1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 6 (692)

12 1 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 6 (692)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Định dạng
Số trang 12
Dung lượng 153,43 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, c[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A. a

57

√ 57

2a√57

19 .

Câu 2. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 3. Tính lim

x→5

x2− 12x+ 35

25 − 5x

2

Câu 4. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:

Câu 5. Dãy số nào sau đây có giới hạn là 0?

A. 1

3

!n

3

!n

e

!n

3

!n

Câu 6. [2-c] Giá trị lớn nhất của hàm số y = xe−2x 2

trên đoạn [1; 2] là

1

e3

Câu 7. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1+ i

√ 3

√ 3

2 . D P= 2i

Câu 8. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

B Nếu

Z

f(x)dx=Z g(x)dx thì f (x)= g(x), ∀x ∈ R

C Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

D Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

Câu 9. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 10. Dãy số nào sau đây có giới hạn khác 0?

A. sin n

1

1

n+ 1

n .

Câu 11. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G

la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0

B0C0D0

A k = 1

18.

Câu 12. Hàm số y= x + 1

x có giá trị cực đại là

Trang 2

Câu 13. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 14. Thể tích của khối lăng trụ tam giác đều có cạnh bằng 1 là:

A.

3

3

√ 3

√ 3

2 .

Câu 15 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn

hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng

5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?

A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 22 triệu đồng D 2, 25 triệu đồng.

Câu 16. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A.

2

2 e

π

2e

π

√ 3

2 e

π

6

Câu 17. [2] Đạo hàm của hàm số y = x ln x là

A y0 = ln x − 1 B y0 = 1 − ln x C y0 = x + ln x D y0 = 1 + ln x

Câu 18. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là

3√ 3

3

Câu 19. Khối đa diện thuộc loại {3; 3} có bao nhiêu đỉnh, cạnh, mặt?

A 4 đỉnh, 8 cạnh, 4 mặt B 3 đỉnh, 3 cạnh, 3 mặt C 6 đỉnh, 6 cạnh, 4 mặt D 4 đỉnh, 6 cạnh, 4 mặt.

Câu 20. Khẳng định nào sau đây đúng?

A Hình lăng trụ tứ giác đều là hình lập phương.

B Hình lăng trụ đứng là hình lăng trụ đều.

C Hình lăng trụ đứng có đáy là đa giác đều là hình lăng trụ đều.

D Hình lăng trụ có đáy là đa giác đều là hình lăng trụ đều.

Câu 21. [1] Tính lim

x→3

x −3

x+ 3 bằng?

Câu 22. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Câu 23. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

A.

"

2;5

2

!

B. " 5

2; 3

!

Câu 24. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

D Câu (I) sai.

Trang 3

Câu 25. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 26. [2] Phương trình log4(x+ 1)2+ 2 = log√

2

4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?

Câu 27. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng

A. 1

1

1

2.

Câu 28. Giá trị của giới hạn lim2 − n

n+ 1 bằng

Câu 29. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 30. Giá trị cực đại của hàm số y = x3

− 3x2− 3x+ 2

A −3 − 4

2 D 3+ 4√2

Câu 31. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính

f(2)+ f (4)?

Câu 32. Khối đa diện đều loại {3; 4} có số cạnh

Câu 33. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là

A. a

3√

3

a3√3

3√

3√ 3

3 .

Câu 34. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. D V = 3S h

Câu 35. Khối đa diện đều loại {5; 3} có số cạnh

Câu 36. Khối đa diện nào có số đỉnh, cạnh, mặt ít nhất?

Câu 37. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y = ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2

Câu 38. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

A m > −5

5

4 < m < 0 C m ≥ 0 D m ≤ 0.

Câu 39. Khối đa diện đều loại {3; 3} có số cạnh

Câu 40 Các khẳng định nào sau đây là sai?

A.

Z

f(x)dx

!0

Z

f(x)dx= F(x) + C ⇒

Z

f(t)dt= F(t) + C

C.

Z

f(x)dx= F(x)+C ⇒

Z

f(u)dx = F(u)+C D.

Z

k f(x)dx= k

Z

f(x)dx, k là hằng số

Trang 4

Câu 41. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 42. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là

3√

3

4a3

4a3√ 3

2a3

3 .

Câu 43. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

A. 3

Câu 44. [3-1132d] Cho dãy số (un) với un = 1+ 2 + · · · + n

n2+ 1 Mệnh đề nào sau đây đúng?

A lim un= 1

Câu 45. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.

Câu 46. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 47. [2] Cho hàm số f (x)= 2x.5x

Giá trị của f0(0) bằng

A f0(0)= 10 B f0(0)= ln 10 C f0(0)= 1 D f0(0)= 1

ln 10.

Câu 48. Xác định phần ảo của số phức z= (√2+ 3i)2

√ 2

Câu 49. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 50. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 51. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 52. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu

A Với mọi x ∈ [a; b], ta có F0(x)= f (x)

B Với mọi x ∈ [a; b], ta có F0(x)= f (x)

C Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0

(a+)= f (a) và F0

(b−)= f (b)

D Với mọi x ∈ (a; b), ta có f0(x)= F(x)

Câu 53. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3

x − m nghịch biến trên khoảng (0;+∞)?

Câu 54. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 55. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng (−∞; 2) B Hàm số đồng biến trên khoảng (0; 2).

C Hàm số nghịch biến trên khoảng (0; 2) D Hàm số đồng biến trên khoảng (0;+∞)

Trang 5

Câu 56. Cho I = 3

0

x

4+ 2√x+ 1dx =

a

d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a

d là phân số tối giản Giá trị P= a + b + c + d bằng?

Câu 57. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = 4 +2

e. B T = e + 1 C T = e + 3 D T = e + 2

e.

Câu 58. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 59. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 60. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2

Câu 61. Khối đa diện đều loại {4; 3} có số mặt

Câu 62. [1] Tính lim 1 − n

2

2n2+ 1 bằng?

A. 1

1

1

2.

Câu 63. Cho hình chóp S ABCD có đáy ABCD là hình thang vuông tại A và D; AD= CD = a; AB = 2a; tam giác S AB đều và nằm trong mặt phẳng vuông góc với (ABCD) Thể tích khối chóp S ABCD là

A. a

3√

3

3√

3√ 3

a3

√ 2

2 .

Câu 64. Bát diện đều thuộc loại

Câu 65. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 66. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x

A. 9

11

Câu 67. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 68. Khối đa diện thuộc loại {3; 4} có bao nhiêu đỉnh, cạnh, mặt?

Câu 69. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a√2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

2

a3√ 6

a3√ 6

a3√ 6

18 .

Câu 70. Khối đa diện đều loại {5; 3} có số mặt

Trang 6

Câu 71. Tổng diện tích các mặt của một khối lập phương bằng 54cm2.Thể tích của khối lập phương đó là:

Câu 72. [1] Giá trị của biểu thức 9log3 12bằng

Câu 73. [1] Tập xác định của hàm số y= 4x 2 +x−2là

A. D = R B. D = (−2; 1) C. D = [2; 1] D. D = R \ {1; 2}

Câu 74. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

√ 3

√ 3

3 .

Câu 75. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π

!x 3 −3mx 2 +m

nghịch biến trên khoảng (−∞;+∞)

Câu 76. Tính giới hạn lim

x→−∞

x2+ 3x + 5 4x − 1

A −1

1

4.

Câu 77. Khối đa diện đều loại {3; 4} có số mặt

Câu 78. Khi chiều cao của hình chóp đều tăng lên n lần nhưng mỗi cạnh đáy giảm đi n lần thì thể tích của nó

A Tăng lên (n − 1) lần B Tăng lên n lần C Giảm đi n lần D Không thay đổi.

Câu 79. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 80. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

1

Câu 81. Thể tích của khối lập phương có cạnh bằng a√2

A V = a3√

3√ 2

3 .

Câu 82. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 83. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó

A F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số

B Cả ba câu trên đều sai.

C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số

D F(x)= G(x) trên khoảng (a; b)

Trang 7

Câu 84 Phát biểu nào sau đây là sai?

A lim 1

n = 0

Câu 85. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 86. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là

3√

3

a3

a3

4a3√ 3

3 .

Câu 87. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và

BC là a

3

4 Khi đó thể tích khối lăng trụ là

A. a

3√

3

a3√3

a3√3

a3√3

12 .

Câu 88. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

13 .

Câu 89. Tính limcos n+ sin n

n2+ 1

Câu 90. Cho hàm số y= x3

− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

!

3; 1

!

C Hàm số nghịch biến trên khoảng −∞;1

3

! D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 91. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng

Câu 92. Khối đa diện đều loại {4; 3} có số cạnh

Câu 93. Khối lập phương có bao nhiêu đỉnh, cạnh mặt?

Câu 94. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là

A M = e−2+ 1; m = 1 B M = e−2+ 2; m = 1

C M = e2− 2; m = e−2+ 2 D M = e−2− 2; m= 1

Câu 95. Tính lim7n

2− 2n3+ 1 3n3+ 2n2+ 1

A. 7

-2

Câu 96. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là

Trang 8

Câu 97. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Câu 98. [4-1246d] Trong tất cả các số phức z thỏa mãn |z − i|= 1 Tìm giá trị lớn nhất của |z|

√ 3

Câu 99. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B (−∞; −2]∪[−1; +∞) C −2 ≤ m ≤ −1 D −2 < m < −1.

Câu 100. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC

Câu 101. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 102. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 103. Cho hình chóp S ABC có dBAC = 90◦,ABCd = 30◦

; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 3

2√

3√ 2

24 .

Câu 104. [2] Cho hình chóp tứ giác S ABCD có tất cả các cạnh đều bằng a Khoảng cách từ D đến đường thẳng S B bằng

A. a

a√3

a

3.

Câu 105. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

3√

3

8a3

√ 3

4a3

√ 3

a3

√ 3

9 .

Câu 106. [1] Cho a > 0, a , 1 Giá trị của biểu thức alog√a 5bằng

A.

Câu 107. [3] Cho hàm số f (x)= ln 2017 − ln x+ 1

x

! Tính tổng S = f0

(1)+ f0

(2)+ · · · + f0

(2017)

4035

2017

Câu 108. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0

(e)= 2m + 1

A m = 1+ 2e

4 − 2e. B m= 1+ 2e

4e+ 2. C m=

1 − 2e

4 − 2e. D m= 1 − 2e

4e+ 2.

Câu 109. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng

1728

1637

1079

4913.

Câu 110. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng

A. 3b+ 3ac

3b+ 3ac

3b+ 2ac

3b+ 2ac

c+ 3 .

Trang 9

Câu 111. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2

ex trên đoạn [−1; 1] Khi đó

A M = 1

e, m = 0 B M= e, m = 1 C M = e, m = 1

e. D M = e, m = 0

Câu 112. Xét hai câu sau

(I)

Z

( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)

(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)

Trong hai câu trên

A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai câu trên sai D Cả hai câu trên đúng.

Câu 113. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

6

a3

√ 6

a3

√ 3

a3

√ 6

8 .

Câu 114. [2] Tập xác định của hàm số y= (x − 1)1

A. D = (1; +∞) B. D = R C. D = (−∞; 1) D. D = R \ {1}

Câu 115. Tính lim

√ 4n2+ 1 − √n+ 2 2n − 3 bằng

Câu 116. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 117. [4-1228d] Cho phương trình (2 log23x −log3x −1)

4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?

Câu 118. [12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là

Câu 119. [1] Cho a là số thực dương tùy ý khác 1 Mệnh đề nào dưới đây đúng?

A log2a= − loga2 B log2a= 1

loga2. C log2a= 1

log2a. D log2a= loga2

Câu 120. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1 thỏa mãn |z1− 2 − i| = 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1gần giá trị nào nhất?

Câu 121. Tính lim 2n − 3

2n2+ 3n + 1 bằng

Câu 122. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là

9

2

1

5.

Câu 123. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?

Trang 10

Câu 124 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?

A Nhị thập diện đều B Thập nhị diện đều C Bát diện đều D Tứ diện đều.

Câu 125. Giá trị lớn nhất của hàm số y= 2mx+ 1

m − x trên đoạn [2; 3] là −

1

3 khi m nhận giá trị bằng

Câu 126. Trong không gian với hệ tọa độ Oxyz, cho hình hộp ABCD.A0B0C0D0, biết tạo độ A(−3; 2; −1), C(4; 2; 0), B0(−2; 1; 1), D0(3; 5; 4) Tìm tọa độ đỉnh A0

A A0(−3; 3; 1) B A0(−3; −3; 3) C A0(−3; −3; −3) D A0(−3; 3; 3)

Câu 127. [3-12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 128. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 129. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

x→a + f(x)= lim

x→a − f(x)= a

C lim

x→a + f(x)= lim

x→a − f(x)= +∞

Câu 130. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

HẾT

Ngày đăng: 11/04/2023, 11:01

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN