TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [3 12213d] Có bao nhiêu giá trị nguyên của m để phương trì[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3-12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 2. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 3. Giá trị lớn nhất của hàm số y= 2mx+ 1
m − x trên đoạn [2; 3] là −
1
3 khi m nhận giá trị bằng
Câu 4. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối lập phương B Khối bát diện đều C Khối 12 mặt đều D Khối tứ diện đều.
Câu 5. Tập các số x thỏa mãn 2
3
!4x
≤ 3 2
!2−x là
5
#
"
−2
3;+∞
!
3
# D. " 2
5;+∞
!
Câu 6. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a và S A ⊥ (ABCD) Mặt bên (S CD) hợp với đáy một góc 60◦ Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3√3
a3√3
3√ 3
Câu 7. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m ≥ 1
1
1
1
4.
Câu 8. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?
Câu 9. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m
A 8
√
√
√ 3
Câu 10. [3-1121d] Sắp 3 quyển sách Toán và 3 quyển sách Vật Lý lên một kệ dài Tính xác suất để hai quyển sách cùng một môn nằm cạnh nhau là
A. 2
1
1
9
10.
Câu 11. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 12. [1] Hàm số nào đồng biến trên khoảng (0;+∞)?
A y = logπ
2x
C y = log1 x D y = logaxtrong đó a= √3 − 2
Trang 2Câu 13. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = −ey
− 1
Câu 14. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Câu 15. Cho
Z 1
0
xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b
A. 1
1
2.
Câu 16. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 17. Khối đa diện đều loại {3; 4} có số mặt
Câu 18. Khối đa diện đều loại {5; 3} có số đỉnh
Câu 19. [3-1212h] Cho hình lập phương ABCD.A0B0C0D0, gọi E là điểm đối xứng với A0 qua A, gọi G
la trọng tâm của tam giác EA0C0 Tính tỉ số thể tích k của khối tứ diện GA0B0C0 với khối lập phương ABCD.A0
B0C0D0
A k = 1
6.
Câu 20. Khối chóp ngũ giác có số cạnh là
Câu 21. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√
√ 3
Câu 22. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
8.
Câu 23. Cho chóp S ABCD có đáy ABCD là hình vuông cạnh a Biết S A ⊥ (ABCD) và S A = a√3 Thể tích của khối chóp S ABCD là
A. a
3√
3
3√
3√ 3
a3
4 .
Câu 24 Khối đa diện đều nào sau đây có mặt không phải là tam giác đều?
A Bát diện đều B Thập nhị diện đều C Nhị thập diện đều D Tứ diện đều.
Câu 25. [4-1121h] Cho hình chóp S ABCD đáy ABCD là hình vuông, biết AB = a, ∠S AD = 90◦
và tam giác S AB là tam giác đều Gọi Dt là đường thẳng đi qua D và song song với S C Gọi I là giao điểm của Dt
và mặt phẳng (S AB) Thiết diện của hình chóp S ABCD với mặt phẳng (AIC) có diện tích là
A. 11a
2
a2√7
a2√2
a2√5
16 .
Câu 26. [1] Tính lim1 − 2n
3n+ 1 bằng?
2
2
3.
Trang 3Câu 27. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. 1
2;+∞
!
2
!
2;+∞
!
2
!
Câu 28. [2] Anh An gửi số tiền 58 triệu đồng vào ngân hàng theo hình thức lãi kép và ổn định trong 9 tháng thì lĩnh về được 61.758.000 Hỏi lãi suất ngân hàng mỗi tháng là bao nhiêu? Biết rằng lãi suất không thay đổi trong thời gian gửi
Câu 29. [2] Cho hàm số f (x)= 2x.5x
Giá trị của f0(0) bằng
ln 10. C f
0 (0)= 10 D f0(0)= ln 10
Câu 30. [1] Biết log6 √a= 2 thì log6abằng
Câu 31. [1] Cho a > 0, a , 1 Giá trị của biểu thức log1 a2 bằng
1
2.
Câu 32. Hàm số y= x3− 3x2+ 4 đồng biến trên:
Câu 33. Dãy số nào sau đây có giới hạn là 0?
A. 5
3
!n
e
!n
3
!n
3
!n
Câu 34. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
A. a
3√
2
a3√3
a3√3
2√ 2
Câu 35. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là
sai?
(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)
(II) Nếu f liên tục trên D thì f có nguyên hàm trên D
(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số
A Không có câu nào
sai
Câu 36. Khối đa diện đều loại {3; 4} có số cạnh
Câu 37. Cho hình chóp S ABC Gọi M là trung điểm của S A Mặt phẳng BMC chia hình chóp S ABC thành
A Hai hình chóp tam giác.
B Một hình chóp tam giác và một hình chóp tứ giác.
C Hai hình chóp tứ giác.
D Một hình chóp tứ giác và một hình chóp ngũ giác.
Câu 38. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 39. Cho hình chóp S ABCD có đáy ABCD là hình vuông biết S A ⊥ (ABCD), S C = a và S C hợp với đáy một góc bằng 60◦ Thể tích khối chóp S ABCD là
A. a
3√
3
a3√6
a3√2
a3√3
24 .
Trang 4Câu 40. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Câu 41. Khối lập phương thuộc loại
Câu 42. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
√
Câu 43. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 44. [1] Tính lim
x→3
x −3
x+ 3 bằng?
Câu 45. Nếu không sử dụng thêm điểm nào khác ngoài các đỉnh của hình lập phương thì có thể chia hình lập phương thành
A Một tứ diện đều và bốn hình chóp tam giác đều.
B Bốn tứ diện đều và một hình chóp tam giác đều.
C Năm tứ diện đều.
D Năm hình chóp tam giác đều, không có tứ diện đều.
Câu 46. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AD = 2a, AB = a Gọi H là trung điểm của AD, biết S H ⊥ (ABCD), S A= a√5 Thể tích khối chóp S ABCD là
A. 2a
3√
3
2a3
4a3√ 3
4a3
3 .
Câu 47. [1] Đạo hàm của làm số y = log x là
0 = ln 10
0 = 1
0 = 1
xln 10.
Câu 48. Tính lim
x→1
x3− 1
x −1
Câu 49. Khối lăng trụ tam giác có bao nhiêu đỉnh, cạnh, mặt?
A 6 đỉnh, 9 cạnh, 6 mặt B 6 đỉnh, 6 cạnh, 6 mặt C 5 đỉnh, 9 cạnh, 6 mặt D 6 đỉnh, 9 cạnh, 5 mặt.
Câu 50. [2] Cho hàm số y= ln(2x + 1) Tìm m để y0
(e)= 2m + 1
A m = 1 − 2e
4 − 2e. B m= 1+ 2e
4 − 2e. C m= 1 − 2e
4e+ 2. D m=
1+ 2e 4e+ 2.
Câu 51. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 52. Xác định phần ảo của số phức z= (√2+ 3i)2
A 6
√
√
Câu 53. [12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 = 0
có ít nhất một nghiệm thuộc đoạnh1; 3
√
3i
Câu 54. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 55. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Trang 5Câu 56. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3
√
a2bằng
Câu 57. [3] Cho hình lập phương ABCD.A0B0C0D0 có cạnh bằng a Khoảng cách giữa hai mặt phẳng (AB0C) và (A0C0D) bằng
A. a
√
3
a√3
2a√3
√ 3
Câu 58. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 59 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx B.
Z
k f(x)dx= f Z f(x)dx, k ∈ R, k , 0
C.
Z
( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.
Z
f(x)g(x)dx=Z f(x)dx
Z g(x)dx
Câu 60. Giá trị của lim
x→1(2x2− 3x+ 1) là
Câu 61. [1231h] Trong không gian với hệ tọa độ Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng d : x −2
2 = y −3
3 = z+ 4
−5 và d
0 : x+ 1
3 = y −4
−2 = z −4
−1
A. x −2
2 = y −2
3 = z −3
x
2 = y −2
3 = z −3
−1 .
C. x
1 = y
1 = z −1
x −2
2 = y+ 2
2 = z −3
2 .
Câu 62. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 63. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 64. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 65. [12218d] Cho a > 0, b > 0 thỏa mãn log3a+2b+1(9a2+ b2+ 1) + log6ab+1(3a+ 2b + 1) = 2 Giá trị của a+ 2b bằng
5
Câu 66. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
A Phần thực là −3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.
Câu 67. Khối đa diện đều loại {3; 5} có số mặt
Câu 68. [2-c] Giá trị nhỏ nhất của hàm số y = (x2− 2)e2xtrên đoạn [−1; 2] là
Câu 69. Hàm số y= x3− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 70. Khối đa diện đều loại {4; 3} có số mặt
Trang 6Câu 71. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 72. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số đỉnh của khối chóp bằng 2n+ 1
B Số mặt của khối chóp bằng 2n+1.
C Số cạnh của khối chóp bằng 2n.
D Số mặt của khối chóp bằng số cạnh của khối chóp.
Câu 73. [1] Tập nghiệm của phương trình log2(x2− 6x+ 7) = log2(x − 3) là
Câu 74. [1] Tập xác định của hàm số y= 2x−1là
A. D = R \ {1} B. D = R C. D = R \ {0} D. D = (0; +∞)
Câu 75. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√6
a√3
2 .
Câu 76. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 77. [3-c] Giá trị nhỏ nhất và giá trị lớn nhất của hàm số f (x) = 2sin 2 x+ 2cos 2 x
lần lượt là
√
√
√
2 và 3
Câu 78. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|
Câu 79. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2− 2 ln x trên [e−1; e] là
A M = e−2− 2; m= 1 B M = e2− 2; m = e−2+ 2
C M = e−2+ 2; m = 1 D M = e−2+ 1; m = 1
Câu 80. Tính giới hạn lim
x→2
x2− 5x+ 6
x −2
Câu 81. [2-c] Giá trị lớn nhất của hàm số y = ex
cos x trên đoạn
0;π 2
là
2e
π
√ 3
2 e
π
√ 2
2 e
π
4
Câu 82. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật, biết S A ⊥ (ABCD), cạnh S C hợp với đáy một góc 45◦và AB= 3a, BC = 4a Thể tích khối chóp S.ABCD là
3√ 3
3 .
Câu 83. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là
Câu 84. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 18 lần B Tăng gấp 9 lần C Tăng gấp 27 lần D Tăng gấp 3 lần.
Câu 85. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 86. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?
2; 3
!
"
2;5 2
!
Trang 7Câu 87. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 88. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 89. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là
3√ 5
a3
√ 15
a3
√ 6
3 .
Câu 90. [12219d-2mh202050] Có bao nhiêu số nguyên x sao cho tồn tại số thực y thỏa mãn log3(x+ y) = log4(x2+ y2
)?
Câu 91. Cho hàm số y= a sin x + b cos x + x (0 < x < 2π) đạt cực đại tại các điểm x = π
3, x = π Tính giá trị của biểu thức T = a + b√3
Câu 92. Hàm số y= 2x3+ 3x2+ 1 nghịch biến trên khoảng (hoặc các khoảng) nào dưới đây?
Câu 93. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng
A V = 1
3S h. D V = S h
Câu 94. Tìm giá trị của tham số m để hàm số y = −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)
Câu 95. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
2
a3√6
a3√6
a3√6
36 .
Câu 96. [3] Một người lần đầu gửi vào ngân hàng 100 triệu đồng theo thể thức lãi kép với kỳ hạn 3 tháng, lãi suất 2% trên quý Sau đúng 6 tháng, người đó gửi thêm 100 triệu đồng với kỳ hạn và lãi suất như trước
đó Tổng số tiền người đó nhận được sau một năm gửi tiền vào ngân hàng gần bằng kết quả nào sau đây? Biết rằng trong suốt thời gian gửi tiền thì lãi suất ngân hàng không thay đổi và người đó không rút tiền ra
Câu 97. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 98. [2] Tìm tất cả các giá trị thực của tham số m để hàm số f (x) = 1π
!x 3 −3mx 2 +m
nghịch biến trên khoảng (−∞;+∞)
Trang 8Câu 99 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 25 triệu đồng D 2, 22 triệu đồng.
Câu 100. [3-12212d] Số nghiệm của phương trình 2x−3.3x−2− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 101. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là
A. a
3√
3
a3√ 3
3
3 .
Câu 102 Phát biểu nào trong các phát biểu sau là đúng?
A Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó
B Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó
C Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó
D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0
Câu 103. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 104. [3-1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 2 log 2x
x3 B y0 = 1 − 2 ln 2x
x3ln 10 . C y
0 = 1 − 4 ln 2x 2x3ln 10 . D y
0 = 1 2x3ln 10.
Câu 105. Cho hình chóp S ABCD có đáy ABCD là hình thoi với AC = 2BD = 2a và tam giác S AD vuông cân tại S , (S AD) ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. a
3√
5
a3√5
a3√3
a3√5
6 .
Câu 106. [3] Biết rằng giá trị lớn nhất của hàm số y = ln2x
x trên đoạn [1; e
3] là M = m
en, trong đó n, m là các số tự nhiên Tính S = m2+ 2n3
Câu 107. [2] Tổng các nghiệm của phương trình 31−x = 2 + 1
9
!x là
Câu 108. [2] Tìm m để giá trị nhỏ nhất của hàm số y = 2x3+ (m2+ 1)2x
trên [0; 1] bằng 2
A m = ±√3 B m= ±√2 C m= ±3 D m= ±1
Câu 109. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 110. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc
60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là
A. 5a
3√
3
2a3√3
a3√3
4a3√3
3 .
Trang 9Câu 111. Trong không gian với hệ tọa độ Oxyz, cho đường thẳng∆ có phương trình x −1
2 = y
1 = z+ 1
−1 và mặt phẳng (P) : 2x − y+ 2z − 1 = 0 Viết phương trình mặt phẳng (Q) chứa ∆ và tạo với (P) một góc nhỏ nhất
Câu 112. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng
A a
√
√
√
√ 6
2 .
Câu 113. Khối đa diện loại {3; 5} có tên gọi là gì?
A Khối bát diện đều B Khối 20 mặt đều C Khối tứ diện đều D Khối 12 mặt đều.
Câu 114. [2] Cho hình chóp S ABCD có đáy là hình vuông cạnh a, S A ⊥ (ABCD) và S A = a Khoảng cách giữa hai đường thẳng BD và S C bằng
A. a
√
6
a√6
√
√ 6
6 .
Câu 115. Khối đa diện đều loại {5; 3} có số cạnh
Câu 116. Tính lim 2n
2− 1 3n6+ n4
3.
Câu 117. Giá trị giới hạn lim
x→−1(x2− x+ 7) bằng?
Câu 118. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh 2a, tam giác S AB đều, H là trung điểm cạnh AB, biết S H ⊥ (ABCD) Thể tích khối chóp S ABCD là
A. 2a
3√
3
a3
a3
4a3
√ 3
3 .
Câu 119. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 3ac
3b+ 2ac
3b+ 3ac
3b+ 2ac
c+ 2 .
Câu 120. Xét hai câu sau
(I)
Z
( f (x)+ g(x))dx = Z f(x)dx+Z g(x)dx = F(x) + G(x) + C, trong đó F(x), G(x) là các nguyên hàm tương ứng của hàm số f (x), g(x)
(II) Mỗi nguyên hàm của a f (x) là tích của a với một nguyên hàm của f (x)
Trong hai câu trên
A Chỉ có (I) đúng B Chỉ có (II) đúng C Cả hai câu trên đúng D Cả hai câu trên sai.
Câu 121. [2] Cho hàm số f (x)= ln(x4+ 1) Giá trị f0
(1) bằng
A. ln 2
1
Câu 122. [4-c] Xét các số thực dương x, y thỏa mãn 2x + 2y = 4 Khi đó, giá trị lớn nhất của biểu thức
P= (2x2+ y)(2y2+ x) + 9xy là
A. 27
Trang 10Câu 123. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2
và y= x
9
2.
Câu 124. [3-1123d] Ba bạn A, B, C, mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1; 17] Xác suất để ba số được viết có tổng chia hết cho 3 bằng
23
1079
1728
4913.
Câu 125. Cho hình chóp S ABCD có đáy ABCD là hình thoi cạnh a và góc [BAD = 60◦
, S A ⊥ (ABCD) Biết rằng khoảng cách từ A đến cạnh S C là a Thể tích khối chóp S ABCD là
A. a
3√
2
a3√3
3√
3√ 2
4 .
Câu 126. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 127. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
a3
√ 15
a3
√ 5
25 .
Câu 128. [1] Tính lim
x→−∞
4x+ 1
x+ 1 bằng?
Câu 129. Tính lim
x→2
x+ 2
x bằng?
Câu 130. [3-1133d] Tính lim1
2+ 22+ · · · + n2
n3
A. 1
3.
HẾT