TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 [3 1214d] Cho hàm số y = x − 1 x + 2 có đồ thị (C) Gọi I l[.]
Trang 1TOÁN PDF LATEX
(Đề thi có 10 trang)
TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT
Thời gian làm bài: 90 phút (Không kể thời gian phát đề)
Mã đề thi 1
Câu 1. [3-1214d] Cho hàm số y = x −1
x+ 2 có đồ thị (C) Gọi I là giao điểm của hai tiệm cận của (C) Xét tam giác đều ABI có hai đỉnh A, B thuộc (C), đoạn thẳng AB có độ dài bằng
√
√
√ 2
Câu 2. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a
√
2 Góc giữa cạnh bên và mặt phẳng đáy
là 300 Thể tích khối chóp S ABC theo a
A. a
3√
6
a3√6
a3√6
a3√2
6 .
Câu 3. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2
− 2 ln x trên [e−1; e] là
A M = e−2− 2; m= 1 B M = e−2+ 2; m = 1
C M = e−2+ 1; m = 1 D M = e2− 2; m = e−2+ 2
Câu 4. Khối đa diện đều loại {3; 4} có số cạnh
Câu 5. Giả sử F(x) là một nguyên hàm của hàm số f (x) trên khoảng (a; b) Giả sử G(x) cũng là một nguyên hàm của f (x) trên khoảng (a; b) Khi đó
A F(x)= G(x) trên khoảng (a; b)
B Cả ba câu trên đều sai.
C G(x) = F(x) − C trên khoảng (a; b), với C là hằng số
D F(x)= G(x) + C với mọi x thuộc giao điểm của hai miền xác định, C là hằng số
Câu 6. Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y= 2 − x2và y= x
11
Câu 7. [3-12217d] Cho hàm số y = ln 1
x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?
A xy0 = ey+ 1 B xy0 = −ey
− 1
Câu 8. Cho khối lăng trụ đứng ABC.A0B0C0 có đáy ABC là tam giác vuông tại A BC = 2a,ABCd = 300
Độ dài cạnh bên CC0 = 3a Thể tích V của khối lăng trụ đã cho
A V = 3a3√
3 B V = a3
√ 3
2 . C V = 3a3
√ 3
2 . D V = 6a3
Câu 9. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng d :
x+ 1
2 = y −5
2 = z
−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng d đồng thời cách A một khoảng bé nhất
A ~u = (1; 0; 2) B ~u= (2; 1; 6) C ~u= (2; 2; −1) D ~u= (3; 4; −4)
Câu 10. [1] Giá trị của biểu thức 9log3 12
bằng
Câu 11. Biểu thức nào sau đây không có nghĩa
√
√
−1
Câu 12. Cho hàm số y= −x3+ 3x2− 4 Mệnh đề nào dưới đây đúng?
A Hàm số đồng biến trên khoảng (0;+∞) B Hàm số nghịch biến trên khoảng (0; 2).
C Hàm số đồng biến trên khoảng (0; 2) D Hàm số nghịch biến trên khoảng (−∞; 2).
Trang 2Câu 13. [12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 14. [12213d] Có bao nhiêu giá trị nguyên của m để phương trình 1
3|x−1| = 3m − 2 có nghiệm duy nhất?
Câu 15. Trong các khẳng định dưới đây có bao nhiêu khẳng định đúng?
(I) lim nk = +∞ với k nguyên dương
(II) lim qn= +∞ nếu |q| < 1
(III) lim qn= +∞ nếu |q| > 1
Câu 16. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?
Câu 17. Tìm m để hàm số y= x4
− 2(m+ 1)x2
− 3 có 3 cực trị
Câu 18. [2] Cho hình lâp phương ABCD.A0B0C0D0cạnh a Khoảng cách từ C đến AC0 bằng
A. a
√
6
a√6
a√6
a√3
2 .
Câu 19. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng
2
√
a2+ b2 C. √ 1
a2+ b2 D. √ ab
a2+ b2
Câu 20. Tìm tất cả các khoảng đồng biến của hàm số y = 1
3x
3− 2x2+ 3x − 1
Câu 21. Tập các số x thỏa mãn 3
5
!2x−1
≤ 3 5
!2−x là
A (+∞; −∞) B [3;+∞) C (−∞; 1] D [1;+∞)
Câu 22. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là
Câu 23. Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = (x2− 3)ex trên đoạn [0; 2] Giá trị của biểu thức P= (m2− 4M)2019
Câu 24. Khối đa diện đều loại {3; 3} có số đỉnh
Câu 25. [2D1-3] Có bao nhiêu giá trị nguyên của tham số m để hàm số y= x+ 3
x − m nghịch biến trên khoảng (0;+∞)?
Câu 26. Tập hợp các điểm trong mặt phẳng phức biểu diễn số phức z thỏa mãn điều kiện z2 là số ảo là
A Trục thực.
B Hai đường phân giác y= x và y = −x của các góc tọa độ
C Đường phân giác góc phần tư thứ nhất.
D Trục ảo.
Trang 3Câu 27. [3-12214d] Với giá trị nào của m thì phương trình 1
3|x−2| = m − 2 có nghiệm
Câu 28. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:
A Tăng gấp 9 lần B Tăng gấp 27 lần C Tăng gấp 18 lần D Tăng gấp 3 lần.
Câu 29. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là
Câu 30. Cho hình chóp S ABC có dBAC= 90◦,ABCd = 30◦
; S BC là tam giác đều cạnh a và (S AB) ⊥ (ABC) Thể tích khối chóp S ABC là
3√ 2
a3√3
a3√3
24 .
Câu 31. Thể tích của tứ diện đều cạnh bằng a
A. a
3√
2
a3√ 2
a3√ 2
a3√ 2
12 .
Câu 32. Cho hai hàm số f (x), g(x) là hai hàm số liên tục và lần lượt có nguyên hàm là F(x), G(x) Xét các mệnh đề sau
(I) F(x)+ G(x) là một nguyên hàm của f (x) + g(x)
(II) kF(x) là một nguyên hàm của k f (x)
(III) F(x)G(x) là một nguyên hàm của hàm số f (x)g(x)
Các mệnh đề đúng là
Câu 33. [2] Tổng các nghiệm của phương trình 6.4x− 13.6x+ 6.9x = 0 là
Câu 34. [1] Tập xác định của hàm số y= log3(2x+ 1) là
A. −1
2;+∞
!
2;+∞
!
2
!
2
!
Câu 35. Xác định phần ảo của số phức z= (2 + 3i)(2 − 3i)
Câu 36. Tính lim 2n − 3
2n2+ 3n + 1 bằng
Câu 37. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp đôi thì thể tích khối hộp tương ứng sẽ:
Câu 38. Cho hàm số y= x3− 3x2− 1 Mệnh đề nào sau đây đúng?
A Hàm số nghịch biến trên khoảng (1;+∞) B Hàm số nghịch biến trên khoảng (0; 1).
C Hàm số nghịch biến trên khoảng (−∞; 0) D Hàm số đồng biến trên khoảng (1; 2).
Câu 39. [1] Giá trị của biểu thức log √31
10 bằng
1
3.
Câu 40. Biểu diễn hình học của số phức z= 4 + 8i là điểm nào trong các điểm sau đây?
Trang 4Câu 41. Có bao nhiêu giá trị nguyên của tham số m để hàm số y = x+ 2
x+ 5m đồng biến trên khoảng (−∞; −10)?
Câu 42. [3-1226d] Tìm tham số thực m để phương trình log(mx)
log(x+ 1) = 2 có nghiệm thực duy nhất
Câu 43. [2-1223d] Tổng các nghiệm của phương trình log3(7 − 3x)= 2 − x bằng
Câu 44. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là
Câu 45. Cho lăng trụ đứng ABC.A0B0C0có đáy là tam giác vuông tại A, AC = a,ACBd = 60◦
Đường chéo
BC0của mặt bên (BCC0B0) tạo với mặt phẳng (AA0C0C) một góc 30◦ Thể tích của khối lăng trụ ABC.A0B0C0 là
A. 2a
3√
6
a3
√ 6
4a3
√ 6
3√ 6
Câu 46. Một người vay ngân hàng 100 triệu đồng với lãi suất 0, 7%/tháng Theo thỏa thuận cứ mỗi tháng người đó phải trả cho ngân hàng 5 triệu đồng và cứ trả hằng tháng cho đến khi hết nợ (tháng cuối cùng có thể trả dưới 5 triệu) Hỏi sau bao nhiêu tháng người đó trả hết nợ ngân hàng
Câu 47. Phép đối xứng qua mp(P) biến đường thẳng d thành chính nó khi và chỉ khi
Câu 48. Khối đa diện đều loại {3; 5} có số đỉnh
Câu 49. [2] Tích tất cả các nghiệm của phương trình (1+ log2x) log4(2x)= 2 bằng
A. 1
1
1
4.
Câu 50. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng
có độ dài lớn hơn 1
5
4 < m < 0
Câu 51. [2] Một người gửi 100 triệu đồng vào ngân hàng với lãi suất 0, 6% trên tháng Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu tháng, người đó lĩnh được số tiền không ít hơn 110 triệu đồng (cả vốn lẫn lãi), biết rằng trong thời gian gửi tiền người đó không rút tiền và lãi suất không thay đổi?
Câu 52. Tính diện tích hình phẳng giới hạn bởi các đường y = xex, y = 0, x = 1
√ 3
1
2.
Câu 53. [3-1122h] Cho hình lăng trụ ABC.A0B0C0 có đáy là tam giác đều cạnh a Hình chiếu vuông góc của A0 lên mặt phẳng (ABC) trung với tâm của tam giác ABC Biết khoảng cách giữa đường thẳng AA0 và
BC là a
√
3
4 Khi đó thể tích khối lăng trụ là
A. a
3√
3
a3√3
a3√3
a3√3
24 .
Trang 5Câu 54. [1231d] Hàm số f (x) xác định, liên tục trên R và có đạo hàm là f0(x)= |x − 1| Biết f (0) = 3 Tính
f(2)+ f (4)?
Câu 55. Tính lim
x→ +∞
x+ 1 4x+ 3 bằng
1
4.
Câu 56. [2-c] Cho a= log275, b= log87, c = log23 Khi đó log1235 bằng
A. 3b+ 2ac
3b+ 3ac
3b+ 3ac
3b+ 2ac
c+ 2 .
Câu 57. Khối lập phương thuộc loại
Câu 58. Tập xác định của hàm số f (x)= −x3+ 3x2− 2 là
Câu 59. Một khối lăng trụ tam giác có thể chia ít nhất thành bao nhiêu khối tứ diện có thể tích bằng nhau?
Câu 60. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3
2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?
Câu 61. [2D1-3] Tìm giá trị của tham số m để hàm số y = x3
− mx2+ 3x + 4 đồng biến trên R
Câu 62. Giá trị của giới hạn lim2 − n
n+ 1 bằng
Câu 63. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]
A. 67
Câu 64. Cho
Z 2
1
ln(x+ 1)
x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b
Câu 65. Gọi M, m là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x2
ex trên đoạn [−1; 1] Khi đó
A M = e, m = 1
e. B M= e, m = 0 C M = e, m = 1 D M = 1
e, m = 0
Câu 66. [3] Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a, S D = 3a
2 , hình chiếu vuông góc của S trên mặt phẳng (ABCD) là trung điểm của cạnh AB Khoảng cách từ A đến mặt phẳng (S BD) bằng
A. a
a
a
√ 2
2a
3 .
Câu 67. [2D4-4] Cho số phức z thỏa mãn |z+ z| + 2|z − z| = 2 và z1thỏa mãn |z1− 2 − i|= 2 Diện tích hình phẳng giới hạn bởi hai quỹ tích biểu diễn hai số phức z và z1 gần giá trị nào nhất?
Câu 68. Khối đa diện đều loại {3; 5} có số cạnh
Trang 6Câu 69. Hàm số y= x3
− 3x2+ 3x − 4 có bao nhiêu cực trị?
Câu 70 [2-c] (Minh họa 2019) Ông A vay ngân hàng 100 triệu đồng với lãi suất 1%/tháng Ông ta muốn
hoàn nợ cho ngân hàng theo cách: Sau đúng một tháng kể từ ngày vay, ông bắt đầu hoàn nợ; hai lần hoàn nợ liên tiếp cách nhau đúng một tháng, số tiền hoàn nợ ở mỗi tháng là như nhau và ông A trả hết nợ sau đúng
5 năm kể từ ngày vay Biết rằng mỗi tháng ngân hàng chỉ tính lãi trên số dư nợ thực tế của tháng đó Hỏi số tiền mỗi tháng ông ta cần trả cho ngân hàng gần nhất với số tiền nào dưới đây ?
A 2, 20 triệu đồng B 3, 03 triệu đồng C 2, 22 triệu đồng D 2, 25 triệu đồng.
Câu 71. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng
Câu 72. Tính thể tích khối lập phương biết tổng diện tích tất cả các mặt bằng 18
A 3
√
Câu 73. [12212d] Số nghiệm của phương trình 2x−3.3x−2
− 2.2x−3− 3.3x−2+ 6 = 0 là
Câu 74. Tìm giới hạn lim2n+ 1
n+ 1
Câu 75. [1227d] Tìm bộ ba số nguyên dương (a, b, c) thỏa mãn log 1+ log(1 + 3) + log(1 + 3 + 5) + · · · + log(1+ 3 + · · · + 19) − 2 log 5040 = a + b log 3 + c log 2
Câu 76. Tính lim n −1
n2+ 2
Câu 77. [1-c] Giá trị biểu thức log2240
log3,752 −
log215 log602 + log21 bằng
Câu 78. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm
A m < 1
1
1
1
4.
Câu 79. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?
A Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.
B Số cạnh của khối chóp bằng số mặt của khối chóp.
C Số đỉnh của khối chóp bằng số cạnh của khối chóp.
D Số đỉnh của khối chóp bằng số mặt của khối chóp.
Câu 80. [2] Một người gửi 9, 8 triệu đồng với lãi suất 8, 4% trên một năm và lãi suất hàng năm được nhập vào vốn Hỏi theo cách đó thì sau bao nhiêu năm người đó thu được tổng số tiền 20 triệu đồng (Biết rằng lãi suất không thay đổi)
Câu 81. Khối đa diện loại {3; 3} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối tứ diện đều D Khối lập phương.
Câu 82. [2] Tổng các nghiệm của phương trình 3x2−3x+8 = 92x−1là
Câu 83. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x
Trang 7Câu 84. Tìm m để hàm số y= mx3+ 3x2+ 12x + 2 đạt cực đại tại x = 2
Câu 85. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là
Câu 86. [1229d] Đạo hàm của hàm số y= log 2x
x2 là
A y0 = 1 − 4 ln 2x
2x3ln 10 . B y
0 = 1 2x3ln 10. C y
0 = 1 − 2 ln 2x
x3ln 10 . D y
0 = 1 − 2 log 2x
x3
Câu 87. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu
A lim
x→a + f(x)= lim
x→af(x)= f (a)
C lim
x→a + f(x)= lim
x→a − f(x)= +∞ D f (x) có giới hạn hữu hạn khi x → a.
Câu 88 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?
(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]
(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]
(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]
(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]
Câu 89. Khối đa diện đều loại {5; 3} có số mặt
Câu 90. Dãy số nào sau đây có giới hạn là 0?
A. 4
e
!n
3
!n
3
!n
3
!n
Câu 91. Tính mô đun của số phức z biết (1+ 2i)z2= 3 + 4i
A |z| = √4
Câu 92. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2f(x3)−√ 6
3x+ 1 Tính
Z 1
0
f(x)dx
Câu 93. [4-1245d] Trong tất cả các số phức z thỏa mãn hệ thức |z − 1+ 3i| = 3 Tìm min |z − 1 − i|
√
√
Câu 94. Gọi F(x) là một nguyên hàm của hàm y= ln x
x
p
ln2x+ 1 mà F(1) = 1
3 Giá trị của F
2(e) là:
A. 1
8
1
8
9.
Câu 95. Cho hàm số y= x3
− 3x2+ 1 Tích giá trị cực đại và giá trị cực tiểu là
Câu 96. [2] Phương trình log4(x+ 1)2+ 2 = log√
2
√
4 − x+ log8(4+ x)3 có tất cả bao nhiêu nghiệm?
Câu 97. Tìm m để hàm số y= x3− 3mx2+ 3m2có 2 điểm cực trị
Câu 98. [2] Cho hàm số y= log3(3x+ x), biết y0
(1)= a
4 + 1
bln 3, với a, b ∈ Z Giá trị của a + b là
Trang 8Câu 99 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?
A.
Z
k f(x)dx= f
Z
f(x)dx, k ∈ R, k , 0 B.
Z
f(x)g(x)dx=
Z
f(x)dx
Z g(x)dx
C.
Z
( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.
Z ( f (x) − g(x))dx=Z f(x)dx −
Z g(x)dx
Câu 100. [2] Biết M(0; 2), N(2; −2) là các điểm cực trị của đồ thị hàm số y= ax3+ bx2+ cx + d Tính giá trị của hàm số tại x= −2
Câu 101. [4-1212d] Cho hai hàm số y= x −2
x −1 + x −1
x+ 1 +
x+ 1
x+ 2 và y= |x + 1| − x − m (m là tham
số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là
Câu 102. Hình lập phương có bao nhiêu mặt phẳng đối xứng?
Câu 103. [2] Cho hàm số f (x)= x ln2x Giá trị f0(e) bằng
Câu 104. [1] Đạo hàm của làm số y = log x là
0 = ln 10
0 = 1
xln 10. D y
0 = 1
x.
Câu 105. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:
Câu 106. Khối đa diện loại {5; 3} có tên gọi là gì?
A Khối bát diện đều B Khối 12 mặt đều C Khối 20 mặt đều D Khối tứ diện đều.
Câu 107. Cho tứ diện ABCD có thể tích bằng 12 G là trọng tâm của tam giác BCD Tính thể tích V của khối chóp A.GBC
Câu 108. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và
√
3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2
√ 3
3 Thể tích khối lăng trụ đã cho bằng
√ 3
3 .
Câu 109. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc
45◦ Tính thể tích của khối chóp S ABC theo a
A. a
3√
15
a3
√ 5
a3
a3
√ 15
5 .
Câu 110. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực
x ≥1
Câu 111. Khối đa diện thuộc loại {3; 5} có bao nhiêu đỉnh, cạnh, mặt?
Trang 9Câu 112. [12215d] Tìm m để phương trình 4x+ 1−x2 − 4.2x+ 1−x2 − 3m+ 4 = 0 có nghiệm
A 0 ≤ m ≤ 9
3
3
Câu 113. Phần thực và phần ảo của số phức z= √2 − 1 −
√ 3i lần lượt l
A Phần thực là
√
2 − 1, phần ảo là −
√
√
2, phần ảo là −
√ 3
C Phần thực là
√
2, phần ảo là 1 −
√
√
2 − 1, phần ảo là
√ 3
Câu 114. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3
− z
A P= 2i B P= −1 − i
√ 3
2 . C P= −1+ i
√ 3
2 . D P= 2
Câu 115. Cho I =
Z 3
0
x
4+ 2√x+ 1dx =
a
d + b ln 2 + c ln d, biết a, b, c, d ∈ Z và a
d là phân số tối giản Giá trị P= a + b + c + d bằng?
Câu 116. Giá trị của lim
x→1(3x2− 2x+ 1)
Câu 117. [4-1228d] Cho phương trình (2 log23x −log3x −1)
√
4x− m = 0 (m là tham số thực) Có tất cả bao nhiêu giá trị nguyên dương của m để phương trình đã cho có đúng 2 nghiệm phân biệt?
Câu 118. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?
Câu 119. [12210d] Xét các số thực dương x, y thỏa mãn log31 − xy
x+ 2y = 3xy + x + 2y − 4 Tìm giá trị nhỏ nhất Pmincủa P= x + y
A Pmin= 9
√
11 − 19
9 . B Pmin = 18
√
11 − 29
21 C Pmin = 9
√
11+ 19
9 . D Pmin= 2
√
11 − 3
Câu 120. Tính giới hạn lim
x→−∞
√
x2+ 3x + 5 4x − 1
1
4.
Câu 121. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?
A Hai khối chóp tam giác.
B Một khối chóp tam giác, một khối chóp tứ giác.
C Hai khối chóp tứ giác.
D Một khối chóp tam giác, một khối chóp ngữ giác.
Câu 122. Tính lim 5
n+ 3
Câu 123. [3] Cho hàm số f (x)= 4x
4x+ 2 Tính tổng T = f
1 2017
! + f 2 2017
! + · · · + f 2016
2017
!
A T = 1008 B T = 2016 C T = 2017 D T = 2016
2017.
Câu 124 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?
A aαβ = (aα)β B. a
α
aβ = aα C aα+β = aα.aβ D aαbα = (ab)α
Trang 10Câu 125. Cho khối chóp S ABC có đáy ABC là tam giác đều cạnh a Hai mặt bên (S AB) và (S AC) cùng vuông góc với đáy và S C = a√3 Thể tích khối chóp S ABC là
A. 2a
3√
6
a3
√ 3
a3
√ 6
a3
√ 3
2 .
Câu 126. [1-c] Giá trị biểu thức log236 − log2144 bằng
Câu 127. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x
− 5x = 20 là
Câu 128. Hàm số F(x) được gọi là nguyên hàm của hàm số f (x) trên đoạn [a; b] nếu
A Với mọi x ∈ (a; b), ta có F0(x)= f (x), ngoài ra F0
(a+)= f (a) và F0
(b−)= f (b)
B Với mọi x ∈ [a; b], ta có F0(x)= f (x)
C Với mọi x ∈ [a; b], ta có F0(x)= f (x)
D Với mọi x ∈ (a; b), ta có f0(x)= F(x)
Câu 129. Hàm số nào sau đây không có cực trị
A y = x3− 3x B y= x +1
x. C y= x4− 2x+ 1 D y= x −2
2x+ 1.
Câu 130. [2] Tổng các nghiệm của phương trình 3x−1.2x 2
= 8.4x−2là
HẾT