2. C |w|min = 1 D |w|min= 2
Câu 42 Cho z1, z2, z3là các số phức thỏa mãn |z1|= |z2|= |z3|= 1 Khẳng định nào sau đây đúng?
A |z1+ z2+ z3|= |z1z2+ z2z3+ z3z1| B |z1+ z2+ z3| , |z1z2+ z2z3+ z3z1|
C |z1+ z2+ z3|> |z1z2+ z2z3+ z3z1| D |z1+ z2+ z3|< |z1z2+ z2z3+ z3z1|
Câu 43 Cho mặt phẳng (α) : 2x − 3y − 4z+ 1 = 0 Khi đó, một véctơ pháp tuyến của (α)?
A.→−n = (−2; 3; 4) B.→−n = (−2; 3; 1) C.→−n = (2; 3; −4) D.→−n = (2; −3; 4)
Câu 44 Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(3; 2; 1), B(1; −1; 2), C(1; 2; −1) Tìm
tọa độ điểm M thỏa mãn−−→OM = 2−AB −→ −AC.→
A M(−2; 6; −4) B M(−2; −6; 4) C M(2; −6; 4) D M(5; 5; 0).
Câu 45 Thể tích khối lập phương có cạnh 3a là:
Câu 46 Hàm số y = (x + m)3+ (x + n)3 − x3 đồng biến trên khoảng (−∞; +∞) Giá trị nhỏ nhất của biểu thức P= 4(m2+ n2) − m − n bằng
−1
16.
Câu 47 Tìm tất cả các giá trị thực của tham số mđể hàm số y= (m + 1)x4− mx2+ 3
2 chỉ có cực tiểu mà không có cực đại
A m < −1 B m > 1 C −1 ≤ m < 0 D −1 ≤ m ≤ 0.
Câu 48 Số phức z= 5 − 2i có điểm biểu diễn trên mặt phẳng tọa độ là M Tìm tọa độ điểm M
Câu 49 Đường cong trong hình bên dưới là đồ thị của hàm số nào dưới đây?
A y= −x3+ 3x2+ 2 B y= x3− 3x2+ 2 C y= −x4+ 2x2+ 2 D y= x4− 2x2+ 2
Câu 50 Trong các số phức z thỏa mãn
z − i
=
¯z − 2 − 3i
Hãy tìm z có môđun nhỏ nhất
A z= 27
5 + 6
5−
27
5 −
6
5 + 27
5 i.
HẾT