1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Đề ôn thi thpt 5 (19)

12 0 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Tiêu đề Đề ôn thi thpt 5 (19)
Trường học Trường Trung Học Phổ Thông
Chuyên ngành Toán học
Thể loại Đề thi
Năm xuất bản 2023
Thành phố Việt Nam
Định dạng
Số trang 12
Dung lượng 153,74 KB

Các công cụ chuyển đổi và chỉnh sửa cho tài liệu này

Nội dung

TOÁN PDF LATEX (Đề thi có 10 trang) TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT Thời gian làm bài 90 phút (Không kể thời gian phát đề) Mã đề thi 1 Câu 1 Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x[.]

Trang 1

TOÁN PDF LATEX

(Đề thi có 10 trang)

TRẮC NGHIỆM ÔN THI MÔN TOÁN THPT

Thời gian làm bài: 90 phút (Không kể thời gian phát đề)

Mã đề thi 1

Câu 1. Cho hàm số f (x) xác định trên khoảng K chưa a Hàm số f (x) liên tục tại a nếu

A f (x) có giới hạn hữu hạn khi x → a B lim

x→a + f(x)= lim

x→a − f(x)= +∞

C lim

x→a + f(x)= lim

x→af(x)= f (a)

Câu 2. Tập các số x thỏa mãn 3

5

!2x−1

≤ 3 5

!2−x là

Câu 3. [3-12217d] Cho hàm số y = ln 1

x+ 1 Trong các khẳng định sau đây, khẳng định nào đúng?

A xy0 = ey

− 1

Câu 4. Nhị thập diện đều (20 mặt đều) thuộc loại

Câu 5. Khối đa diện loại {4; 3} có tên gọi là gì?

A Khối bát diện đều B Khối lập phương C Khối 12 mặt đều D Khối tứ diện đều.

Câu 6. Phần thực và phần ảo của số phức z= −3 + 4i lần lượt là

A Phần thực là 3, phần ảo là −4 B Phần thực là 3, phần ảo là 4.

C Phần thực là −3, phần ảo là 4 D Phần thực là −3, phần ảo là −4.

Câu 7. [3] Cho hình chóp S ABC có đáy là tam giác vuông tại A, dABC = 30◦

, biết S BC là tam giác đều cạnh a và mặt bên (S BC) vuông góc với mặt đáy Khoảng cách từ C đến (S AB) bằng

A. a

39

a√39

a√39

a√39

26 .

Câu 8. [12220d-2mh202047] Xét các số thực dương a, b, x, y thỏa mãn a > 1, b > 1 và ax = by = √ab Giá trị nhỏ nhất của biểu thức P= x + 2y thuộc tập nào dưới đây?

2; 3

!

"

2;5 2

!

Câu 9 Trong các khẳng định sau, khẳng định nào sai?

A.

Z

Z 1

xdx= ln |x| + C, C là hằng số

C.

Z

dx = x + C, C là hằng số D.

Z

xαdx= α + 1xα+1 + C, C là hằng số

Câu 10. Cho hình chóp S ABC có đáy ABC là tam giác vuông cân tại B với AC = a, biết S A ⊥ (ABC) và

S Bhợp với đáy một góc 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

√ 6

a3

√ 6

a3

√ 6

24 .

Câu 11. Tập các số x thỏa mãn 2

3

!4x

≤ 3 2

!2−x là

A.

"

−2

3;+∞

! B. " 2

5;+∞

!

3

#

5

#

Câu 12. Tính giới hạn lim

x→2

x2− 5x+ 6

x −2

Trang 2

Câu 13. [1-c] Cho a là số thực dương Giá trị của biểu thức a4 : 3

a2bằng

Câu 14. [2D1-3] Cho hàm số y= −1

3x

3+ mx2+ (3m + 2)x + 1 Tìm giá trị của tham số m để hàm số nghịch biến trên R

A (−∞; −2) ∪ (−1; +∞) B −2 < m < −1 C (−∞; −2] ∪ [−1; +∞) D −2 ≤ m ≤ −1.

Câu 15. [2D1-3] Tìm giá trị của tham số m để f (x)= −x3+ 3x2+ (m − 1)x + 2m − 3 đồng biến trên khoảng

có độ dài lớn hơn 1

5

4 < m < 0

Câu 16. Hình hộp chữ nhật có ba kích thước khác nhau có bao nhiêu mặt phẳng đối xứng?

Câu 17. Cho hai đường thẳng phân biệt d và d0 đồng phẳng Có bao nhiêu phép đối xứng qua mặt phẳng biến d thành d0?

Câu 18. Giá trị cực đại của hàm số y = x3− 3x2− 3x+ 2

A −3 − 4

Câu 19. Tính lim 1

1.2 + 1 2.3 + · · · + 1

n(n+ 1)

!

Câu 20. [1232h] Trong không gian Oxyz, cho đường thẳng d :

x= 1 + 3t

y= 1 + 4t

z= 1

Gọi∆ là đường thẳng đi qua

điểm A(1; 1; 1) và có véctơ chỉ phương ~u = (1; −2; 2) Đường phân giác của góc nhọn tạo bởi d và ∆ có phương trình là

A.

x= 1 + 7t

y= 1 + t

z= 1 + 5t

x= −1 + 2t

y= −10 + 11t

z= 6 − 5t

C.

x= 1 + 3t

y= 1 + 4t

z= 1 − 5t

x= −1 + 2t

y= −10 + 11t

z= −6 − 5t

Câu 21. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật tâm O, AC = 2AB = 2a, cạnh S A ⊥ (ABCD), S D= a√5 Thể tích khối chóp S ABCD là

A. a

3√

6

a3√ 15

a3√ 5

3√ 6

Câu 22 Mệnh đề nào sau đây sai?

A F(x) là một nguyên hàm của f (x) trên (a; b) ⇔ F0(x)= f (x), ∀x ∈ (a; b)

B.

Z

f(x)dx

!0

= f (x)

C Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b).

D Nếu F(x) là một nguyên hàm của f (x) trên (a; b) và C là hằng số thì

Z

f(x)dx = F(x) + C

Câu 23. [2-c] Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x + 2 ln x trên đoạn [1; e] Giá trị của T = M + m bằng

A T = e + 3 B T = e + 2

e. C T = e + 1 D T = 4 + 2

e.

Câu 24. Cho hàm số y= 3 sin x − 4 sin3

x Giá trị lớn nhất của hàm số trên khoảng



−π

2;

π 2



Trang 3

Câu 25. [2D1-3] Tìm giá trị của tham số m để hàm số y= −1

3x

3− mx2− (m+ 6)x + 1 luôn đồng biến trên một đoạn có độ dài bằng

√ 24

A m = −3 B m= 4 C m= −3, m = 4 D −3 ≤ m ≤ 4.

Câu 26. Cho hình chóp S ABC có đáy ABC là tam giác đều cạnh a, biết S A ⊥ (ABC) và (S BC) hợp với đáy (ABC) một góc bằng 60◦ Thể tích khối chóp S ABC là

A. a

3√

3

a3

a3

√ 3

a3

√ 3

8 .

Câu 27. [1] Tính lim1 − 2n

3n+ 1 bằng?

2

1

3.

Câu 28. Khi tăng ba kích thước của khối hộp chữ nhật lên n lần thì thể thích của nó tăng lên

Câu 29. Tứ diện đều thuộc loại

Câu 30. [1] Tính lim

x→−∞

4x+ 1

x+ 1 bằng?

Câu 31. [2-c] Giá trị lớn nhất của hàm số y = x(2 − ln x) trên đoạn [2; 3] là

Câu 32. [2] Một người gửi tiết kiệm vào một ngân hàng với lãi suất 6, 1% trên năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi tháng, số tiền lãi sẽ được nhập vào vốn ban đầu để tính lãi cho tháng tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó thu được (cả vốn lẫn lãi) gấp đôi số tiền gửi ban đầu, giả định trong thời gian này lãi suất không đổi và người đó không rút tiền ra?

Câu 33. Khối đa diện đều loại {3; 5} có số đỉnh

Câu 34. Tính lim

x→−∞

x+ 1 6x − 2 bằng

A. 1

1

1

Câu 35 Cho hàm số f (x), g(x) liên tục trên R Trong các mệnh đề sau, mệnh đề nào sai?

A.

Z

f(x)g(x)dx=

Z

f(x)dx

Z

Z

k f(x)dx= f

Z

f(x)dx, k ∈ R, k , 0

C.

Z

( f (x)+ g(x))dx =Z f(x)dx+Z g(x)dx D.

Z ( f (x) − g(x))dx=Z f(x)dx −

Z g(x)dx

Câu 36. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 37. Cho z là nghiệm của phương trình x2+ x + 1 = 0 Tính P = z4+ 2z3− z

A P= −1+ i

√ 3

2 . B P= −1 − i

√ 3

Câu 38. Hàm số y= −x3+ 3x − 5 đồng biến trên khoảng nào dưới đây?

Câu 39. Khối đa diện loại {3; 3} có tên gọi là gì?

A Khối bát diện đều B Khối 12 mặt đều C Khối lập phương D Khối tứ diện đều.

Trang 4

Câu 40. [2-c] Giá trị lớn nhất của hàm số y = xe−2x

trên đoạn [1; 2] là

A. 1

2

2e3

Câu 41. Tính limcos n+ sin n

n2+ 1

Câu 42. [1] Đạo hàm của làm số y = log x là

0 = 1

0 = ln 10

0 = 1

xln 10.

Câu 43. Dãy số nào sau đây có giới hạn là 0?

A. 4

e

!n

3

!n

3

!n

3

!n

Câu 44. [2] Tổng các nghiệm của phương trình log4(3.2x− 1) = x − 1 là

Câu 45. [3] Cho hình chóp S ABCD có đáy ABCD là hình thoi tâm O, cạnh là a Góc [BAD = 60◦

, S O vuông góc với mặt đáy và S O= a Khoảng cách từ O đến (S BC) bằng

A a

√ 57

a

√ 57

a

√ 57

19 .

Câu 46. Cho khối chóp tam giác đều S ABC có cạnh đáy bằng a

2 Góc giữa cạnh bên và mặt phẳng đáy

là 300 Thể tích khối chóp S ABC theo a

A. a

3√

6

a3

√ 2

a3

√ 6

a3

√ 6

36 .

Câu 47 Phát biểu nào sau đây là sai?

n = 0

C lim 1

Câu 48. Cho hình chữ nhật ABCD, cạnh AB = 4, AD = 2 Gọi M, N là trung điểm các cạnh AB và CD Cho hình chữ nhật quay quanh MN ta được hình trụ tròn xoay có thể tích bằng

Câu 49. [4] Cho lăng trụ ABC.A0B0C0 có chiều cao bằng 4 và đáy là tam giác đều cạnh bằng 4 Gọi M, N

và P lần lượt là tâm của các mặt bên ABB0A0, ACC0

A0, BCC0

B0 Thể tích khối đa diện lồi có các đỉnh

A, B, C, M, N, P bằng

A 6

√ 3

20√3

3 .

Câu 50. [2-c] Giá trị lớn nhất của hàm số y = ln(x2+ x + 2) trên đoạn [1; 3] là

Câu 51. Bát diện đều thuộc loại

Câu 52. Khối đa diện đều loại {3; 3} có số cạnh

Câu 53. [3-1224d] Tìm tham số thực m để phương trình log23x+ log3x+ m = 0 có nghiệm

A m ≤ 1

1

1

1

4.

Trang 5

Câu 54. [2] Số lượng của một loài vi khuẩn sau t giờ được xấp xỉ bởi đẳng thức Qt = Q0e0,195t, trong đó Q0

là số lượng vi khuẩn ban đầu Nếu số lượng vi khuẩn ban đầu là 5.000 con thì sau bao nhiêu giờ, số lượng

vi khuẩn đạt 100.000 con?

Câu 55. Khối đa diện đều loại {3; 4} có số đỉnh

Câu 56. Cho hình chóp đều S ABCD có cạnh đáy bằng 2a Mặt bên của hình chóp tạo với đáy một góc 60◦ Mặt phẳng (P) chứa cạnh AB và đi qua trọng tâm G của tam giác S AC cắt S C, S D lần lượt tại M, n Thể tích khối chóp S ABMN là

A. 5a

3√

3

4a3√3

a3√3

2a3√3

3 .

Câu 57. Cho số phức z thỏa mãn |z+ 3| = 5 và |z − 2i| = |z − 2 − 2i| Tính |z|

Câu 58. [2-c] Cho hàm số f (x) = 9x

9x+ 3 với x ∈ R và hai số a, b thỏa mãn a + b = 1 Tính f (a) + f (b)

A. 1

Câu 59. Một máy bay hạ cánh trên sân bay, kể từ lúc bắt đầu chạm đường băng, máy bay chuyển động chậm dần đều với vận tốc v(t)= −3

2t+ 69(m/s), trong đó t là khoảng thời gian tính bằng giây Hỏi trong 6 giây cuối cùng trước khi dừng hẳn, máy bay di chuyển được bao nhiêu mét?

Câu 60. Thể tích của tứ diện đều cạnh bằng a

A. a

3√

2

a3

√ 2

a3

√ 2

a3

√ 2

6 .

Câu 61. [2] Tổng các nghiệm của phương trình 2x2+2x = 82−x là

Câu 62 Cho a là số thực dương α, β là các số thực Mệnh đề nào sau đây sai?

A aαbα= (ab)α B aα+β= aα.aβ C aαβ = (aα

D. a

α

aβ = aα

Câu 63. [12214d] Với giá trị nào của m thì phương trình 1

3|x−2| = m − 2 có nghiệm

Câu 64. [2] Thiết diện qua trục của một hình nón tròn xoay là tam giác đều có diện tích bằng a2

3 Thể tích khối nón đã cho là

A V = πa3

√ 3

2 . B V = πa3

√ 6

6 . C V = πa3

√ 3

6 . D V = πa3

√ 3

3 .

Câu 65. Ba kích thước của một hình hộp chữ nhật làm thành một cấp số nhân có công bội là 2 Thể tích hình hộp đã cho là 1728 Khi đó, các kích thước của hình hộp là

3, 4

3, 38 C 8, 16, 32 D 6, 12, 24.

Câu 66. [2] Cho hình hộp chữ nhật ABCD.A0B0C0D0 có AB= a, AD = b Khoảng cách từ điểm B đến mặt phẳng ACC0A0bằng

2

a2+ b2 B. √ ab

a2+ b2 C. √ 1

a2+ b2 D. ab

a2+ b2

Câu 67. Cho khối chóp có đáy là n−giác Mệnh đề nào sau đây là đúng?

A Số cạnh của khối chóp bằng số mặt của khối chóp.

B Số cạnh, số đỉnh, số mặt của khối chóp bằng nhau.

Trang 6

C Số đỉnh của khối chóp bằng số cạnh của khối chóp.

D Số đỉnh của khối chóp bằng số mặt của khối chóp.

Câu 68. [1] Tập xác định của hàm số y= 2x−1

A. D = (0; +∞) B. D = R \ {1} C. D = R D. D = R \ {0}

Câu 69. [1] Phương trình log24x − logx 2= 3 có bao nhiêu nghiệm?

Câu 70. Tính lim

x→ +∞

x+ 1 4x+ 3 bằng

A. 1

1

Câu 71. Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(−2; −2; 1), A(1; 2; −3) và đường thẳng

d: x+ 1

2 = y −5

2 = z

−1 Tìm véctơ chỉ phương ~u của đường thẳng∆ đi qua M, vuông góc với đường thẳng

dđồng thời cách A một khoảng bé nhất

A ~u = (1; 0; 2) B ~u= (2; 1; 6) C ~u= (3; 4; −4) D ~u= (2; 2; −1)

Câu 72. [1-c] Giá trị biểu thức log2240

log3,752 −

log215 log602 + log21 bằng

Câu 73. [4-1214h] Cho khối lăng trụ ABC.A0B0C0, khoảng cách từ C đến đường thẳng BB0bằng 2, khoảng cách từ A đến các đường thẳng BB0 và CC0 lần lượt bằng 1 và

3, hình chiếu vuông góc của A lên mặt phẳng (A0B0C0) là trung điểm M của B0C0và A0M = 2

√ 3

3 Thể tích khối lăng trụ đã cho bằng

√ 3

√ 3

Câu 74. Khi tăng độ dài tất cả các cạnh của một khối hộp chữ nhật lên gấp ba thì thể tích khối hộp tương ứng sẽ:

A Tăng gấp 3 lần B Tăng gấp 18 lần C Tăng gấp 27 lần D Tăng gấp 9 lần.

Câu 75. Cho hình chóp S ABCD có đáy ABCD là hình vuông cạnh a Hai mặt phẳng (S AB) và (S AD) cùng vuông góc với đáy, S C= a√3 Thể tích khối chóp S ABCD là

A. a

3

a3√ 3

a3√ 3

3

Câu 76. [2-c] Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y= x2

− 2 ln x trên [e−1; e] là

A M = e−2+ 1; m = 1 B M = e−2+ 2; m = 1

C M = e2− 2; m = e−2+ 2 D M = e−2− 2; m= 1

Câu 77. Tìm giá trị lớn nhất của hàm số y= √x+ 3 + √6 − x

A 2

Câu 78. [1229d] Đạo hàm của hàm số y= log 2x

x2 là

A y0 = 1 − 4 ln 2x

2x3ln 10 . B y

0 = 1 2x3ln 10. C y

0 = 1 − 2 ln 2x

x3ln 10 . D y

0 = 1 − 2 log 2x

x3

Câu 79. Giá trị giới hạn lim

x→−1(x2− x+ 7) bằng?

Câu 80. Hàm số y= −x3+ 3x2− 1 đồng biến trên khoảng nào dưới đây?

Câu 81. Thể tích khối chóp có diện tích đáy là S và chiều cao là h bằng

A V = 1

3S h. D V = 3S h

Trang 7

Câu 82. Cho

1

0

xe2xdx = ae2+ b, trong đó a, b là các số hữu tỷ Tính a + b

A. 1

1

2.

Câu 83. [1] Cho a > 0, a , 1 Giá trị của biểu thức loga

3

abằng

A −1

1

Câu 84 Phát biểu nào trong các phát biểu sau là đúng?

A Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại điểm đó

B Nếu hàm số có đạo hàm phải tại x0 thì hàm số liên tục tại điểm đó

C Nếu hàm số có đạo hàm trái tại x0 thì hàm số liên tục tại điểm đó

D Nếu hàm số có đạo hàm tại x0thì hàm số liên tục tại −x0

Câu 85. [12211d] Số nghiệm của phương trình 12.3x+ 3.15x

− 5x = 20 là

Câu 86. Tính giới hạn lim2n+ 1

3n+ 2

3

1

2.

Câu 87. [1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2) = m có nghiệm thực

x ≥1

Câu 88. [2-c] Giá trị nhỏ nhất của hàm số y = x2ln x trên đoạn [e−1; e] là

A − 1

1

e.

Câu 89. Cho hai hàm y= f (x), y = g(x) có đạo hàm trên R Phát biểu nào sau đây đúng?

A Nếu

Z

f0(x)dx =Z g0(x)dx thì f (x) = g(x), ∀x ∈ R

B Nếu f (x)= g(x) + 1, ∀x ∈ R thìZ f0(x)dx=Z g0(x)dx

C Nếu

Z

f(x)dx=

Z g(x)dx thì f (x)= g(x), ∀x ∈ R

D Nếu

Z

f(x)dx=Z g(x)dx thì f (x) , g(x), ∀x ∈ R

Câu 90. Mỗi đỉnh của hình đa diện là đỉnh chung của ít nhất

Câu 91. Cho f (x)= sin2x −cos2x − x Khi đó f0(x) bằng

Câu 92. Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật AB= 2a, BC = 4a và (S AB) ⊥ (ABCD) Hai mặt bên (S BC) và (S AD) cùng hợp với đáy một góc 30◦ Thể tích khối chóp S ABCD là

A. 4a

3√

3

8a3

√ 3

8a3

√ 3

a3

√ 3

9 .

Câu 93. Khối đa diện đều loại {4; 3} có số cạnh

Câu 94. Cho hàm số y = |3 cos x − 4 sin x + 8| với x ∈ [0; 2π] Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số Khi đó tổng M+ m

Trang 8

Câu 95. [1-c] Giá trị của biểu thức 3 log0,1102,4bằng

Câu 96. Khối đa diện đều loại {3; 3} có số mặt

Câu 97. [3-12216d] Tìm tất cả các giá trị thực của tham số m để phương trình log23x+qlog23x+ 1+4m−1 =

0 có ít nhất một nghiệm thuộc đoạnh1; 3

3i

Câu 98. Tìm giá trị lớn chất của hàm số y= x3− 2x2− 4x+ 1 trên đoạn [1; 3]

A. 67

Câu 99. Tính lim

x→ +∞

x −2

x+ 3

Câu 100. [4-1244d] Trong tất cả các số phức z= a + bi, a, b ∈ R thỏa mãn hệ thức |z − 2 + 5i| = |z − i| Biết rằng, |z+ 1 − i| nhỏ nhất Tính P = ab

A. 9

5

23

13

100.

Câu 101. Trong các câu sau đây, nói về nguyên hàm của một hàm số f xác định trên khoảng D, câu nào là

sai?

(I) F là nguyên hàm của f trên D nếu và chỉ nếu ∀x ∈ D : F0(x)= f (x)

(II) Nếu f liên tục trên D thì f có nguyên hàm trên D

(III) Hai nguyên hàm trên D của cùng một hàm số thì sai khác nhau một hàm số

sai

C Câu (II) sai D Câu (I) sai.

Câu 102. [3-1211h] Cho khối chóp đều S ABC có cạnh bên bằng a và các mặt bên hợp với đáy một góc

45◦ Tính thể tích của khối chóp S ABC theo a

A. a

3√

5

a3

√ 15

a3

√ 15

a3

3 .

Câu 103. Cho hàm số y= x3− 2x2+ x + 1 Mệnh đề nào dưới đây đúng?

A Hàm số nghịch biến trên khoảng 1

3; 1

! B Hàm số nghịch biến trên khoảng −∞;1

3

!

C Hàm số đồng biến trên khoảng 1

3; 1

! D Hàm số nghịch biến trên khoảng (1;+∞)

Câu 104. [2] Phương trình logx4 log2 5 − 12x

12x − 8

!

= 2 có bao nhiêu nghiệm thực?

Câu 105. Tổng diện tích các mặt của một khối lập phương bằng 96cm2 Thể tích của khối lập phương đó là:

Câu 106. Dãy số nào sau đây có giới hạn khác 0?

A. √1

sin n

n+ 1

1

n.

Trang 9

Câu 107. [2] Một người gửi tiết kiệm vào ngân hàng với lãi suất 6, 9% trên một năm Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ nhập vào só tiền vốn để tính lãi cho năm tiếp theo Hỏi sau ít nhất bao nhiêu năm người đó sẽ thu được (cả số tiền gửi ban đầu và lãi) gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra?

Câu 108. Cho hàm số f (x) liên tục trên đoạn [0; 1] và thỏa mãn f (x) = 6x2

f(x3) − √ 6

3x+ 1 Tính

Z 1

0

f(x)dx

Câu 109. [1] Biết log6 √a= 2 thì log6abằng

Câu 110. Hình lăng trụ tam giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 111. [2] Tổng các nghiệm của phương trình 9x− 12.3x+ 27 = 0 là

Câu 112. [1] Giá trị của biểu thức 9log3 12bằng

Câu 113. [3-1225d] Tìm tham số thực m để phương trình log2(5x − 1) log4(2.5x − 2)= m có nghiệm thực

x ≥1

Câu 114. [1-c] Giá trị của biểu thức log716

log715 − log71530 bằng

Câu 115. Mặt phẳng (AB0C0) chia khối lăng trụ ABC.A0B0C0thành các khối đa diện nào?

A Một khối chóp tam giác, một khối chóp tứ giác.

B Hai khối chóp tam giác.

C Hai khối chóp tứ giác.

D Một khối chóp tam giác, một khối chóp ngữ giác.

Câu 116. [2] Cho chóp đều S ABCD có đáy là hình vuông tâm O cạnh a, S A = a Khoảng cách từ điểm O đến (S AB) bằng

√ 6

√ 6

Câu 117. [3] Cho hàm số f (x)= 4x

4x+ 2 Tính tổng T = f

1 2017

! + f 2 2017

! + · · · + f 2016

2017

!

A T = 2016

Câu 118. [4-1213d] Cho hai hàm số y= x −3

x −2 + x −2

x −1 + x −1

x+ 1 và y= |x + 2| − x − m (m là tham

số thực) có đồ thị lần lượt là (C1) và (C2) Tập hợp tất cả các giá trị của m để (C1) cắt (C2) tại đúng 4 điểm phân biệt là

Câu 119. [2-c] Giá trị lớn nhất của hàm số y = ex

cos x trên đoạn

 0;π 2

 là

A. 1

2e

π

√ 2

2 e

π

√ 3

2 e

π

Trang 10

Câu 120. Gọi S là tập hợp các tham số nguyên a thỏa mãn lim 3n+ 2

n+ 2 + a2− 4a

!

= 0 Tổng các phần tử của S bằng

Câu 121. [3-1213h] Hình hộp chữ nhật không có nắp có thể tích 3200 cm3, tỷ số giữa chiều cao và chiều rộng bằng 2 Khi tổng các mặt của hình nhỏ nhất, tính diện tích mặt đáy của hình hộp

Câu 122. Hình lập phương có bao nhiêu mặt phẳng đối xứng?

Câu 123 [1232d-2] Trong các khẳng định dưới đây, có bao nhiêu khẳng định đúng?

(1) Mọi hàm số liên tục trên [a; b] đều có đạo hàm trên [a; b]

(2) Mọi hàm số liên tục trên [a; b] đều có nguyên hàm trên [a; b]

(3) Mọi hàm số có đạo hàm trên [a; b] đều có nguyên hàm trên [a; b]

(4) Mọi hàm số liên tục trên [a; b] đều có giá trị lớn nhất, giá trị nhỏ nhất trên [a; b]

Câu 124. Cho

Z 2

1

ln(x+ 1)

x2 dx= a ln 2 + b ln 3, (a, b ∈ Q) Tính P = a + 4b

Câu 125. Hình chóp tứ giác đều có bao nhiêu mặt phẳng đối xứng?

Câu 126. Tìm giá trị của tham số m để hàm số y= −x3+ 3mx2+ 3(2m − 3)x + 1 nghịch biến trên khoảng (−∞;+∞)

Câu 127. [1226d] Tìm tham số thực m để phương trình log(mx)

log(x+ 1) = 2 có nghiệm thực duy nhất

Câu 128. Tìm m để hàm số y= x4− 2(m+ 1)x2− 3 có 3 cực trị

Câu 129. Hàm số y= x2− 3x+ 3

x −2 đạt cực đại tại

Câu 130. Cho hàm số y= f (x) liên tục trên khoảng (a, b) Điều kiện cần và đủ để hàm số liên tục trên đoạn [a, b] là?

A lim

x→a − f(x)= f (a) và lim

x→b − f(x)= f (b) B lim

x→a + f(x)= f (a) và lim

x→b − f(x)= f (b)

C lim

x→a + f(x)= f (a) và lim

x→b + f(x)= f (b) D lim

x→a − f(x)= f (a) và lim

x→b + f(x)= f (b)

HẾT

Ngày đăng: 10/04/2023, 22:29

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w